Research Database
Displaying 141 - 160 of 174
Modeling wildfire regimes in forest landscapes: abstracting a complex reality
Year: 2015
Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ), element cycles ( Smithwick 2011 ), and even landforms (Pierce et al. 2004 ). In boreal forests, for example, recurring wildfi res are the main cause of compositional and spatial patterns ( Wein and MacLean 1983 ), where a fi re-…
Publication Type: Book Chapter
The climate space of fire regimes in north-western North America
Year: 2015
Aim Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA. Methods We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We…
Publication Type: Journal Article
Re-envisioning community-wildfire relations in the U.S. West as adaptive governance
Year: 2015
Prompted by a series of increasingly destructive, expensive, and highly visible wildfire crises in human communities across the globe, a robust body of scholarship has emerged to theorize, conceptualize, and measure community-level resilience to wildfires. To date, however, insufficient consideration has been given to wildfire resilience as a process of adaptive governance mediated by institutions at multiple scales. Here we explore the possibilities for addressing this gap through an analysis of wildfire resilience among wildland-urban interface communities in the western region of the…
Publication Type: Journal Article
Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
Year: 2014
Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between…
Publication Type: Journal Article
The Ecology and Management of Moist Mixed-Conifer Forests in Eastern Oregon and Washington: a Synthesis of the Relevant Biophysical Science and Implications for Future Land Management
Year: 2014
Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions,…
Publication Type: Report
Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies
Year: 2014
Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010)…
Publication Type: Journal Article
Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
Year: 2014
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing plot data to analyze fire effects. We used regression tree and random forests analysis to examine the influence of forest structure, fuel, fire history, topographic and weather conditions on observed fire severity in the Rim…
Publication Type: Journal Article
Landscape restoration of a forest with a historically mixed-severity fire regime: What was the historical landscape pattern of forest and openings?
Year: 2014
Forest management of dry forests in the western US that historically experienced mixed-severity fire regimes is increasingly focused on landscape-scale restoration. However, this restoration effort is constrained by historic range of variation (HRV) reference conditions that lack information concerning the spatial configuration of these forests at intermediate scales (approximately 0.01–100 ha). I used reconstruction methods to map historical (1860) pattern of ponderosa pine-Douglas-fir forests along twenty 1 km long transects on Colorado’s Front Range and compared pre-settlement opening and…
Publication Type: Journal Article
Fire and fuels
Year: 2014
Recent studies of historical fire regimes indicate that fires occurring prior to Euro-American settlement were characterized by a high degree of spatial complexity that was driven by heterogeneity in vegetation/fuels and topography and influenced by variability in climate, which mediated the timing, effects, and extents of fires over time. Although there are many important lessons to learn from the past, we may not be able to rely completely on past forest conditions to provide us with blueprints for current and future forest management. Rather than attempting to achieve a particular forest…
Publication Type: Report
Fire regimes of quaking aspen in the Mountain West
Year: 2013
Quaking aspen, the most widespread tree species in North America, reproduces primarily by resprouting from roots. In some stands, mortality from fire encourages sprouting and prevents conifers from eventually replacing aspen. In other areas, aspen can form stable communities that do not require fire to regenerate or persist. USGS fire ecologist Doug Shinneman and colleagues reviewed literature about aspen populations and fire, summarized research findings, and suggested a classification system for aspen across the western mountainous United States. The scientists proposed five aspen “fire…
Publication Type: Journal Article
Wildland Fire management: Are actively managed forests more resilient than passively managed forests?
Year: 2013
Large areas of federal lands in the western states are currently at high risk of severe wildfire and have many insect and disease problems, indicating a significant decline in forest health and resilience. Although research studies have not been done that would measure whether actively managed forests are more resilient to wildfires than passively managed forests, results from studies of hazardous fuels treatment effectiveness and the economic benefits from avoided costs of future wildfire suppression due to fuels treatment can be used to support an affirmative reply to the question. If a…
Publication Type: Report
Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring
Year: 2013
Stand-level spatial pattern influences key aspects of resilience and ecosystem function such as disturbance behavior, regeneration, snow retention, and habitat quality in frequent-fire pine and mixed-conifer forests. Reference sites, from both pre-settlement era reconstructions and contemporary forests with active fire regimes, indicate that frequent-fire forests are complex mosaics of individual trees, tree clumps, and openings. There is a broad scientific consensus that restoration treatments should seek to restore this mosaic pattern in order to restore resilience and maintain ecosystem…
Publication Type: Journal Article
Dry Forest Zone Maps 2013
Year: 2013
The Dry Forest Investment Zone (DFIZ) is a five-year project to address common natural resource-based economic development challenges through increased networking and capacity building at a regional scale. Sustainable Northwest leads this project in partnership with Wallowa Resources in northeastern Oregon, the Watershed Research and Training Center in northern California, and the Ecosystem Workforce Program at the University of Oregon. The central components of the DFIZ strategy are: 1) To build strong local nonprofit organizations and collaborative processes to achieve forest and economic…
Publication Type: Report
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo–Chediski Fire area. Data from 140 plots on seven paired treated–untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material >7.62 cm in diameter) was 257% higher and fine woody debris (woody material <7…
Publication Type: Journal Article
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material.7.62 cm in diameter) was 257% higher and fine woody debris (woody material,7.62 cm)…
Publication Type: Journal Article
Latent resilience in ponderosa pine forest: effects of resumed frequent fire
Year: 2013
Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels,…
Publication Type: Journal Article
Wildfire, Wildlands, and People: Understanding and preparing for wildfire in the wildland-urban interface
Year: 2013
Fire has historically played a fundamental ecological role in many of America’s wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become "fire-adapted." We present maps of the conterminous United States that illustrate historical natural fire regimes, the wildland-urban interface, and the number and location of structures burned since 1999. We outline a sampler of actions, programs, and community planning and…
Publication Type: Report
Climate Change, Forests, Fire, Water, and Fish: Building Resilient Landscapes, Streams, and Managers
Year: 2012
Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their calculus. The biophysical template of forest and stream ecosystems determines much of their response to fire. This report describes the framework of how fire and climate change work together to affect forest and fish…
Publication Type: Report
Spatially extensive reconstructions show variable-severity fire and heterogeneous structure in historical western United States dry forests
Year: 2012
Aim Wildfire is often considered more severe now than historically in dry forests of the western United States. Tree-ring reconstructions, which suggest that historical dry forests were park-like with large, old trees maintained by low-severity fires,are from small, scattered studies. To overcome this limitation, we developed spatially comprehensive reconstructions across 927,000 ha in four landscapes, using anew method based on land surveys from c. 1880. Location Dry forests of the western United States. Methods We reconstructed forest structure for four large dry-forest landscapes using…
Publication Type: Journal Article
Characterizing Fire-on-Fire Interactions in Three Large Wilderness Areas
Year: 2012
The interaction of fires, where one fire burns into another recently burned area, is receiving increased attention from scientists and land managers wishing to describe the role of fire scars in affecting landscape pattern and future fire spread. Here, we quantify fire-on-fire interactions in terms of frequency, size, and time-since-previous fire (TSPF) in three large wilderness areas in Montana and Idaho, USA, from 1984 to present, using spatially consistent large fire perimeter data from the Monitoring Trends in Burn Severity (MTBS) dataset. The analysis is supplemented with less consistent…
Publication Type: Journal Article