Research Database
Displaying 1 - 20 of 26
Managing fire-prone forests in a time of decreasing carbon carrying capacity
Year: 2024
Changing climatic conditions are increasing overstory tree mortality in forests globally. This restructuring of the distribution of biomass is making already flammable forests more combustible, posing a major challenge for managing the transition to a lower biomass state. In western US dry conifer forests, tree density resulting from over a century of fire-exclusion practices has increased the risk of high-severity wildfire and susceptibility to climate-driven mortality. Reducing dead fuel loads will require new approaches to mitigate risk to the remaining live trees by preparing forests to…
Publication Type: Journal Article
Prefire Drought Intensity Drives Postfire Recovery and Mortality in Pinus monticola and Pseudotsuga menziesii Saplings
Year: 2024
Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the…
Publication Type: Journal Article
Drought triggers and sustains overnight fires in North America
Year: 2024
Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the ‘active day, quiet night’ model of the diurnal fire cycle1,2,3 and current fire management practices4,…
Publication Type: Journal Article
The impacts of rising vapour pressure deficit in natural and managed ecosystems
Year: 2024
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the…
Publication Type: Journal Article
Increasing prevalence of hot drought across western North America since the 16th century
Year: 2024
Across western North America (WNA), 20th-21st century anthropogenic warming has increased the prevalence and severity of concurrent drought and heat events, also termed hot droughts. However, the lack of independent spatial reconstructions of both soil moisture and temperature limits the potential to identify these events in the past and to place them in a long-term context. We develop the Western North American Temperature Atlas (WNATA), a data-independent 0.5° gridded reconstruction of summer maximum temperatures back to the 16th century. Our evaluation of the WNATA with existing…
Publication Type: Journal Article
Drought sensitivity in mesic forests heightens their vulnerability to climate change
Year: 2023
Climate change is shifting the structure and function of global forests, underscoring the critical need to predict which forests are most vulnerable to a hotter and drier future. We analyzed 6.6 million tree rings from 122 species to assess trees’ sensitivity to water and energy availability. We found that trees growing in wetter portions of their range exhibit the greatest drought sensitivity. To test how these patterns of drought sensitivity influence vulnerability to climate change, we predicted tree growth through 2100. Our results suggest that drought adaptations in arid regions will…
Publication Type: Journal Article
Harnessing Natural Disturbances: A Nature-Based Solution for Restoring and Adapting Dry Forests in the Western USA to Climate Change
Year: 2023
Natural disturbances (wildfires, droughts, beetle outbreaks) shaped temperate forests for millennia, including dry forests of the western USA. Could they now best restore and adapt dry forests to climate change while protecting nearby communities? Mechanical fuel-reduction treatments (e.g., thinning) reduce landscape heterogeneity and appear ineffective since <1% of the treated area encounters fire each year and fires are still increasing. We propose and analyze a nature-based solution (NbS), using natural disturbances, to see whether it is feasible, how long it might take, and whether it…
Publication Type: Journal Article
Hydrological and Meteorological Controls on Large Wildfire Ignition and Burned Area in Northern California during 2017–2020
Year: 2023
This study examined the hydrological/meteorological controls on large wildfires > 10,000 acres (40.5 km2) during 2017–2020 in Northern California at spatial and temporal scales of the target wildfires’ occurrence or growth. This study used the following simple indices for analysis: Moisture Deficit Index (MDI) computed by dividing vapor pressure deficit by soil moisture, MDIWIND computed by multiplying MDI by horizontal wind speed, and MDIGUST computed by multiplying MDI by wind gust speed. The ignition location MDIWIND and MDIGUST showed larger values on the ignition date in fire-years…
Publication Type: Journal Article
Recent Douglas-fir Mortality in the Klamath Mountains Ecoregion of Oregon: Evidence for a Decline Spiral
Year: 2023
Recent increases in Douglas-fir (Psuedotsuga menziesii var. menziesii) mortality in the Klamath Mountains ecoregion raise concerns about the long-term resilience of Douglas-fir in the ecoregion and increased potential for uncharacteristic wildfire. We used data from the USDA Forest Service Aerial Detection Survey and ninety-six field plots to explore the relationships between physiographic and climate variables and Douglas-fir mortality. Our results provide strong evidence for a decline spiral in which Douglas-fir growing on hot, dry sites (predisposing factor) are further stressed by drought…
Publication Type: Journal Article
Human and climatic influences on wildfires ignited by recreational activities in national forests in Washington, Oregon, and California
Year: 2023
In Washington, Oregon, and California, ignitions from recreational activities accounted for 12% of human-caused wildfires, and 8% of the area burned, from 1992–2020. Wildfires ignited by recreational activities not only increase fire suppression expenditures but have the potential to limit recreational activities traditionally associated with use of fire, such as camping. From 1992–2020, 50% of recreation-caused ignitions in these three states occurred on lands managed by the U.S. Forest Service. The mean annual number of recreation-caused ignitions on national forests in the three states…
Publication Type: Journal Article
Quantifying the contribution of major carbon producers to increases in vapor pressure deficit and burned area in western US and southwestern Canadian forests
Year: 2023
Increases in burned forest area across the western United States and southwestern Canada over the last several decades have been partially driven by a rise in vapor pressure deficit (VPD), a measure of the atmosphere’s drying power that is significantly influenced by human-caused climate change. Previous research has quantified the contribution of carbon emissions traced back to a set of 88 major fossil fuel producers and cement manufacturers to historical global mean temperature rise. In this study, we extend that research into the domain of forest fires. We use a global energy balance…
Publication Type: Journal Article
Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance
Year: 2022
1. The future of dry forests around the world is uncertain given predictions that rising temperatures and enhanced aridity will increase drought-induced tree mortality. Using forest management and ecological restoration to reduce density and competition for water offers one of the few pathways that forests managers can potentially minimize drought-induced tree mortality. Competition for water during drought leads to elevated tree mortality in dense stands, although the influence of density on heat-induced stress and the durations of hot or dry conditions that most impact mortality remain…
Publication Type: Journal Article
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article
Fire and Forests in the 21st Century: Managing Resilience Under Changing Climates and Fire Regimes in USA Forests
Year: 2021
Higher temperatures, lower snowpacks, drought, and extended dry periods have contributed to increased wildfire activity in recent decades. Climate change is expected to increase the frequency of large fires, the cumulative area burned, andfire suppression costs and risks in many areas of the USA. Fire regimes are likely to change due to interactions among climate, fire, and other stressors and disturbances; resulting in persistent changes in forest structure and function. The remainder of the twenty-first century will present substantial challenges, as natural resource managers are faced with…
Publication Type: Book Chapter
Crowded and Thirsty: Fire exclusion leads to greater drought sensitivity in mixed-conifer forests
Year: 2020
Wildfires were a frequent source of dis-turbance in forests of the Western United States prior to Euro-American settle-ment. Following a series of catastrophic wildfires in the Northern Rockies in 1910, the U.S. Forest Service adopted a broad wildfire suppression policy that has resulted in forests thick with small trees. These crowded trees compete for nutrients and water and experience increased drought stress in summer.In recent decades, many trees have died following drought, bark beetle outbreaks, and severe wildfire. A link between this mortality and increasing susceptibility to drought…
Publication Type: Report
Riparian and adjacent upland forests burned synchronously during dry years in eastern Oregon (1650-1900 CE), USA
Year: 2020
Riparian forests link terrestrial and freshwater communities and therefore understanding the landscape context of fire regimes in these forests is critical to fully understanding the landscape ecology. However, few direct studies of fire regimes exist for riparian forests, especially in the landscape context of adjacent upland forests or studies of long-term climate drivers of riparian forest fires. We reconstructed a low-severity fire history from tree rings in 38 1-ha riparian plots and combined them with existing fire histories from 104 adjacent upland plots to yield 2633 fire scars…
Publication Type: Journal Article
Tamm Review: Reforestation for resilience in dry western U.S. forests
Year: 2019
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests. Challenges to reforestation include the cost and safety concerns of replanting large areas of standing dead trees, and high seedling and sapling mortality rates due to water stress, competing vegetation, and repeat fires that burn young plantations. Standard reforestation practices have emphasized establishing dense conifer cover with gridded planting, sometimes called 'pines in lines', followed by shrub control and pre-…
Publication Type: Journal Article
Fire deficits have increased drought‐sensitivity in dry conifer forests; fire frequency and tree‐ring carbon isotope evidence from Central Oregon
Year: 2019
A century of fire suppression across the Western US has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree‐ring growth, fire scars, and carbon isotope discrimination (Δ13C) across a dry mixed‐conifer forest landscape. Fire deficits across…
Publication Type: Journal Article
It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers
Year: 2018
Environmental change is accelerating in the 21st century, but how multiple drivers may interact to alter forest resilience remains uncertain. In forests affected by large high-severity disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for decades. We modeled stands of two widespread western U.S. conifers, Douglas-fir (Pseudotsuga menziesii var. glauca), and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National Park (Wyoming, USA) to ask (1) What combinations of distance to seed source, fire return interval, and warming-drying…
Publication Type: Journal Article
Wildfire, climate, and perceptions in Northeast Oregon
Year: 2016
Wildfire poses a rising threat in the western USA, fueled by synergies between historical fire suppression, changing land use, insects and disease, and shifts toward a drier, warmer climate. The rugged landscapes of northeast Oregon, with their historically forest- and resource-based economies, have been one of the areas affected. A 2011 survey found area residents highly concerned about fire and insect threats, but not about climate change. In 2014 we conducted a second survey that, to explore this apparent disconnect, included questions about past and future summertime (fire season)…
Publication Type: Journal Article