Research Database
Displaying 1 - 20 of 28
Drivers and Impacts of the Record-Breaking2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale andintensity, spanning from mid-April to late October and across much of theforested regions of Canada. Here, we summarize the main causes and impactsof this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in theseason: early snowmelt, multiannual drought conditions in western Canada,and the rapid transition to drought in eastern Canada. Anthropogenic climatechange enabled sustained extreme fire weather conditions, as the meanMay–October…
Publication Type: Journal Article
Model analysis of post-fire management and potential reburn fire behavior
Year: 2024
Recent trends in wildfire area burned have been characterized by large patches with high densities of standing dead trees, well outside of historical range of variability in many areas and presenting forest managers with difficult decisions regarding post-fire management. Post-fire tree harvesting, commonly called salvage logging, is a controversial management tactic that is often undertaken to recoup economic loss and, more recently, also to reduce future fuel hazard, especially when coupled with surface fuel reduction. It is unclear, however, whether the reductions in future fuels translate…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Expanding our understanding of nitrogen dynamics after fire: how severe fire and aridity reduce ecosystem nitrogen retention
Year: 2024
Fires release large pulses of nitrogen (N), which can be taken up by recovering plants and microbes or exported to streams where it can threaten water quality. The amount of N exported depends on the balance between N mineralisation and rates of N uptake after fire. Burn severity and soil moisture interact to drive these rates, but their effects can be difficult to predict. To understand how soil moisture and burn severity influence post-fire N cycling and retention in a dryland watershed, we quantified changes in plant biomass, plant N content, soil microbial biomass, inorganic N pools, and…
Publication Type: Journal Article
Climate limits vegetation green-up more than slope, soil erodibility, and immediate precipitation following high-severity wildfire
Year: 2024
BackgroundIn the southwestern United States, post-fire vegetation recovery is increasingly variable in forest burned at high severity. Many factors, including temperature, drought, and erosion, can reduce post-fire vegetation recovery rates. Here, we examined how year-of-fire precipitation variability, topography, and soils influenced post-fire vegetation recovery in the southwestern United States as measured by greenness to determine whether erosion-related factors would have persistent effects in the longer post-fire period. We modeled relationships between post-fire vegetation and these…
Publication Type: Journal Article
Patterns, drivers, and implications of postfire delayed tree mortality in temperate conifer forests of the western United States
Year: 2024
Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high-resolution satellite imagery (5-m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to…
Publication Type: Journal Article
Higher burn severity stimulates postfire vegetation and carbon recovery in California
Year: 2023
As the climate continues to warm, the severity of wildfires is increasing. However, the potential impact of higher burn severity on ecosystem resilience and regional carbon balance is still not clear. There are ongoing debates regarding whether increased burn severity stimulates or delays postfire vegetation and carbon recovery. In this study, we utilized remote sensing data to analyze burn severity and vegetation observations, as well as model simulations to assess wildfire carbon emissions and ecosystem carbon fluxes. Our focus was on examining the dynamics of vegetation and carbon flux…
Publication Type: Journal Article
The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale
Year: 2023
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches. • These large fires create new opportunities for managing forest resilience. Although recent large wildfires in California forests are well publicized in media and scientific literature, their cumulative effects on forest structure and implications for forest…
Publication Type: Journal Article
Heading and backing fire behaviours mediate the influence of fuels on wildfire energy
Year: 2023
Background: Pre-fire fuels, topography, and weather influence wildfire behaviour and fire-driven ecosystem carbon loss. However, the pre-fire characteristics that contribute to fire behaviour and effects are often understudied for wildfires because measurements are difficult to obtain. Aims: This study aimed to investigate the relative contribution of pre-fire conditions to fire energy and the role of fire advancement direction in fuel consumption. Methods: Over 15 years, we measured vegetation and fuels in California mixed-conifer forests within days before and after wildfires, with co-…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index
Year: 2023
The Composite Burn Index (CBI) is commonly linked to remotely sensed data to understand spatial and temporal patterns of burn severity. However, a comprehensive understanding of the tradeoffs between different methods used to model CBI with remotely sensed data is lacking. To help understand the current state of the science, provide a blueprint towards conducting broad- scale meta-analyses, and identify key decision points and potential rationale, we conducted a review of studies that linked remotely sensed data to continuous estimates of burn severity measured with the CBI and related…
Publication Type: Journal Article
The impacts of wildfires of different burn severities on vegetation structure across the western United States rangelands
Year: 2022
Large wildfires have increased in western US rangelands over the last three decades. There is limited information on the impacts of wildfires with different severities on the vegetation in these rangelands. This study assessed the impacts of large wildfires on rangeland fractional cover including annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs (SHR) and trees (TREE) across the western US, and explored relationships between changes in fractional cover and prefire soil moisture conditions. The Expectation Maximization (EM) algorithm was used to group wildfires into…
Publication Type: Journal Article
Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types
Year: 2019
Background: Few studies have examined post-fire vegetation recovery in temperate forest ecosystems with Landsat time series analysis. We analyzed time series of Normalized Burn Ratio (NBR) derived from LandTrendr spectral-temporal segmentation fitting to examine post-fire NBR recovery for several wildfires that occurred in three different coniferous forest types in western North America during the years 2000 to 2007. We summarized NBR recovery trends, and investigated the influence of burn severity, post-fire climate, and topography on post-fire vegetation recovery via random forest (RF)…
Publication Type: Journal Article
Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes
Year: 2019
Altered fire regimes can drive major and enduring compositional shifts or losses of forest ecosystems. In western North America, ponderosa pine and dry mixed‐conifer forest types appear increasingly vulnerable to uncharacteristically extensive, high‐severity wildfire. However, unburned or only lightly impacted forest stands that persist within burn mosaics—termed fire refugia—may serve as tree seed sources and promote landscape recovery. We sampled tree regeneration along gradients of fire refugia proximity and density at 686 sites within the perimeters of 12 large wildfires that occurred…
Publication Type: Journal Article
Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA
Year: 2019
Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after…
Publication Type: Journal Article
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Year: 2018
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we…
Publication Type: Journal Article
Prescribed Fire in Grassland Butterfly Habitat: Targeting Weather and Fuel Conditions to Reduce Soil Temperatures and Burn Severity
Year: 2017
Prescribed burning is a primary tool for habitat restoration and management in fire-adapted grasslands. Concerns about detrimental effects of burning on butterfly populations, however, can inhibit implementation of treatments. Burning in cool and humid conditions is likely to result in lowered soil temperatures and to produce patches of low burn severity, both of which would enhance survival of butterfly larvae at or near the soil surface. In this study, we burned 20 experimental plots in South Puget Sound, Washington, USA, prairies across a range of weather and fuel conditions to address the…
Publication Type: Journal Article
Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest
Year: 2017
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of…
Publication Type: Journal Article
Recovering lost ground: Effects of soil burn intensity on nutrients and ectomycorrhiza communities of ponderosa pine seedlings
Year: 2016
Fuel accumulation and climate shifts are predicted to increase the frequency of high-severity fires in ponderosa pine (Pinus ponderosa) forests of central Oregon. The combustion of fuels containing large downed wood can result in intense soil heating, alteration of soil properties, and mortality of microbes. Previous studies show ectomycorrhizal fungi (EMF) improve ponderosa seedling establishment after fire but did not compare EMF communities at different levels of soil burn intensity in a field setting. For this study, soil burn intensity effects on nutrients and EMF communities were…
Publication Type: Journal Article
1984–2010 trends in fire burn severity and area for the conterminous US
Year: 2016
Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS. Yearly mean burn severity values (weighted by area), maximum burn severity metric values, mean area of burn, maximum burn area and total burn area were…
Publication Type: Journal Article