Research Database
Displaying 1 - 3 of 3
Major changes in climate, vegetation, and ecological resilience in recent decades suggest climate smart management strategies for western US dryland shrublands and woodlands
Year: 2025
BackgroundCatastrophic wildfire has escalated across the globe in recent decades with devastating consequences for human communities and native ecosystems. Global change processes, including climate warming and land use practices, are altering fuels, fire risk, and ecosystem recovery. Managing ecosystems to reduce fire risk and prevent conversion to undesirable alternative states requires knowledge of the ecological conditions of ecosystems, trajectories of change, and drivers of those changes. We developed an approach for evaluating ongoing changes in climate and vegetation and using that…
Publication Type: Journal Article
Following megafires fishes thrive and amphibians persist even in severely burned watersheds
Year: 2025
Wildfires are increasing in severity, frequency and size, potentially threatening freshwater species that adapted under different disturbance regimes. However, few wildfire studies have comprehensively evaluated freshwater populations and assemblages following wildfire over broad spatial scales while accounting for post-fire salvage practices in the watershed. We reveal that stream vertebrate assemblages across thirty 4th order streams, spanning a range of both watershed fire severity and post-fire forest management extent, were minimally influenced by immediate effects of fire alone (…
Publication Type: Journal Article
Pre-fire structure drives variability in post-fire aboveground carbon and fuel profiles in wet temperate forests
Year: 2025
Biological legacies (i.e., materials that persist following disturbance; “legacies”) shape ecosystem functioning and feedbacks to future disturbances, yet how legacies are driven by pre-disturbance ecosystem state and disturbance severity is poorly understood—especially in ecosystems influenced by infrequent and severe disturbances. Focusing on wet temperate forests as an archetype of these ecosystems, we characterized live and dead aboveground biomass 2–5 years post-fire in western Washington and northwestern Oregon, USA, to ask: How do pre-fire stand age (i.e., pre-disturbance ecosystem…
Publication Type: Journal Article