Research Database
Displaying 1 - 3 of 3
Small-scale fire refugia increase soil bacterial and fungal richness and increase community cohesion nine years after fire
Year: 2025
Small-scale variation in wildfire behavior may cause large differences in belowground bacterial and fungal communities with consequences for belowground microbial diversity, community assembly, and function. Here we combine pre-fire, active-fire, and post-wildfire measurements in a mixed-conifer forest to identify how fine-scale wildfire behavior, unburned refugia, and aboveground forest structure are associated with belowground bacterial and fungal communities nine years after wildfire. We used fine-scale mapping of small (0.9–172.6 m2) refugia to sample soil-associated burned and…
Publication Type: Journal Article
Mapping Delayed Canopy Loss and Durable Fire Refugia for the 2020 Wildfires in Washington State Using Multiple Sensors
Year: 2025
Fire refugia are unburned and low severity patches within wildfires that contribute heterogeneity that is important to retaining biodiversity and regenerating forest following fire. With increasingly intense and frequent wildfires in the Pacific Northwest, fire refugia are important for re-establishing populations sensitive to fire and maintaining resilience to future disturbances. Mapping fire refugia and delayed canopy loss is useful for understanding patterns in their distribution. The increasing abundance of satellite data and advanced analysis platforms offer the potential to map fire…
Publication Type: Journal Article
Major changes in climate, vegetation, and ecological resilience in recent decades suggest climate smart management strategies for western US dryland shrublands and woodlands
Year: 2025
BackgroundCatastrophic wildfire has escalated across the globe in recent decades with devastating consequences for human communities and native ecosystems. Global change processes, including climate warming and land use practices, are altering fuels, fire risk, and ecosystem recovery. Managing ecosystems to reduce fire risk and prevent conversion to undesirable alternative states requires knowledge of the ecological conditions of ecosystems, trajectories of change, and drivers of those changes. We developed an approach for evaluating ongoing changes in climate and vegetation and using that…
Publication Type: Journal Article