Skip to main content

fire severity

Displaying 31 - 40 of 133

Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study

Year of Publication
2023
Publication Type

Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a s

Predicting snag fall in an old-growth forest after fire

Year of Publication
2023
Publication Type
Snags, standing dead trees, are becoming more abundant in forests as tree mortality rates continue to increase due to fire, drought, and bark beetles. Snags provide habitat for birds and small mammals, and when they fall to the ground, the resulting logs provide additional wildlife habitat and affect nutrient cycling, fuel loads, and fire behavior.

Effects of nurse shrubs and biochar on planted conifer seedling survival and growth in a high-severity burn patch in New Mexico, USA

Year of Publication
2023
Publication Type

The synergistic effects of widespread high-severity wildfire and anthropogenic climate change are driving large-scale vegetation conversion. In the southwestern United States, areas that were once dominated by conifer forests are now shrub- or grasslands after high-severity wildfire, an ecosystem conversion that could be permanent without human intervention.

Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects

Year of Publication
2023
Publication Type

As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire.