Research Database
Displaying 1 - 3 of 3
Long-term tree population growth can predict woody encroachment patterns
Year: 2025
Recent increases in woody plant density in dryland ecosystems—or “woody encroachment”—around the world are often attributed to land-use changes such as increased livestock grazing and wildfire suppression or to global environmental trends (e.g., increasing atmospheric carbon dioxide). While such changes have undoubtedly impacted ecosystem structure and function, the evidence linking them to woody encroachment is mixed, and the underlying processes are not fully understood. To clarify the role of demographic processes in changing woody plant abundance, we conducted a meta-analysis of tree age…
Publication Type: Journal Article
Trailing edge contractions common in interior western US trees under varying disturbances
Year: 2025
As climate warms, trees are expected to track their ideal climate, referred to as ‘range shifts’; however, lags in tree range shifts are currently common. Disturbance events that kill trees may help catalyse tree migrations by removing biotic competition, but can also limit regeneration by eliminating seed sources, and it is unknown whether disturbance will facilitate or inhibit tree migrations in the face of climate change. Here we use national forest inventory data to show that seedlings of 15 dominant tree species in the interior western United States occupy historically cooler areas than…
Publication Type: Journal Article
Combining ecophysiology and combustion traits: a pyro-ecophysiological approach to live fuel moisture prediction in common shrubs
Year: 2025
BackgroundQuantifying fuel moisture content accurately is critical for understanding global vegetation flammability. While models representing changes in dead fuel moisture are relatively advanced, the mechanisms driving fluctuations in live fuel moisture content (LFMC) have been difficult to capture. Living plants make up a large proportion of the fuel complex for wildfires, yet linking plant and combustion science to advance our understanding of wildfire risk has, to date, been limiting. Developing mechanistic approaches to link these two disciplines will confer greater understanding and…
Publication Type: Journal Article