Research Database
Displaying 1 - 5 of 5
Multitemporal LiDAR improves estimates of fire severity in forested landscapes
Year: 2018
Landsat-based fire severity maps have limited ecological resolution, which can hinder assessments of change to specific resources. Therefore, we evaluated the use of pre- and post-fire LiDAR, and combined LiDAR with Landsat-based relative differenced Normalized Burn Ratio (RdNBR) estimates, to increase the accuracy and resolution of basal area mortality estimation. We vertically segmented point clouds and performed model selection on spectral and spatial pre- and post-fire LiDAR metrics and their absolute differences. Our best multitemporal LiDAR model included change in mean intensity values…
Publication Type: Journal Article
Drought, Tree Mortality, and Wildfire in Forests Adapted to Frequent Fire
Year: 2018
Massive tree mortality has occurred rapidly in frequent-fire-adapted forests of the Sierra Nevada, California. This mortality is a product of acute drought compounded by the long-established removal of a key ecosystem process: frequent, low- to moderate-intensity fire. The recent tree mortality has many implications for the future of these forests and the ecological goods and services they provide to society. Future wildfire hazard following this mortality can be generally characterized by decreased crown fire potential and increased surface fire intensity in the short to intermediate term.…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Advancing Dendrochronological Studies of Fire in the United States
Year: 2018
Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct [2] the historical range and…
Publication Type: Journal Article
Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone
Year: 2018
High-severity, infrequent fires in forests shape landscape mosaics of stand age and structure for decades to centuries, and forest structure can vary substantially even among same-aged stands. This variability among stand structures can affect landscape-scale carbon and nitrogen cycling, wildlife habitat availability, and vulnerability to subsequent disturbances. We used an individual-based forest process model (iLand) to ask: Over 300 years of postfire stand development, how does variation in early regeneration densities versus abiotic conditions influence among-stand structural variability…
Publication Type: Journal Article