Skip to main content

sagebrush

Displaying 21 - 30 of 37

Vegetation Recovery and Fuel Reduction after Seasonal Burning of Western Juniper

Year of Publication
2014
Publication Type

The decrease in fire activity has been recognized as a main cause of expansion of North American woodlands. Piñon-juniper habitat in the western United States has expanded in area nearly 10-fold since the late 1800s. Woodland control measures using chainsaws, heavy equipment, and prescribed fire are used to restore sagebrush steppe plant communities.

Management of cheatgrass fuel loading in the shrub-steppe

Year of Publication
2013
Publication Type

The fire risk experiment was in plant communities that spanned the range of B. tectorum cover. Bromus tectorum cover was grouped into five classes. Each replicate is comprised of 8 to 18 plots in the three lowest B. tectorum cover classes and 2 to 6 plots at the two highest cover classes.

Models for predicting fuel consumption in sage-brush-dominated ecosystems

Year of Publication
2013
Publication Type

Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems.

Using native annual plants to restore post-fire habitats in western North America

Year of Publication
2013
Publication Type

Increasing fire frequencies and uncharacteristic severe fires have created a need for improved restoration methods across rangelands in western North America. Traditional restoration seed mixtures of native perennial mid- to late-seral plant species may not be suitable for intensely burned sites that have been returned to an early-seral condition.

Cheating Cheatgrass: New research to combat a wily invasive weed

Year of Publication
2012
Publication Type

Cheatgrass and its cousin, red brome, are exotic annual grasses that have invaded and altered ecosystem dynamics in more than 41 million acres of desert shrublands between the Rockies and the Cascade-Sierra chain. A fungus naturally associated with these Bromus species has been found lethal to the plants’ soil-banked dormant seeds.