Research Database
Displaying 1 - 20 of 62
Changing fire regimes and nuanced impacts on a critically imperiled species
Year: 2024
Wildfire activity throughout western North America is increasing which can have important consequences for species persistence. Native species have evolved disturbance-adapted traits that confer resilience to natural disturbance provided disturbances operate within their historical range of variability. This resilience can erode as disturbance regimes change and begin operating outside this range. We assessed wildfire impacts during 1987–2018 on the northern spotted owl, an imperiled species with complex relationships with late and early seral forest in the Pacific Northwest, USA. We analyzed…
Publication Type: Journal Article
Indigenous pyrodiversity promotes plant diversity
Year: 2024
Pyrodiversity (temporally and spatially diverse fire histories) is thought to promote biodiversity by increasing environmental heterogeneity and replicating Indigenous fire regimes, yet studies of pyrodiversity-biodiversity relationships from areas under active Indigenous fire stewardship are rare. Here, we explored whether Indigenous pyrodiversity promoted plant richness and diversity in an arid ecosystem from north-western Australia. We selected landscapes that ranged from highly pyrodiverse and under active Indigenous burning to more coarse-scale and less diverse mosaics under lightning…
Publication Type: Journal Article
Simulated Future Shifts in Wildfire Regimes in Moist Forests of Pacific Northwest, USA
Year: 2024
Fire is an integral natural disturbance in the moist temperate forests of the Pacific Northwest of the United States, but future changes remain uncertain. Fire regimes in this climatically and biophysically diverse region are complex, but typically climate limited. One challenge for interpreting potential changes is conveying projection uncertainty. Using projections of Energy Release Component (ERC) derived from 12 global climate models (GCM) that vary in performance relative to the region's contemporary climate, we simulated thousands of plausible fire seasons with the stochastic spatial…
Publication Type: Journal Article
The eco-evolutionary role of fire in shaping terrestrial ecosystems
Year: 2023
1. Fire is an inherently evolutionary process, even though much more emphasis has been given to ecological responses of plants and their associated communities to fire. 2. Here, we synthesize contributions to a Special Feature entitled ‘Fire as a dynamic ecological and evolutionary force’ and place them in a broader context of fire research. Topics covered in this Special Feature include a perspective on the im-pacts of novel fire regimes on differential forest mortality, discussions on new ap-proaches to investigate vegetation-fire feedbacks and resulting plant syndromes,…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Exceptional variability in historical fire regimes across a western Cascades landscape, Oregon, USA
Year: 2023
Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas-fir dominated forests of the west slope of the Cascade Range in western Oregon. Mean fire return intervals (MFRIs) across 16 sites within our study area ranged from 6 to 165 years. Variability in MFRIs was strongly associated with average maximum summer vapor pressure deficit. Fire occurred infrequently in Douglas-fir…
Fire Effects and Fire Ecology, Fire History, Mixed-Conifer Management, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Widespread exposure to altered fire regimes under 2 °C warming is projected to transform conifer forests of the Western United States
Year: 2023
Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western United States, we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn…
Publication Type: Journal Article
Response of forest productivity to changes in growth and fire regime due to climate change
Year: 2023
Climate change is having complex impacts on the boreal forest, modulating both tree growth limiting factors and fire regime. However, these aspects are usually projected independently when estimating climate change effect on the boreal forest. Using a combination of 3 different methods, our goal is to assess the combined impact of changes in growth and fire regime due to climate change on the timber supply at the transitions from closed to open boreal coniferous forests in Québec, Canada. In order to identify the areas that are likely to be the most sensitive to climate change, we projected…
Publication Type: Journal Article
Climate influences on future fire severity: a synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States
Year: 2023
Background
Increases in fire activity and changes in fire regimes have been documented in recent decades across the western United States. Climate change is expected to continue to exacerbate impacts to forested ecosystems by increasing the frequency, size, and severity of wildfires across the western United States (US). Warming temperatures and shifting precipitation patterns are altering western landscapes and making them more susceptible to high-severity fire. Increases in large patches of high-severity fire can result in significant impacts to landscape processes and ecosystem function…
Publication Type: Journal Article
Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, High Cascade Range, Oregon, USA
Year: 2023
The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution macroscopic charcoal and pollen analysis from a 13-m, 14,500 years sediment record from Gold Lake, located in a montane forest, to reconstruct forest vegetation and fire history. The occurrence of three tephra layers, including a 78-cm airfall Mazama tephra, as well as highly laminated segments, allows one to study tephra impacts on vegetation at a fine temporal resolution. From the Late Glacial through the Younger Dryas, pollen spectra vary…
Publication Type: Journal Article
Does large area burned mean a bad fire year? Comparing contemporary wildfire years to historical fire regimes informs the restoration task in fire-dependent forests
Year: 2023
Wildfires and fire seasons are commonly rated largely on the simple metric of area burned (more hectares: bad). A seemingly paradoxical narrative frames large fire seasons as a symptom of a forest health problem (too much fire), while simultaneously stating that fire-dependent forests lack sufficient fire to maintain system resilience (too little fire). One key to resolving this paradox is placing contemporary fire years in the context of historical fire regimes, considering not only total fire area but also burn severity distributions. Historical regimes can also inform forest restoration…
Publication Type: Journal Article
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article
How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review
Year: 2023
Fire suppression has become a fundamental approach for shaping contemporary wildfire regimes. However, a growing body of research suggests that aggressive fire suppression can increase high-intensity wildfires, creating the wildfire paradox. Whether the strategy always triggers the paradox remains a topic of ongoing debate. The role of fire suppression in altering wildfire regimes in diverse socio-ecological systems and associated research designs demands a deeper understanding. To reconcile these controversies and synthesize the existing knowledge, a systematic review has been conducted to…
Publication Type: Journal Article
Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s
Year: 2023
In the province of British Columbia, Canada, four of the most severe wildfire seasons of the last century occurred in the past 7 years: 2017, 2018, 2021, and 2023. To investigate trends in wildfire activity and fire-conducive climate, we conducted an analysis of mapped wildfire perimeters and annual climate data for the period of 1919–2021. Results show that after a century-long decline, fire activity increased from 2005 onwards, coinciding with a sharp reversal in the wetting trend of the 20th century. Even as precipitation levels remain high, moisture deficits have increased due to rapid…
Publication Type: Journal Article
Fire-driven animal evolution in the Pyrocene
Year: 2023
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa,…
Publication Type: Journal Article
High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges
Year: 2023
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have spiked upwards in recent years and are particularly pronounced in the Sierra Nevada–Southern Cascades ecoregion of California, USA, and neighboring states. We assessed annual area burned (AAB) and percentage of area burned at high and low-to-moderate severity for seven major forest types in this…
Publication Type: Journal Article
Evidence for multi-decadal fuel buildup in a large California wildfire from smoke radiocarbon measurements
Year: 2023
In recent decades, there has been a significant increase in annual area burned in California's Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ14C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California's 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
The century-long shadow of fire exclusion: Historical data reveal early and lasting effects of fire regime change on contemporary forest composition
Year: 2023
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over almost a century of fire exclusion. We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article