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Abstract

Rapid, well-coordinated aerial response can be an effective way to limit wildfire growth during
the initial-response (IR) period. To date, most quantitative studies of wildland fire aviation
effectiveness have relied on data from aircraft provided by the United States Forest Service
(USFS), while other agencies aircraft have received less attention. This study leverages open
ADS-B data to reconstruct second-by-second aircraft movements for both the CAL FIRE and
USFS aircraft during the 2020 California fire season, allowing a comparison between use of
different agency aircraft for the first time. This study characterizes the two fleets activity and
identifies how landscape, weather, and values-at-risk influence time to first aircraft arrival within
the first 24 hours after ignition. ADS-B flight tracks for USFS and CAL FIRE aircraft were
matched to 7,214 wildfires; response time was calculated as the interval between ignition
discovery and the first ADS-B detection within 5 km. Cause-specific cumulative-incidence
curves compared the probability that each agency arrived first, while Cox proportional-hazards
models, with stratification by diurnal period and protecting agency, quantified the effects of
slope, fuel moisture, weather, distance to water, and human exposure metrics on dispatch
timing. Aircraft responded to 1,476 fires, with USFS aircraft having a slightly lower average
response time. Hazard ratios indicated faster response times on wildfires under higher
temperatures, and nearer populations, while wetter fuels and greener than average vegetation
conditions delayed response. This study demonstrates the feasibility of real-time, cross-agency
performance monitoring, informing resource allocation, and future integration of ADS-B with
existing federal tracking systems for a comprehensive aviation situational awareness
framework.

Introduction

Wildland firefighting agencies employ a diverse array of strategies and resources to combat
wildfires, including the extensive use of aviation assets. Aerial resources, such as helicopters
and air tankers, influence fire outcomes by delivering water, retardant, and personnel to
locations in difficult terrain or areas with limited water access, while also providing critical
intelligence to support decision-making on the ground. In California, two prominent agencies,
the U.S. Forest Service (USFS) and California Department of Forestry and Fire Protection (CAL
FIRE), manage significant aviation operations designed for wildfire response. Although CAL
FIRE and the USFS are distinct organizations shaped by different mandates and missions, they
are united by a shared responsibility for wildfire suppression and have legal agreements to work
in coordination, particularly during the initial-response (IR) phase when aviation resources are
rapidly mobilized (U.S. Forest Service, 2023; CAL FIRE, 2025). CAL FIRE and the U.S. Forest
Service operate under reciprocal Direct Protection Area (DPA) arrangements in California,
whereby either agency may hold primary suppression responsibility on state or federal lands,
including some areas under federal jurisdiction (Pimlott, Laird and Brown Jr, 2015). Additionally,
Region 5 of the USFS (which is comprised of the state of California) accounted for nearly a



quarter of all aviation flight hours contracted by the agency, further illustrating the high use of
aerial firefighting support in California (U.S. Forest Service, 2021a).

During the IR phase of wildfire response, both CAL FIRE and the USFS prioritize rapid aircraft
dispatch using the closest resource concept, ensuring the nearest available aircraft responds to
a fire regardless of agency ownership (National Interagency Coordination Center (NICC), 2023).
This cooperative approach enables the efficient use of limited aerial suppression assets across
overlapping jurisdictions, particularly in California where state and federal responsibilities
frequently intersect. Wildfire managers directly order aircraft from the administering airbase via
intercom if the base is staffed; otherwise, they place requests through the Geographic Area
Coordination Center (GACC), which manages aircraft availability and assignment statewide.

The importance of this coordinated aerial response became especially evident during
California’s 2020 wildfire season, one of the most destructive and costly on record (Safford et
al., 2022). Firefighting agencies in California responded to 8,648 wildfires, which collectively
burned more than 4.3 million acres across the state, more than double the recent previous
state-record and representing nearly 4 % of California’s land area (Porter, Crowfoot and
Newsom, 2020). Among these, the August Complex Fire became California’s first officially
recognized gigafire, burning more than 1 million acres across seven counties (Keeley and
Syphard, 2021). The exceptional scale and intensity of these incidents placed demands on
aerial resources, prompting both CAL FIRE and the U.S. Forest Service to heavily utilize aircraft
to support suppression efforts across the state.

To meet these demands, CAL FIRE operates the largest civil aerial firefighting fleet in the world,
as a component of its wildfire suppression program. The agency's aviation program includes a
diverse array of aircraft designed to deliver rapid fire suppression in California's challenging and
often extreme wildfire conditions. CAL FIRE manages its fleet of approximately 24 tankers, 25
helicopters, and 19 tactical aircraft from 14 strategically located air tanker bases across the
state (CAL FIRE, 2025). In comparison, Region 5 (California) accounted for the highest level of
Forest Service aviation activity nationwide, with 20,550 flight hours, representing 24.7% of all
Forest Service aviation use and more than double any other region (U.S. Forest Service,
2021a). The regional fleet included a mix of contracted and agency-owned helicopters, fixed-
wing aircraft, airtankers, and water scoopers that supported wildfire suppression and other
mission needs. Of these, helicopters played a particularly critical role, reflecting the region’s
reliance on rapid aerial suppression in steep and inaccessible terrain. Across the Forest
Service, aircraft delivered over 122 million gallons of liquid, of which more than 119 million
gallons were water and 3.4 million gallons were retardant, with a significant share occurring in
California due to the region’s extensive fire activity. Region 5 airtanker operations totaled
approximately 1,616 flight hours (17.1% of national airtanker time). Currently, the USFS tracks
the application of these liquids using Automated Telemetry Unit (ATU) to document resource
use (U.S. Forest Service, 2021b); however, comparable data for CAL FIRE operations are not
publicly available, limiting direct comparisons between federal and state aerial suppression
metrics.

No unified aviation dataset exists that captures cross-agency aircraft activity during wildfire
response, preventing evaluation of statewide IR coordination. This lack of publicly accessible
state-level aviation data underscores the value of leveraging independent, standardized tracking
systems. Automatic Dependent Surveillance—Broadcast (ADS-B) technology, already mandated
across most U.S. airspace, offers a solution by providing continuous, high-resolution data on
aircraft location and movement (Varga, Polgar and Hedesiu, 2015; Ali, 2016; Leonardi, 2018).
Federal Aviation Administration (FAA) regulations mandate the use of ADS-B Out transmitters in
most airspaces, enabling the monitoring of firefighting aircraft (Federal Aviation Administration,



2020). ADS-B technology has been successfully integrated into wildland fire operations to
monitor unmanned aircraft systems (UAS) (Martin et al., 2022; Bakowski et al., 2024). It has
also been used to analyze aerial firefighting operations, highlighting the effectiveness and cost-
efficiency of different aircraft types based on mission patterns, deployment techniques, and
resource delivery (Struminska and Filippone, 2024). Because ADS-B is present on all aircraft
and the reporting is standardized across agencies, ADS-B technology offers a valuable
opportunity to enhance the tracking and analysis of aviation operations, providing insights into
state-managed aviation resources that can complement existing research focused primarily on
USFS operations.

The goal of this study is to use ADS-B flight tracking data and survival analysis techniques to
quantify differences in IR response times, operational patterns, resource deployment strategies,
and fleet usage between agencies involved in aviation operations in California in 2020. By
applying Aalen-Johansen estimators and using Cox proportional hazards modeling approaches,
the study seeks to generate empirical timelines of aircraft response times for these agencies
during the IA phase. In addition to characterizing response patterns, the analysis will explore
how physical, biological, social, and administrative attributes, such as topography, vegetation
characteristics, and population density, influence the likelihood that a wildfire receives an aerial
response during the first 24 hours of ignition. Ultimately, the goal is to bridge methodological
gaps between real-time aviation tracking and operational analysis, helping to inform more
effective cross-agency coordination and aviation resource management strategies during
wildfire suppression.

Methods and data:

Data Acquisition and Fleet Identification for CAL FIRE and USFS Aircraft

This study uses ADS-B data provided by the OpenSky Network to address gaps in
understanding aviation activities during wildfire suppression efforts (Schéfer et al., 2014). The
OpenSky Network is a non-profit organization that offers open access to real-world air traffic
control data collected through a global network of ADS-B and Mode S sensors. By providing
detailed flight trajectories, timestamps, and aircraft identifiers, OpenSky enables comprehensive
analysis of aerial firefighting operations, including flight patterns and suppressant delivery
activity (Olive et al., 2020; Magstadt et al., 2024).

To evaluate aerial operations conducted by CAL FIRE and the USFS during the 2020 California
wildfire season, all known firefighting aircraft were identified by tail numbers and cross-
referenced with Federal Aviation Administration (FAA) registration data to confirm aircraft make,
model, and associated ADS-B identifiers
(https:/iregistry.faa.gov/aircraftinquiry/search/nnumberinquiry). ADS-B flight records for these
aircraft were collected from the OpenSky Network using a Python-based workflow that
automated monthly data retrieval via the pyopensky package and a Trino query interface
(Schafer et al., 2014; Sun et al., 2019). Tail numbers were converted to their corresponding
ICAO24 codes, which served as unique identifiers within the OpenSky database. Retrieved data
were subsequently processed into GeoDataFrames for spatial and temporal analysis of aerial
suppression activity.



We accessed NASADEM tiles through the Planetary Computer STAC API (NASA JPL, 2020),
interpolated ground elevations at each aircraft location, and calculated height above ground
level (AGL) by differencing geometric altitude from the surface elevation. Data were filtered to
retain observations within a maximum 5000-meter AGL threshold to focus on operational flight
segments relevant to wildfire suppression. Finally, monthly outputs were saved as shapefiles to
analyze temporal patterns, deployment behaviors, and survival modeling. This approach
enabled the construction of a detailed, elevation-corrected movement dataset across both
agencies’ aviation operations. The dataset spans January 2020 through December 2020 and
includes high-resolution positional information (latitude, longitude, altitude, and timestamp)
recorded at a 1-Hertz frequency (Figure 1). Data coverage is based on the OpenSky Network’s
ground-based sensor network, which exhibits geographically variable coverage due to terrain
and sensor distribution (Strohmeier et al., 2021).
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Figure 1. An overview of the study area (A), including aircraft flight paths derived from ADS-B data in orange and
wildfire ignition points represented as triangles across California. Insets illustrate (B) aircraft circling patterns near
active fires and (C) the 5 km detection radius used to assess aircraft arrival after ignition.



To examine CAL FIRE’s aviation operations, the study focused on its permanently maintained,
state-funded fleet, comprising 77 aircraft. As of 2025, this fleet included 25 Grumman S-2T
airtankers, 7 Lockheed C-130H Hercules airtankers, 12 UH-1H Super Huey helicopters, 12
Sikorsky S-70i helicopters, 18 Rockwell OV-10 aircraft, and 2 King Air A200 aircraft (CAL FIRE,
2025). In contrast to CAL FIRE’s permanent fleet model, the USFS relies on a dynamic
combination of exclusive-use and call-when-needed contracts to secure its aerial firefighting
resources. To focus specifically on aircraft capable of performing retardant drops, this study
used ATU drop logs, which are required for all USFS-contracted aircraft capable of this
operation, including airtankers and type one helicopters. Any aircraft that conducted at least one
recorded retardant or water drop between 2017 and 2024 was included in the analysis. These
aircraft were then cross-referenced with OpenSky ADS-B data to compile comprehensive flight
histories. The USFS fleet identified in this dataset includes a range of helicopters and fixed-wing
airtankers. Among the heavy-lift Type 1 helicopters, the most commonly used models included
Boeing CH-47D, Sikorsky S-70i, Kaman K-1200, Sikorsky UH-60A, Sikorsky S-64E, and CH-
54B helicopters. The mid-lift Type 2 helicopter fleet primarily included Bell UH-1H, Bell 205A-1,
Airbus MBB-BK117 D-3, and Sikorsky S-58 variants. For fixed-wing airtankers, the USFS
operated a variety of aircraft models including Bombardier DHC-8, Lockheed C-130, Boeing
737-3H4, McDonnell Douglas DC-9-87 and MD-87, British Aerospace AVRO 146-RJ85A and
Bae 146, Bombardier CL-415, Canadair CL-215-6B11, and McDonnell Douglas DC-10. Overall,
the USFS dataset captured four very large airtankers (VLATSs), 48 large airtankers (LATs), 83
Type 1 helicopters, and 42 Type 2 helicopters actively engaged during the study period.

The USFS dataset covers helicopters and fixed-wing aircraft involved in wildfire suppression
from 2017-2024, matching the full span of available ATU records. Because USFS helicopter
ATU drop logs were anonymized, we did not have an exact year-by-year list of helicopters used;
instead, we compiled a comprehensive 2017—-2024 roster of USFS contracted aircraft and, for
California, considered helicopters in-scope if they were wildland-mission capable, based in or
regularly operating in the state, and had a plausible operational range for responding to
California wildfires. Together with CAL FIRE, these datasets provide a detailed operational
portrait of California’s aerial firefighting and underpin our survival analyses.

Aviation Use Summary Statistics To complement the survival models, we developed a set of
descriptive statistics that summarize aviation workload, response timing, and spatial deployment
patterns for CAL FIRE and the USFS during the 2020 season. Using the full ADS-B dataset, we
first calculated the number of unique active aircraft per day for each agency, producing a daily
time series of fleet utilization. These daily activity profiles capture seasonal patterns in aircraft
use and provide a baseline context for interpreting when each agency was most operationally
engaged.

We then examined how proximity to airbases related to response outcomes by mapping all
ignition points alongside airbase locations and classifying each fire by its first-arriving agency.
For each ignition, we summarized response time metrics (mean, median, and percentile
values), enabling a comparison of typical arrival times. Rather than relying solely on averages,
we constructed empirical response-time distributions for both agencies to show how arrival
times varied across the full IA window.

To assess spatial patterns of aviation activity, we rasterized all ADS-B flight trajectories to
produce gridded density surfaces for CAL FIRE and USFS separately. Each raster records the
cumulative number of aircraft-seconds per grid cell across the study period. We also generated



a difference surface (CAL FIRE minus USFS), which highlights areas where one agency
operated more intensively than the other. This product provides a spatially explicit view of how
aircraft from each agency used airspace over the course of the season and supports
comparisons of regional deployment patterns.

Aircraft Response Timing to Initial Fire Discoveries

The OpenSky dataset provided timestamps, geographic positions, and unique aircraft identifiers
(ICAO24 codes), which we processed to construct time series visualizations and to detect
aircraft presence near wildfires. Wildfire occurrence data were obtained from the Fire Program
Analysis Fire-Occurrence Database (Short, 2022), which includes discovery date, discovery
time (HHMM format), fire size, and ignition coordinates. Of the 10,198 wildfires reported in
California in 2020, 8,213 had valid discovery time and date information.

To calculate aviation response times, we spatially and temporally matched wildfire discovery
records with ADS-B flight detections. Aircraft detections were filtered to those occurring within 5
km of a fire’s ignition point and within 24 hours following its discovery. The 5-km radius was
selected to accommodate the positional uncertainty of ignition records, which are typically
reported at section-level accuracy, ensuring that aircraft detections are captured even when
discovery coordinates are offset from the true ignition location. We defined initial response as
the first 24 hours following discovery, consistent with federal guidance that treats this period as
the typical length of the initial operational window before a fire transitions to extended response
(Congressional Research Service, 2023). For each fire, response time was defined as the
elapsed minutes between discovery and the first qualifying aircraft detection. As a sensitivity
check, we repeated the analysis using alternative spatial thresholds of 7 km and 9 km; response
time estimates were qualitatively similar across radii, indicating that results were not sensitive to
the specific distance threshold chosen.

Fires with no recorded aircraft activity and no detections within this radius were excluded, as
they likely occurred outside the effective surveillance range of the ADS-B network rather than
reflecting a deliberate decision not to respond. This filtering step removed 1,003 fires from the
dataset and ensures that subsequent analyses reflect operational patterns within the ADS-B—
observable portion of the state.

Initial Response Analysis

The data was structured so that each row represented a single response time observation per
fire. The reshaped datasets were concatenated, and for each fire, the minimum recorded
response time across both agencies was selected to define the duration to first aircraft arrival.
Each fire was assigned an event code: one if CAL FIRE arrived first, two if USFS arrived first.
Fires without a recorded response within the observation window were right-censored by setting
their duration to the maximum observed time (24 hours from ignition) and assigning an event
code of zero.

The resulting dataset (FPA_ID, duration, event_type, Agency) was then used to fit a
nonparametric competing risks model using the Aalen—Johansen estimator (Aalen and
Johansen, 1978). For each unique event time, transition intensity matrices were constructed to
represent the probability of transition into each of the two groups (CAL FIRE first, USFS first).
These matrices were cumulatively multiplied to derive the cause-specific cumulative incidence
functions (CIFs), which quantify the probability over time that each agency is the first to



respond. CIFs were then plotted to visualize how these probabilities evolve, appropriately
accounting for the competing nature of response events and censoring. Unlike standard survival
curves, CIFs account for the fact that multiple outcomes can prevent the occurrence of one
another, in this case, the arrival of one agency precludes the other from arriving first.

While the competing risks model identifies which agency is more likely to arrive first, it does not
examine the factors influencing response timing. To study the influence of landscape, weather,
and operational conditions on aircraft arrival, we applied a Cox proportional hazards model
(Cox, 1972). Using the same fire-level dataset, we kept each fire’s observed duration and
flagged the event indicator as 1 when an aircraft from either agency arrived and 0 when no
aircraft arrived within 24 hours. The model was fitted using the Breslow method for baseline
hazard estimation and standard errors (Breslow, 1974). Estimated hazard ratios represent the
multiplicative effect of each covariate on the instantaneous rate of aircraft arrival, holding other
variables constant. Model fit and proportional hazards assumptions were assessed using the
Schoenfeld residual-based diagnostics (Schoenfeld, 1982).

We estimated three separate Cox proportional hazards models. Each model incorporated the
same covariates but differed in stratification approach. In the first model, we included no
stratification to provide a baseline specification. The second model added fixed effects stratified
by time of day, derived from the fire discovery time (DISCOVERY_TIME), based on prior
evidence that large airtanker activity peaks during afternoon hours when fire behavior typically
intensifies (Thompson et al., 2018; Reinke et al., 2021). Fires were categorized into three
periods based on local discovery hour: Morning (06:00-12:59), Afternoon (13:00-20:59), and
Night (21:00-05:59). This classification allowed us to account for operational rhythms and
diurnal variation in fire behavior and aircraft dispatch likelihood. The third model introduced
stratification by DPA, which delineates zones of primary suppression responsibility across
federal, state, and local fire agencies, to account for differences in fire management
arrangements, resource availability, and dispatch practices across protection zones. This
stratified modeling framework allowed us to evaluate the stability of covariate effects while
accounting for temporal and jurisdictional heterogeneity in aerial response behavior.

Covariate Selection

Vegetation and fuel characteristics have been shown to affect airtanker use and deployment
patterns (Stonesifer et al., 2016), making vegetation and fuel characteristics an important factor
for modeling aerial suppression decisions. To characterize live fuel conditions consistently
across California’s diverse ecosystems, we used the Normalized Difference Vegetation Index
(NDVI), which provides continuous spatial coverage and reflects live photosynthetic activity
across forested, shrubland, grassland, and developed environments (Pourmohamad et al.,
2023). NDVI captures short-term variability in vegetation greenness that can influence ignition
potential, flame intensity, and tactical considerations during the IR phase. Because vegetation
stress typically appears as reduced greenness, negative NDVI anomalies, departures below a
site’s recent mean, have been linked to elevated wildfire potential (Burgan, 1996; Chuvieco et
al., 2004; Sall, Jenkins and Pushnik, 2013).

We therefore derived a standardized day-prior NDVI anomaly (NDVI_ANOM) for each fire using
the following formulation:



NDVIy_1 — NDVIjeanm
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NDVInom =

where NDVI;_; is the NDVI on the day before discovery, and NDV1,canm, NDV Iy m, and
NDVIyinm are the mean, maximum, and minimum NDVI values for the corresponding calendar
month over the preceding 12 months. We scaled anomalies by dividing the month-specific NDVI
range (NDVIpgxm — NDVIninm)/4, where the range is computed from the same calendar month
over the preceding 12 months. This anomaly highlights departures from expected seasonal
conditions, offering an indicator of live-fuel conditions that can shape how aircraft are used
during initial response. Because unusually low NDVI anomalies signal stressed, more
flammabile live fuels, they also serve as a proxy for conditions under which initial response is
more difficult to contain with ground resources.

To complement the live-fuel signal provided by NDVI, we included 100-hour dead fuel moisture
(fm100) as a measure of background fuel aridity, a variable that strongly influences fire behavior
and is a component of fire danger rating systems (Andrews, Loftsgaarden and Bradshaw, 2003;
Jolly et al., 2024). Not only does it strongly influence fire behavior, lower dead-fuel moisture
increases the likelihood of ignition, rate of spread, and fireline intensity; 100-hour fuel moisture
is also an input to operational fire-behavior models, underscoring its importance (Rothermel,
1986).

Topographic constraints were represented using slope steepness from LANDFIRE terrain data.
Steeper slopes can limit ground access, reduce handline effectiveness, and increase reliance
on aerial resources (Thompson et al., 2018; Wheatley et al., 2022). Additionally, steep slopes
tend to elevate firefighter risk by increasing flame exposure, entrapment potential, and the
difficulty of safe escape route construction, conditions that often require greater suppression
(Page and Butler, 2018).

Weather-driven fire danger was characterized using wind speed at 10 m (vs), maximum
temperature (tmmx), and the Burning Index (bi), all from GridMET (Abatzoglou, 2013). These
variables capture environmental conditions that are closely associated with periods of intensified
fire behavior and increased demand for aerial support (Thompson et al., 2018; Wheatley et al.,
2022; Simpson et al., 2022). Because weather is one of the primary situational cues used by
incident commanders, these factors are often incorporated, consciously or intuitively, into
assessments of potential fire behavior and suppression needs (Thompson and Calkin, 2011).
Together, these weather variables provide a dynamic representation of conditions that influence
both fire growth and the likelihood of early aircraft deployment.

Operational logistics were represented through distance to water bodies (dist_to_water_km),
used as a proxy for dip-site availability. Proximity to suitable water sources has been shown to
influence both airtanker and helicopter deployment patterns (Plucinski, 2025), making it an
important consideration for IR response.

Finally, values-at-risk covariates were included to capture the influence of human exposure on
aerial suppression decisions. The Global Human Modification Index (GHM) and 1-km population
density (Popo_1km) from WorldPop were used to represent development pressure and



wildland—urban interface proximity, consistent with findings that aircraft deployments often
concentrate near populated areas (Stonesifer et al., 2016).

With the exception of distance to water sources, all covariates were sourced from the FPA FOD-
Attributes dataset (Pourmohamad et al., 2023). Table 1 provides the full list of variables,
definitions, and data sources.

Table 1.Covariate names, descriptions, and data sources used in the survival analysis of aerial initial response.

Variable Name Description Source
fm100 100-hour dead fuel moisture (%) (Abatzoglou, 2013)
NDVI_ANOM Standardized day-prior NDVI anomaly (Vermote, 2019;
computed from four components (day-prior | Pourmohamad et al.,
NDVI, and monthly mean, maximum, and | 2023)
minimum NDVI over the preceding 12
months)
Slope 0-90 degrees (Rollins, 2009)
dist_to_water_km Distance to nearest waterbody (km) (California
Department of Fish
and Wildlife, 2025)
VS Wind velocity at 10 m above ground (m/s) | (Abatzoglou, 2013)
bi Burning index (NFDRS fire danger index) | (Abatzoglou, 2013)
tmmx Maximum temperature (K) (Abatzoglou, 2013)
GHM Cumulative measure of the human (Kennedy et al., 2019)
modification of lands within 1 km of the fire
ignition point
Popo_1km Average population density withina 1 km | (WorldPop and
radius around the fire ignition point CIESIN, 2018)

Results:

Aircraft activity and Seasonal Patterns

We obtained 17,884,545 positional records (=4,968 flight hours) for USFS aircraft and
21,925,926 records (=6,090 hours) for CAL FIRE aircraft, representing second-by-second
tracking across the 2020 season where ADS-B data was available. CAL FIRE activity (Figure 2,
top) increased through the summer, peaked in September, and declined in November. USFS
aircraft showed a broadly similar seasonal pattern but with a slightly later and more diffuse peak
and fewer individual aircraft active on a typical day (Figure 2, bottom).
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Figure 2. Line plot illustrating the distribution of unique aircraft activities (CAL FIRE top, USFS bottom) by day for
2020.

To compare spatial patterns of airspace use, we generated a density-difference surface
representing USFS aircraft density minus CAL FIRE aircraft density at a 3-kilometer resolution
(Figure A1). Positive values indicating areas more frequently traversed by USFS aircraft and
negative values indicating higher CAL FIRE activity. The map shows dense flight-path corridors
and incident hubs across the state, with pockets of higher CAL FIRE activity indicated by dark
purple values and pockets of higher USFS activity indicated by bright yellow values.

Incident Summary and Response Times

A total of 7,214 wildfire incidents were included in the analysis. Of these, 1,476 received an
aerial response within 24 hours of discovery (840 CAL FIRE, 637 USFS), while 5,737 had no
recorded aerial response and were classified as “NoResponse.” Response times were right-
censored at 1,440 minutes (24 hours). Among incidents with a recorded response, CAL FIRE
arrival times averaged 700 minutes (median 751; IQR: 387-1007), and USFS arrival times
averaged 673 minutes (median 680; IQR: 406-962). Fifty-five incidents had an initial response
within 20 minutes (37 CAL FIRE, 18 USFS).



Proximity to Airbases

Distances from ignition points to the nearest CAL FIRE airbase ranged from about 0.25 to 254
km across all fires (Figure A2). Mean distances were 33.5 km for CAL FIRE-first responses (n =
840), 35.6 km for USFS-first responses (n = 637), and 46.9 km for NoResponse fires (n =
5,737). Medians showed a similar pattern: 29.7 km (CAL FIRE-first), 35.4 km (USFS-first), and
42.7 km (NoResponse). Although the distributions overlapped across response types, fires that
received an initial aerial response were generally closer to an airbase, while NoResponse fires
exhibited both the largest mean and median distances.

Across all three panels in Figure 3, ignition locations are distributed statewide with a broad
north—south pattern along the Sierra Nevada, Coast Range, and southern California foothills.
NoResponse fires (Panel A) are widely dispersed across the same areas where responded fires
occur. CAL FIRE-first responses (Panel B) and USFS-first responses (Panel C) show
overlapping geographic footprints, with both agencies’ initial responses appearing throughout
northern, central, and southern California. CAL FIRE airbases (triangles) are positioned across
the state, and incidents of each response type occur in proximity to multiple bases rather than
clustering around any single region.
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Figure 3. Spatial distribution of fire response types and CAL FIRE airbases across California. Panels show (A)
incidents with no aerial response, (B) incidents where CAL FIRE aircraft responded first, and (C) incidents where
USFS aircraft responded first. Black points represent incident locations, and red triangles indicate airbase locations.

NDVI Results

Across all 7,214 fires, standardized day-prior NDVI anomalies (NDVI_ANOM) ranged from
roughly —8 to +5, with most values falling between —2 and +2 and a slight tendency toward more
negative anomalies during the core 2020 fire season (Figure A3). When grouped by event type,
NDVI_ANOM distributions for fires that received no aircraft and those that received an aerial
response were broadly similar, with medians near zero and strongly overlapping interquartile
ranges (Figure A4). In the Cox models, however, NDVI_ANOM consistently had a negative and
highly significant coefficient (8 =—0.10, p < 0.001 in all three specifications; Table 2), indicating
that, after accounting for fuel, weather, exposure, and distance-to-water covariates, increasingly



positive NDVI anomalies were associated with lower estimated hazards of aircraft arrival and
increasingly negative anomalies with higher hazards.

Cumulative Incidence of First Response

Cause-specific cumulative incidence functions (Figure 4) show the probability of each agency
being first to arrive over time. By 1,440 minutes, the cumulative incidence reached
approximately 0.12 for CAL FIRE and 0.09 for USFS. Confidence intervals (shaded bands)
reflect uncertainty around each estimate.

Cox Proportional Hazards Models

We estimated three Cox proportional hazards models: (1) an unstratified baseline model, (2) a
model stratified by discovery time (Morning/Afternoon/Night), and (3) a model stratified by DPA
region (Table 2). Schoenfeld residual diagnostics are provided in Appendix A5, and robustness
checks excluding covariate groups are shown in Appendix Table AG.

Across all three Cox model specifications, coefficient signs and magnitudes were consistent
(Table 2). Maximum temperature (tmmx), nearby population density (Popo_1km), and human-
modified landscape values (GHM) had positive coefficients in every model, indicating higher
estimated hazards of aircraft arrival when increased. NDVI_ANOM, distance to water, and
fm100 had negative coefficients across models. Slope, wind speed (vs), and burning index (bi)
showed coefficients near zero with no meaningful variation across specifications. Effect sizes for
the major covariates were stable across Models 1-3, and no coefficient changed sign between
models. The time-of-day—stratified model produced the lowest BIC value, indicating slightly
better fit relative to the baseline and DPA-stratified models. Hazard ratios and confidence
intervals from all three model specifications are shown in Figure A7.

The baseline survival functions for the DPA-stratified model (Model 3) differed across the three
DPA groups (Figure 5). STATE-managed fires (n = 2,006) showed the steepest decline in
survival probability over the 24-hour window, indicating a higher baseline hazard of aircraft
arrival under this stratification. LOCAL DPAs (n = 5,088) exhibited the slowest decline,
maintaining the highest survival probabilities for most of the time range. FEDERAL DPAs (n =
120) showed an intermediate trajectory, though the curve displayed more irregular step patterns
compared to the other groups, reflecting the smaller sample size for FEDERAL-managed fires.
All curves steadily decreased, consistent with the accumulation of aircraft arrival events over the
observation period
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Figure 4. Cumulative incidence functions (CIFs) estimated using the Aalen—Johansen method for initial aircraft
response to wildfires in California during 2020. The blue line represents the probability over time that CAL FIRE is the
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measured in minutes from fire discovery.

Table 2. Coefficient estimates and standard errors from three Cox proportional hazards models examining factors
associated with time to initial aircraft arrival on wildfires in California during the 2020 fire season. All models include
the same covariates with Model 1 (unstratified), Model 2 (stratified by time of day), and Model 3 (stratified by DPA).
Values represent log hazard coefficients; standard errors are in parentheses. Positive coefficients indicate factors
associated with faster aircraft dispatch. Statistically significant effects are denoted by conventional markers (*p <
0.05; **p < 0.01; ***p < 0.001; +p < 0.10). Each model includes 7,214 wildfire events.

Model 1 Model 2 (Time strata) Model 3 (DPA strata)
fm100_z -0.074 (0.054} -0.078 {0.054) -0.064 (0.054)
NDVI_ANOM_z -0.100%** (0.024) -0.101*** (0.024) -0.099*%** (0.024)
Slope_z 0.043 (0.031) 0.043 (0.031) 0.008 (0.035)
dist_to_water_km_log_z -0.060* (0.026) -0.060* (0.026) -0.037 (0.027)
"4 -0.056 (0.041) -0.056 (0.041) -0.053 (0.040)
bi_z 0.044 (0.058) 0.038 (0.058) 0.049 (0.058)
tmmx_z 0.448%+* (0,038) 0.445%+ (0,038) 0.464**+* (0,038)
GHM z 0.119* (0.051) 0.117* (0.051) 0.193*** (0.054)
Popo_lkm_log_z 0.146** (0.047) 0.148** (0.047) 0.166*** (0.048)
Num.Obs. 7214 7214 7214
BIC 25567.6 22441.0 23740.2
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Figure 5. Baseline survival functions from the DPA-stratified Cox model (Model 3). Curves show the estimated
probability that no aircraft has arrived as a function of time since fire discovery for STATE, FEDERAL, and LOCAL
Direct Protection Areas.

Discussion

The cause-specific cumulative incidence curves rise steadily rather than showing an early step
change, indicating that the probability of receiving an aircraft is relatively diffuse across the first
24 hours during the IR phase (FIGURE 4). If aircraft were commonly launched immediately at
discovery, we would expect a sharp initial jump; instead, both agencies exhibit a near-linear
accumulation, with only a small fraction of fires receiving aircraft in the first 20 minutes. This
pattern is consistent with the absence of any single, predictable “clock” governing when aircraft
are dispatched after a fire’s discovery.

Responding to wildfire involves balancing multiple, sometimes competing priorities, including
firefighter safety, suppression costs, public expectations, and the anticipated ecological
outcomes of different response strategies, among others, which together shape when and how
resources are deployed (Taber, Elenz and Langowski, 2013; Fillmore et al., 2024). As a result,
the timing of aerial response reflects the combined influence of fuel moisture, weather, slope,
access to water, proximity to people and infrastructure, and the evolving fire situation, factors
that seldom align uniformly across incidents. Operationally, dispatch is also mediated by
availability (what’s on base, what'’s already committed), airspace and smoke constraints, and
maybe most importantly, human decision-making under uncertainty (Thompson and Calkin,
2011). That last element introduces real variability. Incident commanders weigh consequences,
alternatives (ground attack, wait for IR/size-up), and risk thresholds differently, so two similar
ignitions may lead to different call-up times. Together, these environmental, logistical, and
human factors produce a broadly increasing, rather than front-loaded, arrival profile, with



modest early responses and a persistent chance of first arrival throughout the 1A window.
Practically, this means that improving situational awareness, coordination, and decision support
tools may do more to contribute to timely and effective aerial response than any single
operational change alone.

Building on this broader understanding of how response decisions unfold, the modeled results
further show that aircraft are more likely to be mobilized under conditions of higher
temperatures, patterns consistent with prior studies of aerial suppression behavior (Stonesifer et
al., 2016; Thompson et al., 2018). This suggests weather, and more specifically hotter
temperatures, may influence dispatch decisions. Wind speed, by contrast, had a small negative
but statistically non-significant effect on the hazard of aircraft arrival, indicating no clear
evidence that stronger winds systematically accelerate or delay aerial response in this dataset.
This is consistent with operational practice, where incident commanders will still launch aircraft
across a wide range of wind speeds when safety envelopes allow, even though higher winds
are known to reduce drop effectiveness by increasing drift and making it harder for water or
retardant to reach the target fuels (Fogarty and Slijepcevic, 1998). Additioally, steep terrain has
historically been a focal point for retardant operations, our models show no statistically
significant association between slope and the hazard of aircraft arrival (Thompson et al., 2018).
This may reflect either genuinely weak slope sensitivity in IA decision-making or the fact that
ADS-B coverage is concentrated in lower-elevation terrain where slope variation is smaller and
operational patterns differ from high-slope wilderness settings.

These same terrain- and weather-driven challenges also intersect with logistical considerations
such as access to water. In our results, the distance-to-water term does not exhibit a
consistently strong signal, suggesting that water availability may influence aviation use in some
contexts but not uniformly across incidents. Several factors could explain this muted
relationship. In remote areas where accessible water sources are scarce, longer ferry distances
and fewer dip sites can constrain operations and shift reliance toward ground-based tactics
(Keating et al., 2012). Distance to water may also shape the type of aircraft used, the feasibility
of placing water or retardant drops, and broader suppression strategies, but these influences
may not manifest as a simple, statewide pattern.

Beyond logistics, distance to water is correlated with environmental characteristics that vary
substantially across California’s landscapes. Fires farther from water often occur in settings with
lower fuel continuity or reduced vegetation productivity, where aerial support may offer limited
marginal benefit compared to ground attack. For example, (McNorton and Di Giuseppe, 2024)
note that ecosystems with lower net primary productivity, common in arid regions distant from
riparian areas, tend to have sparser or more discontinuous fuels, which constrain fire growth
potential and may reduce the need for intensive aerial suppression. Thus, the weak statistical
relationship observed here may reflect the combined influence of operational constraints, longer
ferry distances, ecological gradients, and differences in fuel structure rather than a direct,
statewide effect of water proximity alone.

Across all three Cox models, the NDVI anomaly term (NDVI_ANOM) is negative and highly
significant, indicating that live-fuel conditions exert a consistent influence on whether aircraft are
dispatched quickly. Because the anomaly was constructed so that negative values represent
below-normal greenness for that location and month (drier, more stressed live fuels) and
positive values represent greener-than-usual conditions, the negative coefficient means that
fires igniting under more stressed vegetation are more likely to receive aircraft earlier. In



standardized units, a one—standard deviation increase in NDVI_ANOM (toward greener-than-
expected vegetation) reduces the likelihood of aircraft arrival by roughly 10%, whereas a one—
standard deviation shift toward more negative anomalies increases the likelihood of using
aircraft. This pattern is consistent with prior work showing that NDVI anomalies and departures
from “normal” greenness track live fuel moisture and elevated fire potential (Burgan, 1996;
Chuvieco et al., 2004; Sall, Jenkins and Pushnik, 2013) and with recent efforts to incorporate
improved live-fuel moisture representations into fire danger systems (Jolly et al., 2024).
Together, these results suggest that incident commanders are more inclined to mobilize aircraft
under conditions when live fuels appear unusually dry for the season, not just when background
dead fuels are dry, and that NDVI-derived indicators provide information about response
decisions beyond what is captured by fm100 or composite fire-danger indices alone. This
emphasis on anomalously dry fuels aligns with broader evidence from the 2020 season that
unusual fuel conditions contributed to concerns about late-season large-fire potential and
shaped strategic planning for suppression capacity (Belval et al., 2022).

While these environmental and logistical factors help explain where aircraft are less likely to be
deployed, human and social factors appear equally important in determining where they are.
Aviation deployments during initial response tend to intensify where high value property are at
stake (Bayham and Yoder, 2020). Our model reproduces this pattern through positive
coefficients on both the GHM and Popo_1km. Multiple empirical studies indicate that proximity
to people and property is a strong driver of aerial-suppression decisions. A nationwide analysis
of large-air-tanker missions during 2010-2014 showed that aviation assets were
disproportionately concentrated within about 10 km of the wildland—urban interface, where
population density and infrastructure are highest (Stonesifer et al., 2016). A more detailed
review of 2012 operations in Montana found the median distance from drop locations to mapped
WUI values was only 2.8 mi, underscoring how protection of communities shapes deployment
patterns (Stonesifer et al., 2015). Consistent with these case studies, the U.S. Forest Service’s
Aerial Firefighting Use and Effectiveness (AFUE) program reported that most drops across all
aircraft types occurred on fires where values were threatened during the event, signaling that
resource-at-risk considerations routinely influence aviation tasking at the national scale (U.S.
Department of Agriculture, Forest Service, 2020). Taken together with our findings, these
studies reinforce that aircraft are preferentially mobilized when fires threaten concentrated
assets, whether homes or infrastructure, explaining the strong population-proximity signal in our
hazard models.

While these results capture genuine operational behavior, they also reflect the spatial and
technical constraints of ADS-B data. Line-of-sight reception means that ground-based ADS-B
networks provide denser coverage in populated corridors and lower-elevation valleys, especially
the Central Valley and Sierra foothills, while reception drops off in remote, mountainous regions
such as far-northern coastal California, the high Sierra, and the southeastern deserts. To avoid
conflating absent detections with absent response, we excluded 1,003 fires with no ADS-B
messages within 5 km in 2020; however, this necessary filter shifts the analytic sample toward
areas with robust sensor coverage, greater airbase density, and higher WUI exposure.
Consequently, the estimated probabilities and timing of aerial response may be somewhat
upward-biased relative to true statewide patterns, and differences between agencies may be
muted if one agency more frequently serves wilderness and high-elevation terrain. Our findings
should therefore be interpreted as describing IR activity that is observable via ADS-B, rather
than representing all IR operations statewide. Future work could reduce these gaps by



incorporating satellite-based ADS-B reception or by outfitting aircraft with onboard, internet-
connected systems capable of relaying position data in real time.

Despite these coverage limitations, ADS-B nevertheless provides a uniquely comprehensive
view of aerial activity compared with traditional data sources. Existing wildfire aviation studies
have relied primarily on ATU drop logs, which are mandatory for federally contracted airtankers
but not for state fleets such as CAL FIRE. As a result, analyses using only ATU data (e.qg.,
(Stonesifer et al., 2022; Bayham and Bryan, 2023)) omit substantial portions of aerial
suppression performed by state and private aircraft. ADS-B addresses much of this limitation,
because all transponder-equipped aircraft broadcast their position every second, open networks
like the OpenSky Network provide ownership-agnostic, continuous records of aircraft
movement. Prior work has already shown that straightforward pattern-recognition methods
applied to ADS-B tracks can identify CAL FIRE airtankers, map circling orbits over active fires,
and reconstruct operational timelines without access to mission logs (Olive et al., 2020).

ADS-B’s strengths stem from its open broadcast architecture; low-cost receivers can collect
signals wherever line-of-sight exists, and community archives now contain billions of messages
(Schafer et al., 2016). When integrated with incident records or the subset of federal ATU drops,
these data support new spatial analyses of fleet utilization. Yet the system remains incomplete:
coverage is uneven, mountainous terrain can obscure reception, and some aircraft still operate
without broadcasting ADS-B even within mandated airspace. Advancing wildfire aviation
research will therefore require hybrid data systems that merge terrestrial and satellite ADS-B,
agency-specific telemetry, and emerging unmanned-aircraft sensors. Such integration would
produce a more comprehensive and resilient picture of aerial firefighting activity and extend
performance analyses beyond federal fleets to the state and local resources that increasingly
shoulder IR responsibilities.

Conclusion

Figure 3 shows that the spatial distribution of response types is broadly consistent across
California, with no discernible geographic clustering that would indicate systematic spatial bias
in whether CAL FIRE or the USFS responds first. Incidents with no aerial response, CAL FIRE—-
first responses, and USFS—first responses all occupy the same statewide footprint, which aligns
with the fact that CAL FIRE airbases are strategically located to provide wide and relatively
uniform coverage. Because the airbase network is intentionally designed to minimize spatial
gaps, a strong geographic signature in response patterns is not expected. The violin plot (Figure
A2) shows a slight tendency for incidents receiving an initial aerial response to occur at
somewhat shorter distances from CAL FIRE airbases compared with no-response incidents.
This weak proximity signal is operationally intuitive, closer fires are more likely to receive aircraft
simply because travel times are shorter and aircraft can be committed more efficiently. Overall,
proximity to airbases appears to play a modest role in shaping response likelihood and
sequencing, but it does not produce a pronounced spatial pattern across the state.

The results of this study indicate a cooperative balance in aviation workload between CAL FIRE
and the U.S. Forest Service, reflecting the intertwined responsibilities defined under California’s
Direct Protection Area agreements. Despite differences in fleet composition and mission scope,
the expected response times for the two agencies are nearly identical within the ADS-B—



observable portion of the state (Figure A8). This similarity suggests that, operationally, both
agencies are contributing comparably to IR aviation response during high-activity periods.

Workload patterns further reinforce this shared commitment. The seasonal activity curves for
the two fleets exhibit a nearly unimodal, parallel structure, with both agencies showing a
midsummer—early fall pulse in aircraft activity (Figure 2). The similarity in these seasonal pulses
indicates that both fleets scaled up and sustained aviation effort during the same fire-season
periods, consistent with coordinated IR responsibilities. Spatial patterns also suggest a roughly
even division of effort: the distribution of incidents first reached by each agency (Figure 3)
shows substantial geographic overlap, rather than a clear partitioning of responsibility.

This balanced pattern of effort and engagement aligns with prior work documenting shared
federal—state response structures and cooperative aviation management under DPA
agreements and closest-resource dispatch protocols (NICC, 2023; U.S. Forest Service, 2023). It
is also consistent with findings from Stonesifer et al. (2016), who showed that large airtanker
use is requested at the incident level through a national dispatch system and is concentrated
near populated areas, indicating that deployments are driven by operational needs and
proximity to values at risk rather than purely by jurisdictional boundaries. Together, these results
suggest that the combined CAL FIRE and USFS aviation systems operate less as two separate
fleets than as a jointly involved suppression network responding to similar environmental
triggers and workload pressures.

This study demonstrates that ADS-B’s global, second-by-second telemetry provides a uniquely
comprehensive lens on wildfire aviation use, allowing us to quantify when, where, and under
what conditions CAL FIRE and USFS aircraft launch during initial response, something that has
not been possible with traditional, agency-specific records. By linking aircraft trajectories with
survival analysis, we show how terrain, weather, water access, and values-at-risk shape
deployment timing and reveal patterns that were previously obscured by fragmented reporting
systems. Rather than comparing agencies per se, our analysis illustrates how a unified,
ownership-agnostic data stream can illustrate the broader operational environment in which
both systems operate. As ADS-B continues to expand, further integration with federal and state
tracking systems, shared data protocols, and more consistent coverage will strengthen its
potential as the foundation for real-time coordination, performance assessment, and long-term
planning. Together, these advances point toward a future in which a consolidated monitoring
architecture supports more transparent, equitable, and strategically informed use of aviation
resources during wildfire response.
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Figure A1. Difference in ADS-B—derived aircraft density between USFS and CAL FIRE aircraft across California
during the 2020 fire season. Values represent USFS minus CAL FIRE cumulative aircraft-seconds per 3-km grid cell,
with bright yellow areas indicating more frequent USFS use and dark purple areas indicating more frequent CAL
FIRE use.
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Figure A2. Violin plots showing distances from fires to the nearest CAL FIRE airbase, grouped by response type (No
Response, CAL FIRE first, USFS first).



Standardized Day-Prior NDVI Anomaly (NDVI_ANOM) Over Time
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Figure A3. Standardized day-prior NDVI anomalies for all 2020 fires, showing departures from typical monthly
greenness conditions over the fire season.
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Figure A4. Boxplots comparing standardized NDVI anomalies for fires with no aerial response versus those that
received an initial aircraft response.



Schoenfeld Residuals - Model 3 (Stratified by DPA Group)
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Figure A5. Shoenfeld residuals for model 1 used to assess the proportional hazards assumption of the dataset.

We evaluated the proportional hazards assumption of the Cox regression models using
Schoenfeld residuals, visualized via the CoxPHFitter function in the lifelines library. These plots
assess whether residuals remain independent of time, a key requirement for the validity of
proportional hazards modeling. As shown in Appendix Figure A1, most covariates exhibit
residuals that fluctuate randomly around zero, suggesting reasonable adherence to the
assumption. Although formal statistical tests flagged minor violations for some covariates, these
are likely artifacts of the large sample size or the continuous nature of the predictors rather than
substantive departures from proportionality (Grambsch and Therneau, 1994). Given the stability
of effect estimates across stratified model specifications and the lack of strong temporal
patterns in residuals, we interpret the models as appropriately specified for estimating how
landscape, weather, and exposure factors influence aircraft dispatch timing during the initial
response phase.



Table A6. Robustness checks for Cox PH regression results.

Full No_Slope No_Pop No_Fuel No_Weather
GHM 0.892*** (0.193) 0.799*+* (0.178) nan 0.861*** (0.192) 0.986*** (0.193)
NDVI_ANOM -0.097** (0.025) -0.098**+* (0.025) -0.090*** (0.025) nan -0.108*** (0.025)
Popo_1km 0.006+ (0.004) 0.007+ (0.004) nan 0.006 (0.004) 0.007+ (0.004)
Slope 0.009 (0.007) nan -0.015* (0.006) 0.009 (0.007) 0.003 (0.007)
bi 0.003 (0.003) 0.003 (0.003) 0.004 (0.003) 0.006** (0.002) nan
dist_to_water_km -0.034** (0.011) -0.035**¢ (0.011) -0.039*+*¢ (0.011) -0.036** (0.011) -0.031** (0.011)
fm100 -0.021 (0.015) -0.021 (0.015) -0.003 (0.015) nan -0.109*** (0.009)
tmmx 0.034*+* (0.003) 0.034** (0.003) 0.035%* (0.003) 0.036*** (0.003) nan
Vs -0.041 (0.027) -0.041 (0.027) -0.056* (0.027) -0.054* (0.024) nan
Num.Obs. 7214 7214 7214 7214 7214
BIC 25569.5 25562.2 25612.7 25567.4 25703.1

To evaluate the robustness of our findings, we estimated several alternative model
specifications presented in Table A6. The first column reproduces our full model used in the
main analysis. Each subsequent column systematically excludes a set of related covariates—
slope, population, fuel, and weather—to assess the sensitivity of our estimates to specific
predictor domains.

Overall, the direction and significance of most coefficients remain stable across specifications,
particularly for GHM and tmmyx, indicating strong and consistent effects. Notably, removing
weather variables slightly attenuates some associations and increases the BIC, suggesting that
weather contributes meaningfully to model fit. Dropping slope or population-related terms had
minimal impact on other coefficients, while the removal of fuel variables slightly shifted the
estimates of related predictors. These results support the robustness of our core findings, with
minor variations in magnitude attributable to shared variance across covariates rather than
fundamental instability in the model.
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Figure A7. Hazard ratios and 95% confidence intervals from three Cox proportional hazards models evaluating
factors influencing the timing of initial aircraft dispatch. Each panel corresponds to a different model specification:
(left) Model 1 with no stratification, (center) Model 2 stratified by time of day (morning, afternoon, night), and (right)
Model 3 stratified by GACC region (ONCC vs OSCC). The red dashed vertical line at HR = 1 denotes the null effect.



Distribution of Aircraft Response Times by Agency
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Figure 38. Violin plots comparing aircraft response times for fires first reached by CAL FIRE versus USFS during the
2020 season.
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