Research Database
Displaying 141 - 156 of 156
Timing of carbon emissions from global forest clearance
Year: 2012
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating greenhouse-gas emissions from global land-use conversion. Here, we estimate the fate of cleared wood and timing of atmospheric carbon emissions for 169 countries. We show that 30 years after forest clearance the percentage of carbon stored in wood products…
Publication Type: Journal Article
Characterizing Fire-on-Fire Interactions in Three Large Wilderness Areas
Year: 2012
The interaction of fires, where one fire burns into another recently burned area, is receiving increased attention from scientists and land managers wishing to describe the role of fire scars in affecting landscape pattern and future fire spread. Here, we quantify fire-on-fire interactions in terms of frequency, size, and time-since-previous fire (TSPF) in three large wilderness areas in Montana and Idaho, USA, from 1984 to present, using spatially consistent large fire perimeter data from the Monitoring Trends in Burn Severity (MTBS) dataset. The analysis is supplemented with less consistent…
Publication Type: Journal Article
Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon
Year: 2012
In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The…
Publication Type: Journal Article
Carbon Dynamics of Forests in Washington, USA: 21st Century Projections Based on Climate-Driven Changes in Fire Regimes
Year: 2012
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for monitoring C storage and fire management to minimize C loss. In this study, we used projections of 21st century area burned to explore the consequences of changes in fire regimes on C dynamics in forests of Washington State. We used a novel empirical…
Publication Type: Journal Article
Evidence of Enhanced Freezing Damage in Treeline Plants During Six Years of CO 2 Enrichment and Soil Warming
Year: 2012
Climate change and elevated atmospheric CO 2 levels could increase the vulnerability of plants to freezing. We analyzed tissue damage resulting from naturally occurring freezing events in plants from a longterm in situ CO 2 enrichment (+ 200 ppm, 2001-2009) and soil warming (+ 4°C since 2007) experiment at treeline in the Swiss Alps (Stillberg, Davos). Summer freezing events caused damage in several abundant subalpine and alpine plant species in four out of six years between 2005 and 2010. Most freezing damage occurred when temperatures dropped below -1.5°C two to three weeks after snow melt…
Publication Type: Journal Article
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective
Year: 2010
Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment…
Publication Type: Journal Article
Fuelwood Characteristics of Northwestern Conifers and Hardwoods (Updated)
Year: 2010
This report is an update of the original publication by Oregon State University in 1987 (Resource Bulletin 60). According to agreements, researchers at the U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station and the Juneau Economic Development Council worked with Oregon State University to update this reference concerning wood energy properties. The fuelwood characteristics were reformatted and presented in tabular form, and a literature review was conducted to check for additional information published since 1987. This report provides fuelwood values for 34…
Publication Type: Report
Fire as a restoration tool: A decision framework for predicting the control or enhancement of plants using fire
Year: 2010
Wildfires change plant communities by reducing dominance of some species while enhancing the abundance of others. Detailed habitat-specific models have been developed to predict plant responses to fire, but these models generally ignore the breadth of fire regime characteristics that can influence plant survival such as the degree and duration of exposure to lethal temperatures. We provide a decision framework that integrates fire regime components, plant growth form, and survival attributes to predict how plants will respond to fires and how fires can be prescribed to enhance the likelihood…
Publication Type: Journal Article
Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers
Year: 2009
Prescribed burning may be conducted at times of the year when fires were infrequent historically, leading to concerns about potential adverse effects on vegetation and wildlife. Historical and prescribed fire regimes for different regions in the continental United States were compared and literature on season of prescribed burning synthesized. In regions and vegetation types where considerable differences in fuel consumption exist among burning seasons, the effects of prescribed fire season appears, for many ecological variables, to be driven more by fire-intensity differences among seasons…
Publication Type: Report
The Forest, the Fire and the Fungi: Studying the Effects of Prescribed Burning on Mycorrhizal Fungi in Crater Lake National Park
Year: 2009
A first-of-its-kind study, conducted in a forest of old-growth ponderosa pine and white fir in Oregon’s Crater Lake National Park, explored the relationships among seasonal prescribed burning, an array of soil attributes, and mycorrhizal fungal fruiting patterns. This three-fold approach not only made the study unique, but also enabled researchers to separate the effects of fire treatment from the effects of soil attributes on fungal fruiting patterns. The study’s site encompassed three different prescribed burn treatments—applied in the early spring, late spring, and fall of 2002—as well as…
Publication Type: Report
The Ecological Importance of Severe Wildfires: Some Like it Hot
Year: 2008
Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States.…
Publication Type: Journal Article
Has Fire Suppression Increased the Amount of Carbon Stored in Western US Forests?
Year: 2008
Active 20th century fire suppression in western US forests, and a resulting increase in stem density, is thought to account for a significant fraction of the NorthAmerican carbon sink. We compared California forest inventories from the 1930s with inventories from the 1990s to quantify changes in aboveground biomass. Stem density in mid-montane conifer forests increased by 34%, while live aboveground carbon stocks decreased by 26%. Increased stem density reflected an increase in the number of small trees and a net loss of large trees. Large trees contain a disproportionate amount of carbon,…
Publication Type: Journal Article
Lessons of the Hayman fire: weeds, woodpeckers and fire severity
Year: 2008
This project took advantage of pre-fire data gathered within the perimeter of Colorado’s 2002 Hayman Fire. Researchers studied the unique fire regime of Front Range ponderosa pine forests, and fire effects on understory-plant communities and American Three-toed Woodpeckers. Results confirmed that historically, the diverse structure of these forests was maintained by a mixed-severity fire regime that included large areas of severe fire. In addition, researchers found that much of the burn meets habitat requirements for American Three-toed Woodpeckers, and that understory plant species that…
Publication Type: Report
Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade range of Oregon
Year: 2008
Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0–10 cm). Twelve of our stands burned approximately 150 years ago (“young”), and the other 12 burned approximately 550 years ago (“old”). Forest floor mean C…
Publication Type: Journal Article
Do wood-boring beetles influence the flammability of deadwood?
Year:
Global warming increases the risk of wildfire and insect outbreaks, potentially reducing the carbon storage function of coarse woody debris (CWD). There is an increasing focus on the interactive effects of wildfire and insect infestation on forest carbon, but the impact of wood-boring beetle tunnels via their effect on the flammability of deadwood remains unexplored. We hypothesized that the presence of beetle holes, at natural densities, can affect its flammability positively through increased surface area and enhanced oxygen availability in the wood. To test this, wood-boring beetle holes…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 4
- 5
- 6
- 7
- 8