Research Database
Displaying 41 - 60 of 145
Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity
Year: 2015
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat…
Publication Type: Journal Article
The cost of climate change: Ecosystem services and wildland fires
Year: 2015
Little research has focused on the economic impact associated with climate-change induced wildland fire on natural ecosystems and the goods and services they provide. We examine changes in wildland fire patterns based on the U.S. Forest Service's MC1 dynamic global vegetation model from 2013 to 2115 under two pre-defined scenarios: a reference (i.e., business-as-usual) and a greenhouse gas mitigation policy scenario. We construct a habitat equivalency model under which fuels management activities, actions commonly undertaken to reduce the frequency and/or severity of wildland fire, are used…
Publication Type: Journal Article
Representing climate, disturbance, and vegetation interactions in landscape models
Year: 2015
The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special class of these models, called landscape models (LMs), simulates dynamics at intermediate scales where many critical ecosystem processes interact. The complicated dependencies among climate, disturbance, and vegetation present a…
Publication Type: Journal Article
Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures
Year: 2015
Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three…
Publication Type: Journal Article
Reducing the risk of house loss due to wildfires
Year: 2015
Wildfires will continue to reach people and property regardless of management effort in the landscape. House-based strategies are therefore required to complement the landscape strategies in order to reduce the extent of house loss. Here we use a Bayesian Network approach to quantify the relative influence of preventative and suppressive management strategies on the probability of house loss in Australia. Community education had a limited effect on the extent to which residents prepared their property hence a limited effect on the reduction in risk of house loss, however hypothetically…
Publication Type: Journal Article
Effects of tree cutting and fire on understory vegetation in mixed conifer forests
Year: 2015
Mixed conifer forests of western North America are challenging for fire management, as historical fire regimes were highly variable in severity, timing, and spatial extent. Complex fire histories combined with site factors and other disturbances, such insect outbreaks, led to great variation in understory plant communities, and management activities influence future dynamics of both overstory and understory communities. This variation needs to be considered as part of ecosystem-scale efforts to influence future fires and restore the composition and structure of mixed conifer forests. We…
Publication Type: Journal Article
Effects of post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment production in the interior western United States
Year: 2015
Post-fire salvage logging adds another set of environmental effects to recently burned areas, and previous studies have reported varying impacts on vegetation, soil disturbance, and sediment production with limited data on the underlying processes. Our objectives were to determine how: (1) ground-based post-fire logging affects surface cover, soil water repellency, soil compaction, and vegetative regrowth; (2) different types of logging disturbance affect sediment production at the plot and small catchment (“swale”) scales; and (3) applying logging slash to skid trails affects soil properties…
Publication Type: Journal Article
Pile burning creates a fifty-year legacy of openings in regenerating lodgepole pine forests in Colorado
Year: 2015
Pile burning is a common means of disposing the woody residues of logging and for post-harvest site preparation operations, in spite of the practice’s potential negative effects. To examine the long-term implications of this practice we established a 50-year sequence of pile burns within recovering clear cuts in lodgepole pine forests. We compared tree, shrub and herbaceous plant abundance and documented indicators of soil degradation in openings where logging residue was piled and burned as part of post-harvest site preparation and the adjacent forests regenerating after clear cutting. We…
Publication Type: Journal Article
Post-fire logging reduces surface woody fuels up to four decades following wildfire
Year: 2015
Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this issue, we sampled surface woody fuels within 255 coniferous forest stands that burned with high fire severity in 68 wildfires between 1970 and 2007 in eastern Washington and Oregon, USA. Sampling included 96 stands that were…
Publication Type: Journal Article
Post-fire response of riparian vegetation in a heavily browsed environment
Year: 2015
Severe wildfires infrequently occur in large heterogeneous riparian valleys. Riparian areas may affect fire behavior and the pattern of burning due to saturated soils and patchy fuels that may have high moisture content in live and dead stems. We examined the effects of a severe fire on the dominant riparian vegetation: thin-leaf alder, river birch and willow, in a broad riparian valley in Rocky Mountain National Park, CO, USA. We mapped the canopy stem mortality and basal resprouting of 4507 first year post fire and 643 second year post fire individuals that had been the dominant woody…
Publication Type: Journal Article
Long-term dead wood changes in a Sierra Nevada mixed conifer forest: habitat and fire hazard implications
Year: 2015
Dead trees play an important role in forests, with snags and coarse woody debris (CWD) used by many bird and mammal species for nesting, resting, or foraging. However, too much dead wood can also contribute to extreme fire behavior. This tension between dead wood as habitat and dead wood as fuel has raised questions about appropriate quantities in fire-dependent forested ecosystems. Three plots installed in mixed conifer forest of the central Sierra Nevada in 1929 illustrate how amounts and sizes of dead wood have changed through time as a result of logging and fire exclusion. Diameter of…
Publication Type: Journal Article
Modeling the direct effect of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests
Year: 2015
Salvage logging has been proposed to reduce post-fire hazardous fuels and mitigate re-burn effects, but debate remains about its effectiveness when considering fuel loadings are dynamic, and re-burn occurrence is stochastic, in time. Therefore, evaluating salvage loggings capacity to reduce hazardous fuels requires estimating fuel loadings in unmanipulated and salvaged stands over long time periods. We sampled for snag dynamics, decomposition rates, and fuel loadings within unmanipulated high-severity portions of 7 fires, spanning a 24-year chronosequence, in dry-mixed conifer forests of…
Publication Type: Journal Article
Recovery of small pile burn scars in conifer forests of the Colorado Front Range
Year: 2015
The ecological consequences of slash pile burning are a concern for land managers charged with maintaining forest soil productivity and native plant diversity. Fuel reduction and forest health management projects have created nearly 150,000 slash piles scheduled for burning on US Forest Service land in northern Colorado. The vast majority of these are small piles (<5 m diameter). Similar to larger piles, we found that burning small piles had significant immediate effects on soil nutrients and physical and chemical properties and native plant cover. To evaluate the need to rehabilitate…
Publication Type: Journal Article
Increasing weight of evidence that thinning and burning treatments help restore understory plant communities in ponderosa pine forests
Year: 2015
For more than a century ecosystems around the world have experienced an increase in the dominance of woody species. While the drivers of woody plant proliferation are complex, interactions between climate and land-use change are commonly invoked as primary contributing factors. In ponderosa pine forests of western North America, substantial increases in tree densities are impacting overall forest health and increasing the risk for severe wildfires and insect and disease outbreaks. Addressing this problem through the use of ecological restoration projects is widely advocated. Our objective was…
Publication Type: Journal Article
Long-term effects on distribution of forest biomass following different harvesting levels in the northern Rocky Mountains
Year: 2015
With increasing public demand for more intensive biomass utilization from forests, the concerns over adverse impacts on productivity by nutrient depletion are increasing. We remeasured the 1974 site of the Forest Residues Utilization Research and Development in northwestern Montana to investigate long-term impacts of intensive biomass utilization on aspects of site productivity. The historical experiment was implemented in a western larch (Larix occidentalis Nutt.) forest at three biomass utilization levels (high, medium, and low) combined with prescribed post-harvest burning treatments (…
Publication Type: Journal Article
Development and application of a probabilistic method for wildfire suppression cost modeling
Year: 2015
Wildfire activity and escalating suppression costs continue to threaten the financial health of federal land management agencies. In order to minimize and effectively manage the cost of financial risk, agencies need the ability to quantify that risk. A fundamental aim of this research effort, therefore, is to develop a process for generating risk-based metrics for annual suppression costs. Our modeling process borrows from actuarial science and the process of assigning insurance premiums based on distributions for the frequency and magnitude of claims, generating parameterized probability…
Publication Type: Journal Article
Climate-induced variations in global wildfire danger from 1979 to 2013
Year: 2015
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth’s vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by…
Publication Type: Journal Article
Recent Arctic tundra fire initiates widespread thermokarst development
Year: 2015
Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in…
Publication Type: Report
Are high-severity fires burning at much higher rates recently than historically in dry-forest landscapes of the Western USA.
Year: 2015
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used…
Publication Type: Journal Article
First Approximations of Prescribed Fire Risks Relative to Other Management Techniques Used on Private Lands
Year: 2015
Fire is widely recognized as a critical ecological and evolutionary driver that needs to be at the forefront of land management actions if conservation targets are to be met. However, the prevailing view is that prescribed fire is riskier than other land management techniques. Perceived risks associated with the application of fire limits its use and reduces agency support for prescribed burning in the private sector. As a result, considerably less cost-share support is given for prescribed fire compared to mechanical techniques. This study tests the general perception that fire is a riskier…
Publication Type: Journal Article