Research Database
Displaying 1 - 6 of 6
Drivers and Impacts of the Record-Breaking2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale andintensity, spanning from mid-April to late October and across much of theforested regions of Canada. Here, we summarize the main causes and impactsof this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in theseason: early snowmelt, multiannual drought conditions in western Canada,and the rapid transition to drought in eastern Canada. Anthropogenic climatechange enabled sustained extreme fire weather conditions, as the meanMay–October…
Publication Type: Journal Article
Restoring frequent fire to dry conifer forests delays the decline of subalpine forests in the southwest United States under projected climate
Year: 2024
- In southwestern US forests, the combined impact of climate change and increased fuel loads due to more than a century of human-caused fire exclusion is leading to larger and more severe wildfires. Restoring frequent fire to dry conifer forests can mitigate high-severity fire risk, but the effects of these treatments on the vegetation composition and structure under projected climate change remain uncertain.
- We used a forest landscape model to assess the impact of thinning and prescribed burns in dry conifer forests across an elevation gradient, encompassing low-elevation…
Fire Effects and Fire Ecology, Fire History, Prescribed Burning, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer Forests in the Northwestern United States
Year: 2012
This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to mixed-severity fire regimes. Analysis of forest inventory data found nearly 80 percent of these forests rate hazardous by at least one measure and 20 to 30 percent rate hazardous by multiple measures. Modeled mechanical…
Publication Type: Report
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article
Wildlife and invertebrate response to fuel reduction treatments in dry coniferous forests of western US
Year: 2006
This paper synthesizes available information on the effects of hazardous fuel reduction treatments on terrestrial wildlife and invertebrates in dry coniferous forest types in the West. We focused on thinning and/or prescribed fire studies in ponderosa pine (Pinus ponderosa) and dry-type Douglas-fir (Pseudotsuga menziesii ), lodgepole pine (Pinus contorta), and mixed coniferous forests. Overall, there are tremendous gaps in information needed to evaluate the effects of fuel reduction on the majority of species found in our focal area. Differences among studies in location, fuel treatment type…
Publication Type: Report