Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes
Forests are essential in regulating global carbon and water cycles and are critical in mitigating climate change.
Forests are essential in regulating global carbon and water cycles and are critical in mitigating climate change.
Long-term trends show increased tree mortality over the last several decades, coinciding with above-average temperatures, high climatic water deficits, and bark beetle outbreaks. California’s recent unprecedented drought (2012–2016) highlights the need to evaluate whether thinning and prescribed fire can improve individual tree drought resistance and reduce bark beetle-associated mortality.
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches.
Vegetation structure affects the vulnerability of a forest to drought events and wildfires. Management decisions, such as thinning intensity and type of understory treatment, influence competition for water resources and amount of fuel available.
Forest biological disturbance agents (BDAs) are insects, pathogens, and parasitic plants that affect tree decline, mortality, and forest ecosystems processes. BDAs are commonly thought to increase the likelihood and severity of fire by converting live standing trees to more flammable, dead and downed fuel.
Wildfire size and frequency are increasing across the western U.S., affecting large areas of young, second-growth forest originating after logging and burning. Despite their prevalence in the western Cascade landscape, we have a poor understanding of how these young stands respond to fire or how their responses differ from older, undisturbed forests, which are well studied.
In the western US, wildfires are modifying the structure, composition, and patterns of forested landscapes at ratesthat far exceed mechanical thinning and prescribed fire treatments. There are conflicting narratives as to whetherthese wildfires are restoring landscape resilience to future climate and wildfires.
Ponderosa pine (Pinus ponderosa) forests are increasingly experiencing high-severity, stand-replacing fires.Whereas alterations to aboveground ecosystems have been extensively studied, little is known about soil fungalresponses in fire-adapted ecosystems.
In western North America beginning in the late 19th century, fire suppression and other factors resulted in dense ponderosa pine (Pinus ponderosa) forests that are now prone to high severity wildfire, insect attack, and root diseases. Thinning and prescribed fire are commonly used to remove small trees, fire-intolerant tree species, and shrubs, and to reduce surface and aerial fuels.
In western North America beginning in the late 19th century, fire suppression and other factors resulted in denseponderosa pine (Pinus ponderosa) forests that are now prone to high severity wildfire, insect attack, and rootdiseases. Thinning and prescribed fire are commonly used to remove small trees, fire-intolerant tree species, andshrubs, and to reduce surface and aerial fuels.