Skip to main content

Fire History

Displaying 1 - 10 of 113

Trees in Fire-Maintained Forests Have Similar Growth Responses to Drought, but Greater Stomatal Conductance Than Trees in Fire-Excluded Forests

Year of Publication
2025
Publication Type

In the western US, increased tree density in dry conifer forests from fire exclusion has caused tree growth declines, which is being compounded by hotter multi-year droughts. The reintroduction of frequent, low-severity wildfire reduces forest density by removing fire-intolerant trees, which can reduce competition for water and improve tree growth response to drought.

Finding floral and faunal species richness optima among active fire regimes

Year of Publication
2025
Publication Type

Changing fire regimes have important implications for biodiversity and challenge traditional conservation approaches that rely on historical conditions as proxies for ecological integrity. This historical-centric approach becomes increasingly tenuous under climate change, necessitating direct tests of environmental impacts on biodiversity.

Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California

Year of Publication
2025
Publication Type

Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk.

Changing fire regimes in the Great Basin USA

Year of Publication
2025
Publication Type

Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition.

Temporal and spatial pattern analysis of escaped prescribed fires in California from 1991 to 2020

Year of Publication
2025
Publication Type

Background: Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns.

Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions

Year of Publication
2024
Publication Type

Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021.