Research Database
Displaying 161 - 180 of 203
Are high-severity fires burning at much higher rates recently than historically in dry-forest landscapes of the Western USA.
Year: 2015
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used…
Publication Type: Journal Article
Vegetation Response to Burn Severity, Native Grass Seeding, and Salvage Logging
Year: 2015
As the size and extent of wildfires has increased in recent decades, so has the cost and extent of post-fire management, including seeding and salvage logging. However, we know little about how burn severity, salvage logging, and post-fire seeding interact to influence vegetation recovery long-term. We sampled understory plant species richness, diversity, and canopy cover one to six years post fire (2006 to 2009, and 2011) on 72 permanent plots selected in a stratified random sample to define post-fire vegetation response to burn severity, post-fire seeding with native grasses, and salvage…
Publication Type: Journal Article
Fire severity in southwestern Colorado unaffected by spruce beetle outbreak
Year: 2015
Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB, Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent…
Publication Type: Journal Article
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Year: 2014
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing fire effects on vegetation and soil using field methods, remote sensing and models. We suggest that instead of collapsing many diverse, complex and interacting fire effects into a single severity index, the effects of fire should…
Publication Type: Journal Article
Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions
Year: 2014
The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by…
Publication Type: Journal Article
Briefing: Climate and Wildfire in Western U.S. Forests
Year: 2014
Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s. These changes are closely linked to increased temperatures and a greater frequency and intensity of drought. Projected additional future warming implies that wildfire activity may continue to increase in western forests. However, the interaction of changes in climate, fire and other disturbances…
Publication Type: Conference Proceedings
Assessing the quality of forest fuel loading data collected using public participation methods and smartphones
Year: 2014
Effective wildfire management in the wildland–urban interface (WUI) depends on timely data on forest fuel loading to inform management decisions. Mobile personal communication devices, such as smartphones, present new opportunities to collect data in the WUI, using sensors within the device – such as the camera, global positioning system (GPS), accelerometer, compass, data storage and networked data transfer. In addition to providing a tool for forest professionals, smartphones can also facilitate engaging other members of the community in forest management as they are now available to a…
Publication Type: Journal Article
Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
Year: 2014
Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between…
Publication Type: Journal Article
Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
Year: 2014
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing plot data to analyze fire effects. We used regression tree and random forests analysis to examine the influence of forest structure, fuel, fire history, topographic and weather conditions on observed fire severity in the Rim…
Publication Type: Journal Article
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Year: 2014
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps – in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution – or MODIS satellite data to determine the day-of-burning, thereby allowing an evaluation of the influence of daily weather. However, fire progression maps have many caveats, the most substantial being that they are rarely mapped…
Publication Type: Journal Article
Clearcutting and high severity wildfire have comparable effects on growth of direct-seeded interior Douglas-fir
Year: 2014
The degree to which harvesting can achieve comparable beneficial effects to wildfire on seedling establishment is a key factor in understanding regeneration dynamics in dry interior forest ecosystems. We compared the capacity of harvesting versus wildfire to support establishment of directly-seeded interior Douglas-fir over a three-year period in the interior Douglas-fir biogeoclimatic zone of British Columbia. The mixed-severity McLure Fire of August 2003 affected over 26,000 hectares in the central British Columbia, Canada. Within the fire-affected area, we assessed growth performance in…
Publication Type: Journal Article
Landscape restoration of a forest with a historically mixed-severity fire regime: What was the historical landscape pattern of forest and openings?
Year: 2014
Forest management of dry forests in the western US that historically experienced mixed-severity fire regimes is increasingly focused on landscape-scale restoration. However, this restoration effort is constrained by historic range of variation (HRV) reference conditions that lack information concerning the spatial configuration of these forests at intermediate scales (approximately 0.01–100 ha). I used reconstruction methods to map historical (1860) pattern of ponderosa pine-Douglas-fir forests along twenty 1 km long transects on Colorado’s Front Range and compared pre-settlement opening and…
Publication Type: Journal Article
Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests
Year: 2014
Bark beetle-caused tree mortality affects important forest ecosystem processes. Remote sensing methodologies that quantify live and dead basal area (BA) in bark beetle-affected forests can provide valuable information to forest managers and researchers. We compared the utility of light detection and ranging (lidar) and the Landsat-based detection of trends in disturbance and recovery (LandTrendr) algorithm to predict total, live, dead, and percent dead BA in five bark beetle-affected forests in Alaska, Arizona, Colorado, Idaho, and Oregon, USA. The BA response variables were predicted from…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Climate stress increases forest fire severity across the western United States
Year: 2013
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resultingfrom fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that highpre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationshipbetween climate and fire was present after accounting for fire defences and injuries, and appeared to influencethe effects of crown and stem injuries. Climate and fire interactions did not vary substantially acrossgeographical regions, major genera and tree sizes. Our…
Publication Type: Journal Article
Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas
Year: 2013
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological process of fire to ecosystems. Recent research suggests that landscapes with unaltered fire regimes are more ‘‘self-regulating’’ than those that have experienced fire-regime shifts; in self-regulating systems, fire size and…
Publication Type: Journal Article
Fuel Treatments and Fire Severity: A Meta-Analysis
Year: 2013
We employed meta-analysis and information theory to synthesize findings reported in the literature on the effects of fuel treatments on subsequent fire intensity and severity. Data were compiled from 19 publications that reported observed fire responses from 62 treated versus untreated contrasts. Effect sizes varied widely and the most informative grouping of studies distinguished three vegetation types and three types of fuel treatment. The resultant meta-analytic model is highly significant (p<0.001) and explains 78% of the variability in reported observations of fuel treatment…
Publication Type: Report
Fire-mediated pathways of stand development in Douglas-fir/ western hemlock forests of the Pacific Northwest, USA
Year: 2013
Forests dominated by Douglas-fir and western hemlock in the Pacific Northwest of the United States have strongly influenced concepts and policy concerning old-growth forest conservation. Despite the attention to their old-growth characteristics, a tendency remains to view their disturbance ecology in relatively simple terms, emphasizing infrequent, stand-replacing (SR) fire and an associated linear pathway toward development of those old-growth characteristics. This study uses forest stand- and age-structure data from 124 stands in the central western Cascades of Oregon to construct a…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Is burn severity related to fire intensity? Observations from landscape scale remote sensing
Year: 2013
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-…
Publication Type: Journal Article