Timing of carbon emissions from global forest clearance
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions.
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions.
As climate models improve, decision-makers' expectations for accurate climate predictions are growing. Natural climate variability, however, poses inherent limits to climate predictability and the related goal of adaptation guidance in many places, as illustrated here for North America.
Anthropogenic-induced changes in nutrient ratios have increased the susceptibility of large temperate lakes to several effects of rising air temperatures and the resulting heating of water bodies. First, warming leads to stronger thermal stratification, thus impeding natural complete water turnover (holomixis), which compensates for oxygen deficits in the deep zones.
Climate change is predicted to alter global species diversity, the distribution of human pathogens and ecosystem services. Forecasting these changes and designing adequate management of future ecosystem services will require predictive models encompassing the most fundamental biotic responses. However, most present models omit important processes such as evolution and competition.
The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation.
We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate change.
A methodological framework is provided for the quantification of climate change effects on site index. Spatio-temporal predictions of site index are derived for six major tree species in the German state of Baden-Württemberg using simplified universal kriging (UK) based on large data sets from forest inventories and a climate sensitive site-index model.
This guidebook contains science-based principles, processes, and tools necessary to assist with developing adaptation options for national forest lands.
Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties.
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today.