Skip to main content

burn severity

Displaying 1 - 10 of 23

Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects

Year of Publication
2023
Publication Type

As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire.

The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale

Year of Publication
2023
Publication Type

Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches.