Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity
Grasslands are structured by climate and soils, and are increasingly affected by anthropogenic changes, including rising atmospheric CO 2 concentrations.
Grasslands are structured by climate and soils, and are increasingly affected by anthropogenic changes, including rising atmospheric CO 2 concentrations.
As climate models improve, decision-makers' expectations for accurate climate predictions are growing. Natural climate variability, however, poses inherent limits to climate predictability and the related goal of adaptation guidance in many places, as illustrated here for North America.
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions.
Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system.
Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, soil-water deficit can limit evapotranspiration, leading to warmer and drier conditions in the lower atmosphere.
The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation.
Active 20th century fire suppression in western US forests, and a resulting increase in stem density, is thought to account for a significant fraction of the NorthAmerican carbon sink. We compared California forest inventories from the 1930s with inventories from the 1990s to quantify changes in aboveground biomass.
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality.
Wildfire is a keystone ecological process in many forests worldwide, but fire exclusion and suppression have driven profound shifts in forest structure (e.g., increased density, canopy cover, biomass) that have contributed to increases in large, high-severity fire in many seasonally dry forests and woodlands of the western United States.
Forest management of dry forests in the western US that historically experienced mixed-severity fire regimes is increasingly focused on landscape-scale restoration.