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1 Abstract
2 Wildland firefighters play a critical role in managing the complex relationship between humans and fire. 
3 To reduce the inherent risks that come with this role, firefighters use safety protocols such as lookouts, 
4 communications, escape routes, and safety zones (LCES). Currently, LCES implementation is conducted 
5 on the ground with limited support from geospatial information, despite the protocol’s inherently 
6 spatial nature. This study introduces GeoLCES: an analytical framework designed to enhance LCES 
7 implementation using remote sensing and geospatial modeling. GeoLCES comprises three spatially 
8 explicit safety metrics, derived from airborne lidar data: (1) visibility index (VI), which quantifies 
9 landscape-wide visibility, aiding the evaluation of lookouts and communications; (2) escape route index 

10 (ERI), which quantifies mobility, facilitating the identification of escape routes and avoidance of 
11 entrapment-prone area; and (3) proportional safe separation distance (pSSD), which quantifies the 
12 relative degree of sufficient fuel separation, enabling the identification of suitable safety zones. In this 
13 study, we describe the theory, computation, application, and interpretation of each of these three 
14 metrics as a multivariate, pre-fire decision support tool. To highlight implementation on a useful scale, 
15 we map GeoLCES at 30m resolution throughout Gila National Forest in New Mexico, USA. We provide an 
16 operationally relevant use-case demonstration to exemplify one approach for employing GeoLCES at the 
17 incident level. GeoLCES is the first geospatial analytical framework that seeks to specifically address the 
18 complex, multivariate nature of LCES in a holistic manner, and has the potential to improve wildland 
19 firefighter safety at a time of increasing fire management demands. 
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23 1. Introduction
24 In an era of increasing wildfire and fire impacts in many regions, it is imperative to develop robust 
25 solutions for ensuring the safety of wildland firefighters [1]. Firefighters play a critical role in mitigating 
26 loss of life and property by suppressing the dangerous spread of wildfires [2]. They do so in a variety of 
27 ways, including the strategic, mechanical manipulation of fuel loads, construction of containment lines, 
28 setting backfires to reduce fuels ahead of an advancing fire, and minimizing fuel and infrastructure 
29 flammability with water [3]. They are also responsible for conducting prescribed fires, applying fire to 
30 the landscape in a more controlled and ecologically-focused manner to prevent the hazardous buildup 
31 of fuels. All of these activities are essential for adapting to a more fire-prone present and future, and 
32 creating a more sustainable coexistence between humans and fire, particularly in wildland-urban 
33 interface settings [4,5]. Unfortunately, in the course of engaging in this life-saving work, firefighters are 
34 necessarily placed in hazardous environments and situations. They work long hours, over extended 
35 periods, in hot, smoky, and sometimes rugged settings, often in close proximity to flames [6]. As a result, 
36 injuries or fatalities can and do occur every year among wildland firefighters in the US and beyond [7].
37
38 Firefighters have many tools at their disposal to minimize risks to their health and wellbeing. Among 
39 these, operational safety protocols like lookouts, communications, escape routes, and safety zones 
40 (LCES) play a particularly important role in keeping firefighters safe [8]. LCES is a system of four 
41 interdependent safety measures that, if properly implemented, can minimize the likelihood of injury or 
42 fatality. Lookouts are members of a crew strategically positioned on the landscape to maintain an active 
43 view of the fire and alert the other members of their crew about changes in weather or fire behavior. 
44 Communications are used to relay critical information among a crew, between crews, with incident 
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45 command, and other relevant entities on a fire incident. Escape routes are efficient ground pathways 
46 that firefighters can use to evacuate their position on the landscape in dangerous situations. Safety 
47 zones are large, open areas low in fuel that can serve as evacuation destinations, within which 
48 firefighters should be safe from nearby or surrounding fire.
49
50 Evaluating and implementing LCES on the ground can be a challenging process. For example, on a fire 
51 incident that spans hundreds or thousands of hectares, it might be difficult to identify a suitable location 
52 to place a lookout that would enable broad-scale visibility of the landscape and fire based on ground-
53 level information alone [9]. Firefighters may struggle to reliably and consistently evaluate how large 
54 their safety zone needs to be, given the complexity of visually approximating the safe separation 
55 distance needed to avoid burn injury [10,11]. Relying solely on firefighters’ perceptions, knowledge, and 
56 experience to make these critical safety evaluations on the ground, in real time, may introduce 
57 uncertainty into the LCES process.
58
59 Many of the landscape conditions that drive LCES effectiveness are inherently spatial, and can be readily 
60 mapped using modern geospatial technology. Airborne lidar data in particular offer a valuable solution 
61 for accurate, precise, and spatially explicit quantification of landscape characteristics that promote or 
62 inhibit firefighter safety [12]. Laser pulses emitted from a sensor mounted on an aircraft towards the 
63 ground surface in rapid succession reflect off of the ground, vegetation, or artificial surfaces back to the 
64 sensor, yielding a detailed three-dimensional point cloud from which fuel and terrain structure can be 
65 mapped [13]. Lidar has shown great promise towards supporting the LCES process, including previous 
66 demonstrations of lidar-based metrics for quantifying spatial variation in LCES components [9,11,12,14].
67
68 Lookouts benefit from a high degree of landscape visibility. An ideal lookout location would be one 
69 where no obstructions are present, enabling direct lines of sight with the fire, crew, and other resources 
70 [15]. Communications – especially radio communications – also benefit from high visibility, avoiding 
71 signal loss driven by terrain and vegetative barriers [16,17]. Lidar has an unparalleled ability to generate 
72 high-resolution digital surface models that incorporate both the terrain and aboveground features (e.g., 
73 trees) that promote or hinder visibility, quantifiable with viewshed analysis [18]. Escape routes benefit 
74 from landscape conditions that promote efficient foot travel, enabling firefighters to quickly and safely 
75 move during an evacuation [19–21]. Lidar is an ideal source of data for quantifying pedestrian mobility, 
76 not only being able to precisely map terrain slope, but also characterize fine-scale ground surface 
77 roughness and the density of low-lying vegetation, all of which can act to substantially impede 
78 movement [12]. Safety zone size and effectiveness are primarily dictated by safe separation distance 
79 (SSD): the distance one must maintain from fire (or fuel anticipated to burn) to avoid burn injury [22,23]. 
80 SSD is driven by the transfer of radiant and convective heat over space, which can be approximated 
81 using vegetation height, terrain slope, wind speed, and burning condition, the first two of which lidar 
82 can map with high accuracy [24–26].
83
84 Evaluating the individual elements of LCES in isolation, as existing lidar-focused firefighter safety 
85 research has done, neglects the critical interdependency of the LCES protocol. For example, even the 
86 fastest escape route is useless if it is not connected to a safety zone, and even the best lookout location 
87 provides no real value if it cannot be accessed. Furthermore, it is difficult to ask firefighters, whose time 
88 and resources are already stretched thin, to separately consider a host of individual firefighter safety 
89 spatial products. Thus, for the mutual benefit of conceptual usefulness and operational feasibility, there 
90 remains a need for a singular, multivariate approach that simultaneously considers the interconnected 
91 nature of LCES in a geospatial context.
92
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93 In this study, we introduce GeoLCES: a holistic, lidar-driven analytical framework that seeks to improve 
94 the efficiency, consistency, and reliability of evaluating and implementing LCES. Our objectives are to 
95 describe the conceptual underpinnings and geospatial formulation of GeoLCES’ three metrics, apply the 
96 GeoLCES framework within a US National Forest to exemplify its operational utility at scale, interpret 
97 results in the context of their implications for wildland firefighter safety, and provide a use-case 
98 demonstration of GeoLCES implementation using data from a recent fire incident.

99 2. Methods
100 2.1. GeoLCES Metrics
101 GeoLCES comprises three distinct but related spatially explicit metrics: (1) visibility index (VI); (2) escape 
102 route index (ERI); and (3) proportional safe separation distance (pSSD) (Figure 1). VI quantifies the 
103 proportion of firefighters’ surroundings that are visible from a given viewing perspective. It ranges from 
104 0 (or 0%; no surroundings visible) to 1 (or 100%; all surroundings visible) [27]. VI is a scale-dependent 
105 measure, requiring the definition of a viewing distance within which the VI is to be calculated. ERI 
106 quantifies firefighter mobility based on the friction posed by landscape characteristics within one’s 
107 surroundings [28]. It is calculated as a ratio between the distance one can walk in the presence of extant 
108 landscape impediments (e.g., sloping terrain, rough ground surfaces, dense vegetation) and the distance 
109 one could walk under ideal conditions (i.e., slightly downhill slope, smooth ground surface, no 
110 vegetation). Like VI, it ranges from 0 (or 0%; complete immobility) to 1 (or 100%; highest possible 
111 mobility). Also like VI, ERI is scale-dependent; however, whereas VI is defined by a distance (i.e., “how 
112 much can I see within a viewing distance of 1000m?”), ERI’s scale is defined by an evacuation time frame 
113 (i.e., “how far can I walk in 10 minutes?”). pSSD represents the degree to which one is or is not far 
114 enough from proximal flames to avoid burn injury [11]. It is the quotient of one’s actual distance from 
115 fuel and the SSD that one theoretically requires. It is bounded on the low end by 0 (or 0%; no separation 
116 from fuel), but practically has no upper bound. Any value equal to or greater than 1 (or 100%) would 
117 indicate that one is far enough away from flames to avoid injury.
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118
119 Figure 1. Graphical representations and basic calculations of the three GeoLCES metrics, including the visibility index (VI; top), 
120 escape route index (ERI; middle), and proportional safe separation distance (pSSD; bottom). For simplicity, these metrics are 
121 illustrated linearly (i.e., one-dimensionally); however, in a geospatial context, they are computed in two dimensions.
122
123 The following subsections describe each of the three GeoLCES metrics in greater detail, with a focus on 
124 their geospatial computation in two-dimensions. They include a thorough discussion of the various 
125 considerations one must take into account when generating these metrics to maximize their utility in 
126 the context of wildland firefighter safety.
127
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128 2.1.1. Visibility Index (VI)
129 To map VI in two dimensions, three things are required: (1) a digital elevation model (DEM); (2) a 
130 defined viewing area of interest; and (3) a viewshed algorithm. There are two main types of DEM: (1) 
131 digital terrain models (DTMs), which contain per-pixel representations of ground surface elevations; and 
132 (2) digital surface models (DSMs), which represent the elevation of the ground plus any aboveground 
133 features (e.g., trees, buildings) [29]. DSMs are better-suited for VI calculation, as ignoring aboveground 
134 features tends to yield an overly optimistic representation of visibility [30]. Especially in the landscapes 
135 within which wildland firefighters tend to work, tall vegetation can hinder visibility well beyond the 
136 effects of terrain features alone. DSMs can be generated through the spatial interpolation of airborne 
137 lidar first return points, which represent the first surfaces lidar pulses interact with on their path from 
138 the aircraft to the ground. An important parameter to consider for this process is spatial resolution, with 
139 higher resolutions (i.e., smaller pixels) yielding more accurate visibility estimates, at the expense of 
140 computational cost [31]. 
141
142 In geospatial terms, VI is a “focal” measure, meaning it is computed on a per-pixel basis, but it depends 
143 on data surrounding each pixel in some pre-defined neighborhood (sometimes referred to as a kernel or 
144 moving window) [27]. Accordingly, one must define a neighborhood within which VI calculations are 
145 based. Perhaps the most logically consistent neighborhood is that of a circle defined by a viewing radius 
146 of interest, as this quantifies how much of one’s surroundings can be seen in all directions within a fixed 
147 distance. The most important parameter here is the viewing radius, with smaller distances being more 
148 computationally efficient, but only providing quantification of “local-scale” visibility. 
149
150 Viewshed algorithms typically map visibility in a binary fashion, classifying pixels as either visible or 
151 invisible (obscured) from a given viewpoint [32]. If these pixels are encoded as 0 (invisible) and 1 
152 (visible), computing the mean of all pixel values within the focal neighborhood yields VI for the 
153 neighborhood’s central (target) pixel. Equivalently, one could divide the total visible area by the total 
154 neighborhood area to yield the same VI. Several viewshed algorithms exist, with different software 
155 packages implementing different algorithms, but generally they vary primarily in computational 
156 efficiency rather than model results, as they are based on the same line of sight geometrics or 
157 approximations thereof [33].
158
159 Computing VI at operationally useful scales (i.e., hundreds to thousands of hectares) at operationally 
160 useful resolutions (i.e., 10m or 30m) can be extremely computationally expensive. One recently 
161 developed solution for dramatically increasing the efficiency of broad-scale VI mapping is VisiMod 
162 (Figure 2) (Mistick and Campbell 2023; Mistick et al. 2023). VisiMod uses a relatively small sample of 
163 viewsheds, along with a suite of terrain and vegetation structural predictor variables derived from lidar 
164 data, and a random forest modeling framework to generate predictive maps of VI.
165
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166
167 Figure 2. A visual summary of the VisiMod workflow. First, a series of sample points are created within a study area, which will 
168 represent the observer points that will be used to train and test the predictive model. Second, airborne lidar-derived digital 
169 elevation models (DEMs) are created, including a digital terrain model (DTM), representing terrain elevations, and a digital 
170 surface model (DSM), representing terrain plus aboveground feature elevations. Third, the DSM is used to map the viewshed 
171 from each sample observer point, and visibility index (VI) is calculated as the ratio of visible area to total area within a viewing 
172 radius of interest. Fourth, a suite of terrain and vegetation predictor variables are generated from the DTM and a canopy height 
173 model (CHM), which is the difference between DSM and DTM. Fifth, the sample VI values serve as the response variable in a 
174 random forest model trained on the vegetation and terrain predictor variables. Lastly, the model is used to map VI predictions 
175 across the study area.
176
177 2.1.2. Escape Route Index (ERI)
178 The most important considerations for mapping ERI in two dimensions are: (1) a pedestrian friction 
179 surface; and (2) an evacuation time frame of interest [28]. The friction (also referred to as “cost” or 
180 “impedance”) surface defines the time required to traverse a pixel on foot, taking into account the 
181 various landscape characteristics present within that pixel [36]. Creating a friction surface requires two 
182 interdependent elements: (1) an equation that quantifies the relationship between one or more 
183 landscape characteristics and travel rates; and (2) spatial representations of those landscape 
184 characteristics. Historically, terrain slope has been the most common (and often the sole) variable for 
185 defining friction [37]. This is likely attributable to the facts that DTMs, from which slope can be derived, 
186 are widely available, and the slope-travel rate relationship has been well-studied. Tobler’s hiking 
187 function, for example, can be easily applied to a slope map to create a friction surface [38].
188
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189 Slope, although certainly important, is not the only landscape characteristic that inhibits pedestrian 
190 mobility. Particularly in the environments where wildland firefighters work, there are at least two other 
191 variables that must be considered [12,39,40]. The first of these is vegetation density, particularly that 
192 within the vertical range occupied by the human body, which plays a major role in reducing travel rates. 
193 Lidar is ideally suited to quantifying height range-specific vegetation density. Even under a forest 
194 canopy, narrow laser pulses can exploit small canopy gaps, penetrating through to vegetation in the 
195 understory and yielding point cloud measurements that capture the structure of low-lying vegetation. 
196 Dividing the number of lidar points that fall within a particular height range by the number of points that 
197 fall within and below that range produces an estimate of the proportion of lidar pulse energy absorbed 
198 in that height range. This metric, referred to as normalized relative point density (NRD), acts as a useful 
199 proxy for vegetation density, and has been shown to relate directly to travel rates [12,41].
200
201 Secondly, the roughness of unimproved (i.e., off-trail) or partially improved (i.e., hiking trail or 
202 containment line) ground surfaces can also act to hinder efficient movement. Roughness represents 
203 local-scale deviations (i.e., pits and bumps) from the broader-scale undulations in the terrain surface 
204 [42]. Lidar stands alone in its ability to produce DTMs at a high-enough resolution to quantify this 
205 microtopography. Indeed, lidar-derived surface roughness has been demonstrated to be a significant 
206 predictor of pedestrian travel rates [12,41].
207
208 The recently introduced Simulating Travel Rates In Diverse Environments (STRIDE) model enables the 
209 accurate prediction of travel rates using lidar-derived slope, vegetation density, and ground surface 
210 roughness estimates [41]. In so doing, it represents a viable and relevant solution for generating friction 
211 surfaces for ERI calculation. STRIDE is formulated as follows (Eq. 1):
212

𝑡 =

𝛽3( 1

𝜋𝛽2(1 + (𝑠 ― 𝛽1
𝛽2 )2))

1 + 𝛽4𝑑 + 𝛽5𝑟

(1)

213
214 where 𝑡 is travel rate in m/s, 𝑠 is terrain slope in degrees, 𝑑 is vegetation density approximated by NRD 
215 (unitless ratio), 𝑟 is ground surface roughness in m, and 𝛽1, …, 𝛽5 are model coefficients empirically 
216 determined by Campbell et al. (2024). 
217
218 Beyond these three landscape variables, which affect movement on a continuous basis, it is useful to 
219 consider barriers, through which pedestrian travel is prohibited. These can include features such as 
220 waterbodies, buildings, and impassibly steep slopes. If generated in real or near-real time on a fire 
221 incident, then the fire perimeter (and perhaps some buffer around it to account for potential spread) 
222 could also be considered a barrier [20].
223
224 Like VI, ERI is a focal measure, computed on a per-pixel basis, but dependent upon friction surface data 
225 within a surrounding neighborhood. Unlike VI, whose neighborhood is defined by a viewing distance, 
226 ERI’s neighborhood is defined by a travel time, representing a simulated evacuation time frame (e.g., 10 
227 minutes). To map ERI across an entire study area of interest, then, each pixel in that area represents a 
228 potential evacuation starting point (i.e., a fire crew’s position on the landscape at any given time) (Figure 
229 3). Total accumulated travel time radiating outward from that starting point is computed according to 
230 the friction surface and a least-cost path algorithm that minimizes travel time to each sequentially 
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231 adjacent pixel. This accumulation process is terminated when the target travel time is reached, yielding 
232 an isochrone that represents the distance one can travel, in all directions, from the starting point within 
233 the defined evacuation time frame. A separate isochrone, representing the distance one could travel 
234 under ideal landscape conditions (i.e., the maximum travel rate possible with the STRIDE model) is also 
235 computed. The mean of linear distances between the starting point and the “actual” isochrone (that 
236 takes STRIDE-based friction into account), and that between the starting point and the “optimal” 
237 isochrone (that maximizes STRIDE-based travel rates) yields the ERI. This process is repeated for every 
238 pixel on the landscape, yielding a map that represents proportional mobility, given surrounding 
239 conditions, within a simulated evacuation time frame.
240

241
242 Figure 3. A visual summary of the Escape Route Index (ERI) workflow. First, a travel rate model is defined; in our study, we have 
243 defined this with the Simulating Travel Rates In Diverse Environments (STRIDE) model, which accounts for slope, vegetation 
244 density, and ground surface roughness in estimating travel rates. Second, these three landscape variables are mapped using 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5237340

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



245 airborne lidar. Third, barrier maps are generated, representing impassible landscape features. Fourth, a transition matrix is 
246 generated by calculating the travel rate between all adjacent pixels in the study area. Lastly, from each cell in the study area, 
247 the mean distance to a 10-minute evacuation isochrone is divided by the optimal distance one could travel in the absence of 
248 landscape impediments, yielding per-pixel ERI.
249
250 2.1.3. Proportional Safe Separation Distance (pSSD)
251 The current method for calculating SSD – the minimum distance needed to avoid burn injury – is based 
252 on two heat transfer mechanisms: radiation and convection. The radiation component is addressed 
253 using a simple rule of thumb, where SSD is equal to or greater than eight times the height of nearby 
254 vegetation. This is based on the work of Butler and Cohen (1998), who determined that SSD should be 
255 equal to or greater than four times the height of nearby flames [22]. Given that safety zones should be 
256 evaluated pre-fire (i.e., before flame heights can be directly visually assessed), a simple assumption that, 
257 in a crown fire, flame heights will be approximately twice vegetation height yields the eight times 
258 vegetation height guideline.
259
260 However, in the presence of steep slopes, high winds, and under more intense burning conditions driven 
261 by heavy fuel loads, exceedingly dry fuels, and/or low relative humidity, convective heat can significantly 
262 increase SSD. To account for this, the work of Frankman et al. (2012), Gallacher et al. (2018), Butler et al. 
263 (2019) and others have yielded multiplicative factors, often represented by Δ, that should be multiplied 
264 by the radiative eight times vegetation height to yield a safer and more realistic SSD (Eq. 2; Table 1) [43–
265 45]:
266

𝑆𝑆𝐷 = 8 × ℎ × ∆ (2)
267
268 where ℎ is vegetation height in m, and ∆ is a multiplicative factor from Table 1.
269
270 Table 1. Multiplicative factors (Δ) to be used in Eq. 2 for accounting for the effects of convective heat transfer under varying fuel, 
271 weather, and topography conditions [46].

Slope (%)Wind Speed 
(m/s)

Burning 
Conditions Flat (0-25) Moderate (25-45) Steep (>45)

Low 1 1 2
Moderate 1 1 2Light

(0-4.5)
Extreme 1 2 3

Low 1.5 3 4
Moderate 2 4 5Moderate

(4.5-8.9)
Extreme 2.5 5 5

Low 3 4 6
Moderate 3 5 7High

(>8.9)
Extreme 4 5 10

272
273 To map pSSD in two dimensions requires first that SSD is mapped on a per-pixel basis. Two of the four 
274 variables that contribute to SSD estimation (vegetation height and terrain slope) are static, and can be 
275 readily mapped at pixel scales using lidar data. The other two (wind speed and burning condition) are 
276 dynamic, and thus cannot be reflected in a singular, static geospatial metric. However, a Δ parameter 
277 based on wind speed and burning condition can be used to scale per-pixel SSD according to expected 
278 fire conditions [11].
279
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280 Mapping pSSD also requires the identification of a vegetation height threshold. Pixels with vegetation 
281 height below this threshold can serve as a safety zone. Areas entirely devoid of fuel are ideal for safety 
282 zones, but may not exist in sufficient abundance to be useful. Therefore, including areas with short (e.g., 
283 <1m) vegetation that could either be cleared mechanically or burned out will yield a more inclusive, and 
284 ideally more realistic, set of potential safety zones.
285
286 Once SSD is mapped on a per-pixel basis with a fixed set of wind speed and burning condition 
287 parameters, pSSD can be mapped within the areas defined as being potential safety zones (below the 
288 aforementioned vegetation height threshold). This is done using Eq. 3:
289

𝑝𝑆𝑆𝐷𝑖 = min
𝑗 ∈ 𝑃 ( 𝑑𝑖𝑗

𝑆𝑆𝐷𝑗) (3)

290
291 where 𝑝𝑆𝑆𝐷𝑖 is the pSSD for one pixel 𝑖 that falls within a potential safety zone, 𝑑𝑖𝑗 is the Euclidean 
292 distance between pixel 𝑖 and pixel 𝑗, 𝑆𝑆𝐷𝑗 is the SSD for pixel 𝑗, and 𝑗 belongs to a set of pixels 𝑃, which 
293 encompass all pixels in a study area outside of the potential safety zone (i.e., taller vegetation pixels that 
294 contribute to pSSD calculation). Pixels with a pSSD value over one are expected to have sufficient 
295 distance from burning vegetation to minimize harmful radiant and convective heat exposure. As pSSD 
296 decreases from one, the potential for threatening heat exposure increases. In any case, pSSD should be 
297 maximized when assessing safety zone suitability.  
298
299 To run a pSSD calculation iteratively for every pixel in a study area would be very time-consuming, even 
300 with parallelization. One way to substantially reduce processing time is to bin the SSD values into classes 
301 (e.g., 0-10m, 10-20m, etc.), iterate through the groups of pixels belonging to those classes, map 
302 Euclidean distance from those pixel groups, and divide by the midpoint of the bin range (e.g., 5m, 15m, 
303 etc.). 
304
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305  
306 Figure 4. A visual summary of the proportional safe separation distance (pSSD) workflow. First, vegetation height and terrain 
307 slope maps are derived from airborne lidar data. Second, wind speed and burning condition are parameterized. Third, these four 
308 inputs are used, along with the multiplicative factor (Δ) matrix to map safe separation distance (SSD) on a per-pixel basis. 
309 Fourth, potential safety zones are identified, based on a vegetation height threshold. Fifth, SSD is reclassified and separated into 
310 a series of individual SSD maps. Fifth, pSSD is mapped from each class-specific SSD map by dividing Euclidean distance from 
311 pixels belonging to the SSD class by the SSD value. Lastly, the per-pixel minimum among all class-specific pSSD maps is computed 
312 to yield the final pSSD map, representing the degree to which pixels are or are not far enough from nearby fuel to avoid burn 
313 injury.
314
315 Firefighter safety will be maximized in areas with high pSSD, ERI, and VI. Low values of any one of these 
316 metrics can indicate compromised firefighter safety. 
317
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318 2.2. GeoLCES Demonstration
319 2.2.1. Data and Study Area
320 To demonstrate the application of GeoLCES on a scale that would be useful for operational fire 
321 management purposes, we selected Gila National Forest in New Mexico, USA as a study area. The Gila 
322 National Forest is well-suited for demonstrative purposes for a variety of reasons, including its fire-
323 prone nature, diversity of terrain conditions and fuel types, large size, and the free, forest-wide 
324 availability of recent airborne lidar data. Situated in the southwestern portion of New Mexico, the 
325 National Forest encompasses 13,716 km2 in area, making it the 12th largest National Forest in the 
326 contiguous US. The Forest contains a large elevation range (1,264 – 3,318m), which drives large annual 
327 mean temperature (4 – 15°C) and precipitation (298 – 1089mm) gradients. The dominant vegetation 
328 types tend to follow these environmental gradients, with lower, warmer, and drier areas being 
329 dominated by sparse, xeric grasslands and shrublands, transitioning to denser chaparral and encinal 
330 shrub-woodland mixtures, dry conifer woodlands and parklands, and more mesic mixed coniferous-
331 deciduous forests at the highest elevations, with montane shrublands and meadows interspersed 
332 throughout. According to USDA Forest Service Forest Inventory and Analysis (FIA) data, the most 
333 common tree species found in Gila National Forest is Ponderosa pine (Pinus ponderosa; 22% of recorded 
334 trees in the FIA database), followed by common piñon (Pinus edulis; 22%), alligator juniper (Juniperus 
335 deppeana; 14%), Gambel oak (Quercus gambelii; 11%), Arizona white oak (Quercus arizonica; 6%), 
336 Douglas-fir (Pseudotsuga menziesii; 6%), gray oak (Quercus grisea; 6%), oneseed juniper (Juniperus 
337 monosperma; 2%), silverleaf oak (Quercus hypoleucoides; 2%), and white fir (Abies concolor; 2%) [47].
338
339 The primary data source needed to successfully demonstrate GeoLCES was airborne lidar data. We 
340 acquired lidar data covering Gila National Forest from the United States Geological Survey (USGS) 3D 
341 Elevation Program (3DEP) (Table 2) [48]. To account for the fact that ERI and VI are focal measures, we 
342 buffered Gila National Forest’s administrative boundary by 1km, and downloaded every tile of lidar data 
343 available within that buffered area. In all, that comprised data 7,171 tiles of data from seven different 
344 3DEP datasets (referred to as “work units”, representing individual airborne campaigns). With the 
345 exception of the proportionally small AZ_USFS_3DEP_Processing_2019 dataset which was collected in 
346 2013-2014, the data were collected between 2018-11-20 and 2019-06-06. The mean pulse density, 
347 weighted by work unit area, among all of the lidar datasets used in this study was 4.55 pulses/m2, which 
348 yielded an average weighted point density of 6.50 points/m2. In all, these data contained over 102 billion 
349 lidar points, occupying over 4 TB of disk storage, even with the highly compressed LAZ file format. 
350
351 Table 2. Airborne lidar datasets acquired and processed for the demonstration of GeoLCES within Gila National Forest.

Work Unit Start Date End Date
Tile 

Count
Area 

(km2)

Point 
Density 

(pts/m2)

Pulse 
Density 

(pls/m2)
AZ_USFS_3DEP_Processing_2019 2013-08-24 2014-10-12 97 74 21.33 16.58
NM_SouthCentral_B10_2018 2019-04-18 2019-06-06 1,156 2,601 5.50 3.37
NM_SouthCentral_B2_2018 2018-11-21 2019-02-01 236 531 6.43 6.15
NM_SouthCentral_B3_2018 2018-11-20 2019-05-27 1,152 2,545 7.39 4.92
NM_SouthCentral_B5_2018 2018-12-30 2019-05-30 144 324 7.03 5.02
NM_SouthCentral_B7_2018 2018-12-04 2019-05-26 210 457 4.86 3.38
NM_SouthCentral_B8_2018 2018-11-20 2019-06-06 4,126 9,208 6.49 4.63

352
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353 All lidar data processing took place in R v4.4.1 using the lidR package v4.1.2 [49,50]. Processing was 
354 done first at the level of the individual lidar tile, then mosaicked to the level of the work unit (Table 2), 
355 which was, in turn, mosaicked across the entire study area. If reprojection was needed (as work units 
356 are delivered with different coordinate reference systems), bilinear resampling was employed. Prior to 
357 any lidar processing (Section 2.2.2), points flagged as withheld or classified as noise were removed from 
358 consideration. 
359
360 VI and pSSD are solely dependent upon lidar data; however, ERI can benefit from the inclusion of 
361 barriers supplied by additional datasets. For this study, we also acquired hydrography data from the 
362 National Hydrography Dataset and Microsoft building footprints, both of which were used to map 
363 impassible landscape features when simulating pedestrian travel (the process for which is described in 
364 Section 2.2.2) [51,52].
365
366 2.2.2. GeoLCES Metric Mapping and Analysis
367 To map VI across the entire study area at a 30m resolution, we used VisiMod v2.0 in R (Figure 2) 
368 [34,35,50]. VisiMod requires a DTM, representing terrain elevations on a per-pixel basis, and a DSM, 
369 representing terrain plus aboveground feature height. We generated the DTM and DSM at 1m-
370 resolution from the airborne lidar. The DTM was created using triangulated irregular network-based 
371 interpolation of lidar points classified as ground returns (rasterize_terrain() function in lidR, with the 
372 tin() algorithm). The DSM was generated using the pitfree() algorithm in the rasterize_canopy() function. 
373 VisiMod’s main parameters include: (1) the number of points used to train and validate the random 
374 forest VI prediction model (we selected 10,000); (2) the distance (viewing radius) within which to model 
375 VI (we selected 1km); (3) the aggregation factor, representing a multiplier that defines the resolution of 
376 the predictor variables and output VI map (we selected 30); and (4) whether VI is omnidirectional or 
377 directionally specific (we selected omnidirectional, i.e., 360° field of view). We tuned the VisiMod 
378 random forest model’s hyperparameters (as implemented in the ranger v0.16.0 package in R) using the 
379 model-based optimization provided in the tuneRanger v0.7 package [53,54]. We assessed the 
380 performance of the model using a spatial 10-fold cross-validation, where Gila National Forest was first 
381 subdivided into 10 evenly sized polygons split along the north-south axis. Iteratively, points that fell 
382 within each fold polygon were set aside for validation as points from the other nine-fold polygons were 
383 used to train a model. Each trained model was applied to the prediction of VI for points in its respective 
384 validation fold, the compilation of which yielded 10,000 predicted versus observed VI values, which we 
385 used to quantify R2, RMSE, and bias. A final random forest model was also built using all 10,000 
386 observations as training data, which was used to map VI across the entire study area.
387
388 To map ERI study area-wide, we generated several input variables using the terra v1.8.5 and lidR 
389 packages in R, each mapped within a 1km buffered area around Gila National Forest’s boundary at 30m 
390 spatial resolution (Figure 3) [49,50,55]. Given that we were relying on the STRIDE model (Eq. 1) as the 
391 primary basis of assessing landscape friction, we needed three lidar-derived inputs: (1) a DTM, which 
392 served as the basis for directionally specific slope calculation; (2) an NRD raster, which represented 
393 vegetation density; and (3) a ground surface roughness raster. The DTM was simply generated through 
394 the mean aggregation of our lidar-derived 1m-resolution DTM to 30m. The NRD raster was computed as 
395 the number of lidar points within the aboveground height range of 0.5 – 1.5m divided by the number of 
396 points 1.5m and below within each 30m pixel in the study area. The roughness raster was calculated as 
397 the 30m aggregate mean of the absolute difference between a 1m DTM and a DTM smoothed using a 
398 2m-radius circular focal mean. We also generated three 30m “barrier” rasters, representing impassible 
399 landscape features. The first represented areas with slopes steeper than 45°, derived from the 30m 
400 DTM. The second represented impassible waterbodies, which we derived from National Hydrography 
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401 Dataset waterbodies and area features[51]. The third represented built structures, which we derived 
402 from the Microsoft Building Footprints dataset [52].
403
404 Using these friction and barrier surfaces, we created a transition matrix using the R package gdistance 
405 v1.6.4, which quantifies the conductance between every adjacent 30m cell, in eight directions, 
406 throughout the study area [56]. We used the STRIDE model (Eq. 1) as the basis for computing pixel-to-
407 pixel conductance, with coefficients from Campbell et al. (2024)’s model based on an NRD height range 
408 of 0.5 – 1.5m (𝛽1 = -2.196; 𝛽2 = 25.453; 𝛽3 = 143.410; 𝛽4 = 4.502; 𝛽5 = 15.868) [41]. Using this transition 
409 matrix, we generated per-pixel 10-minute travel time isochrones radiating outward from every 30m 
410 pixel in the study area. The mean distance from the center origin pixel to the isochrone pixels was 
411 divided by 1076 m, yielding the per-pixel ERI values. This number came from the optimization of Eq. 1, 
412 yielding the idealized travel rate of 1.79 m/s, where slope is slightly downhill (-2.2°), and vegetation 
413 density and roughness are both set to 0.
414
415 To map pSSD at 30m resolution study area-wide, we first needed to map vegetation height (Figure 4). 
416 We did this by differencing the lidar-derived, 1m resolution DTM and DSM datasets, yielding a 1m 
417 resolution canopy height model. To aggregate to 30m, we took the 95th percentile canopy height within 
418 each 30x30 pixel area. We opted for the 95th as it minimized the potential noise that might be inherent 
419 to using the maximum value, while still trying to capture the height of the tallest vegetation within each 
420 aggregation area. Pixels with a 95th percentile vegetation height less than 1m were considered to be 
421 potential safety zones (within which pSSD was to be mapped), whereas pixels greater than or equal to 
422 1m were considered heat sources (from which SSD was to be calculated). We mapped slope at 30m 
423 resolution from the previously generated 30m DTM. With slope and vegetation height mapped, we 
424 needed to select wind speed and burning condition classes to use as the basis of GeoLCES 
425 demonstration. For GeoLCES demonstrative purposes, we chose moderate wind speed (4.5 – 8.9 m/s) 
426 and moderate burning condition (Table 1). SSD was computed for every pixel according to Eq. 2, yielding 
427 a per-pixel representation of the distance one would need to maintain from each pixel to avoid burn 
428 injury. To map pSSD, we reclassified the SSD values by rounding to the nearest 10, iterated through each 
429 class, and computed pSSD from pixels belonging to that class using Eq. 3. The minimum among all 
430 resulting pSSD rasters within the potential safety zones was calculated on a per-pixel basis, representing 
431 the final pSSD map.
432
433 Once all three GeoLCES metrics were mapped study area-wide, we analyzed them in a few different 
434 ways. First, to understand the relationship between inputs and outputs, we compared ERI, VI, and pSSD 
435 qualitatively and visually to a selection of their primary input datasets, including elevation, canopy 
436 height, and vegetation density (as approximated by NRD). Second, we compared the three metrics to 
437 one another on a per-pixel basis to assess how correlated they might be to one another. Third, to 
438 understand vegetation type-level differences in them, we compared the three metrics to the 2020 
439 LANDFIRE Existing Vegetation Type, including analyses of variance that sought to determine what 
440 proportion of each metric’s variance could be explained by vegetation type alone [57]. 
441
442 2.2.3. Visualization and Interpretation
443 As one of the primary objectives of this research is to unite three separate spatial metrics to facilitate a 
444 simultaneous, holistic, and multivariate evaluation of firefighter safety, we needed to devise a strategic 
445 visualization approach that could be used to represent GeoLCES graphically. To this end, we leveraged 
446 the three display channels of color imagery: red, green, and blue. Specifically, we assigned ERI to the red 
447 channel, VI to the green channel, and pSSD to the blue channel (Figure 5). Thus, the brightness levels of 
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448 these individual display channels correspond to the magnitude of pixel values in each of the three 
449 firefighter safety metrics. The benefit of this visualization approach is that the unique color 
450 combinations that emerge can provide useful insights into the spatial dimensions of all three metrics at 
451 once (Table 3). The drawback of this approach is that users with some form of color vision limitation 
452 may not be able to discern different hues and associate those hues with their fire management 
453 implications. To address this limitation, we also generated visualizations of the three metrics individually 
454 using accessible color schemes.
455

456
457 Figure 5. Three-dimensional representation of the three GeoLCES metrics displayed as brightness levels along red (escape route 
458 index; ERI), green (visibility index; VI), and blue (proportional safe separation distance; pSSD) axes. Where the three values are 
459 mapped as having values approaching or equal to zero, these areas may represent high hazard areas for wildland firefighters 
460 (left). Where the three values are high, these areas may be comparably low hazard (right).
461
462 Table 3. A selection of colors that can result from displaying the three GeoLCES metrics through the red, green, and blue (RGB) 
463 display channels of a color image, including the relative magnitude of each metric that would yield the color, and the possible 
464 fire management interpretation of the color. Note that the relative terms “high” and “low” are used in lieu of exact values for 
465 the three GeoLCES metrics, as end users can determine what thresholds are relevant for their focal landscape and fire regime.

Color ERI 
(R)

VI 
(G)

pSSD 
(B) Interpretation

Black Low Low Low
Low egress, visibility, and fuel separation gives these areas the 
highest hazard potential, making them unsuitable for any 
firefighting activities

White High High High
High egress, high visibility, and fuel separation gives these areas 
the lowest hazard potential, making them suitable for all 
firefighting activities

Red High Low Low

High egress, but low visibility and fuel separation means these 
areas may be suitable for a ground crew to be located; however, 
it would be essential that they are within a close proximity to an 
area with high pSSD (for safety zone access) and in close 
communication with a lookout with high VI (to provide situational 
awareness by proxy).

Green Low High Low High visibility, but low egress and fuel separation means these 
areas may be suitable for placement of a lookout; however, this 
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lookout would need to be far removed from the active fire, as 
their ability to evacuate may be limited, and they are too close to 
nearby fuels.

Blue Low Low High

High fuel separation, but low egress and visibility means these 
areas may be suitable for safety zones; however, their limited 
mobility may limit their accessibility and increase risk of injury. If 
selected for use as a safety zone, these areas would benefit from 
close communication with a lookout who has high visibility to 
understand proximal changes in fire behavior.

Cyan Low High High

High visibility and fuel separation, but low egress means these 
areas may be suitable for safety zones, but may pose safety risks 
due to the presence of terrain features (e.g., scree fields, steep 
alpine areas, etc.) that inhibit within-safety zone mobility.

Magenta High Low High

High egress and fuel separation, but low visibility means these 
areas may be suitable for most fire management activities; 
however, it would be essential to maintain active communication 
with a lookout who can provide situational awareness by proxy, 
given the crews’ potentially limited landscape visibility.

Yellow High High Low

High egress and visibility, but low fuel separation means these 
areas may be suitable for a ground crew to engage in direct or 
indirect attack; however, it is important that they are sufficiently 
close to a safety zone with high fuel separation that could serve 
as an evacuation destination.

466
467 2.2.4. Operational Use-Case Demonstration
468 To provide an example of how GeoLCES could be used in a specific operational context, we acquired 
469 National Interagency Fire Center (NIFC) incident data from a fire that occurred within the study area in 
470 2021. The Doagy Fire burned 51.7km2 between 14 May 2021 and 3 June 2021. We selected this fire for 
471 its data availability and its occurrence the year after most of our study area’s lidar data were flown, 
472 making our GeoLCES maps representative of pre-fire conditions. Using the fire’s final containment line, 
473 divided into three divisions by division break point data, we extracted ERI pixel values to quantify 
474 proportional mobility at point locations every 30m along the line. To quantify proportional visibility both 
475 along the line and within a distance of the line where a lookout might be situated, we computed 
476 maximum VI within a 500m buffer of the same set of point locations. We also thresholded the pSSD map 
477 to pixels greater than or equal to 1, representing potentially viable safety zones, and calculated 
478 Euclidean distance to the nearest safety zone for each point along the containment lines as well. We 
479 demonstrated how, with these three pieces of information, firefighters could make informed 
480 management decisions by understanding the hazard potential of their containment lines. For example, 
481 areas with high mobility, visibility, and proximity to a safety zone may be most appropriate to send a 
482 hand crew, whereas areas with opposing and potentially dangerous conditions could be avoided by 
483 ground personnel, or additional safety measures put in place.

484 3. Results
485 The VisiMod model for predicting VI performed well, with 71% of variance in observed VI being 
486 explained by the model (Figure 6). Furthermore, the model featured very low prediction error (RMSE = 
487 0.02). As is often the case with machine learning models, an ordinary least squares regression between 
488 predictions and observations yielded a trendline suggesting the model tended to underestimate high 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5237340

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



489 values. However, across the full range of observations, the mean bias was effectively zero, suggesting a 
490 balance of over- and underestimation. Observed VI was generally quite low, featuring a heavily 
491 positively skewed distribution, with relatively few areas featuring VI greater than 0.2 (or 20%). In this 
492 mountainous and heavily vegetated study area, these results suggest that it is rare to be able see more 
493 than 20% of one’s surroundings within a viewing radius of 1km.  

494
495 Figure 6. Predicted (y) versus observed (x) visibility index (VI) derived from VisiMod. The predictions and observations are derived 
496 from a 10-fold spatial cross-validation procedure where the study area was split into 10 evenly sized subset areas and, 
497 iteratively, points that fell within each subset area/fold were set aside for validation while the remainder were used to train a 
498 model. To facilitate visual interpretation, the point values were converted to density and displayed using a log scale.
499
500 Figures 7 and 8 depict the three GeoLCES metrics mapped across the study area at 30m spatial 
501 resolution, with the former leveraging the three-band RGB image compositing approach described in 
502 Figure 5 and Table 3, and the latter conveying the metrics separately to facilitate interpretation for 
503 those with color vision limitations. There are very clear spatial patterns of areas that promote or hinder 
504 wildland firefighter safety. In the RGB visualization, pixels that appear white or nearly so represent the 
505 best-case scenario from a safety perspective, with high egress, visibility, and fuel separation. The 
506 northern half of the study area features more of these safe areas than the southern half. Focus Area 1 
507 highlights one such example, which could serve as a potential safety zone for wildland firefighters, given 
508 the large fuel separation, ease of pedestrian travel, and high visibility (Figures 7 and 8). This area 
509 appears to be a large herbaceous area surrounded by forests, containing flat slopes, and short, sparse 
510 vegetation – ideal conditions for promoting firefighter safety (Figure 9).
511
512 The rugged Mogollon Mountains and Black Range in the southern portion of the study area tend to yield 
513 higher-hazard conditions, with generally steeper slopes and denser, taller vegetation limiting both 
514 mobility and fuel separation. One example of this can be found in Focus Area 2, which is centered by 
515 Mogollon Canyon, a steep and rocky canyon that features very dense vegetation (Figure 9). Despite the 
516 low mobility and fuel separation, Focus Area 2 features a relatively high degree of visibility. This is 
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517 attributable to the abundance of high-relief areas (e.g., canyon rim, knife ridges, cliffs), atop which one 
518 could maintain a high degree of visibility; however, their inaccessibility may limit their utility as useful 
519 lookout points. Focus Area 3 features an interesting mix of firefighter safety conditions, with cyan pixels 
520 suggesting a relatively high degree of visibility and fuel separation and a relatively low degree of 
521 mobility. This combination results from the low-stature but very dense vegetation in the chaparral 
522 shrubland vegetation found in this area. The vegetation is short enough to facilitate visibility and require 
523 relatively short SSDs, but dense in the height range most pertinent to pedestrian movement, reducing 
524 the ERI.
525

526
527 Figure 7. Results map illustrated using the three-band red-green-blue (RGB) color image visualization approach, where the 
528 escape route index (ERI) is displayed through the red channel, the visibility index (VI) is displayed through the green channel, and 
529 the proportional safe separation distance (pSSD) is displayed through the blue channel. The two RGB cube legends in the top 
530 right provide the ability to interpret the magnitudes of the three metrics that produce specific colors on the map. Three focus 
531 areas are shown as inset maps to highlight noteworthy metric combinations.
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532

533
534 Figure 8. Separate GeoLCES metric result maps conveyed with accessible color schemes, including: (A) escape route index (ERI); 
535 (B) visibility index (VI); and (C) proportional safe separation distance (pSSD). The same three focus areas shown in Figure 7 are 
536 shown here to facilitate direct comparison. 
537
538

539
540 Figure 9. Three landscape metrics that served as important inputs to, and can help facilitate the understanding of, the three 
541 GeoLCES metrics, including: (A) elevation; (B) canopy height; and (C) vegetation density (as approximated by lidar normalized 
542 relative density, NRD). The same three focus areas shown in Figures 7 and 8 are shown here to enable comparisons.
543
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544 Spatially, VI and pSSD appeared to be highly correlated (Figures 7 and 8). A per-pixel, study area-wide 
545 quantitative comparison of the three metrics confirmed this qualitative assessment (Figure 10). Indeed, 
546 VI and pSSD featured a Pearson’s correlation (r) of 0.75, demonstrating a clear positive trend between 
547 the two metrics. This correlation makes intuitive sense – areas that featured high pSSD (i.e., potential 
548 safety zones) tended to be large, open areas that contained short and/or sparse vegetation. Naturally, 
549 these areas also featured a higher degree of visibility, particularly given that VI in this study was 
550 calculated within a viewing radius of 1km. Furthermore, both VI and pSSD featured highly positively 
551 skewed distributions – pSSD more so than VI – with relatively few pixels featuring high index values and 
552 the vast majority being at or near zero. Given that this analysis was conducted within a National Forest, 
553 where the majority of the landscape was vegetated and much of it forested, both visibility and fuel 
554 separation, on average, tend to be quite low. This highlights the value of mapping these metrics in 
555 advance of a fire, to be able to identify the relatively rare portions of the landscape where visibility and 
556 fuel separation are high.

557
558 Figure 10. Pairs plot displaying univariate and bivariate distributions of the three GeoLCES variables: escape route index (ERI), 
559 visibility index (VI), and proportional safe separation distance (pSSD). The bivariate distributions are displayed according to the 
560 number of pixels that fell within binned values of the paired variables. The bin resolution for each plot was 200x200. For clarity, 
561 given the highly skewed distributions that resulted, the pixel count was clamped to a maximum of 10,000 and displayed using a 
562 log scale.
563
564 ERI featured a much more normal distribution, with a mean value of approximately 0.55, suggesting 
565 that, on average, traveling through the study area was approximately half as efficient as traveling in an 
566 idealized landscape with minimal friction. ERI and pSSD were somewhat correlated (r = 0.31), though 
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567 considerably less so than VI and pSSD. The highest ERI areas (i.e., those that promoted a high degree of 
568 pedestrian mobility) also tended to be the highest pSSD areas (i.e., those that had high fuel separation). 
569 Indeed, these areas likely represent ideal safety zones, given their provision of SSD and ease of 
570 movement within. ERI and VI were the least correlated among the three metrics (r = 0.13). As with pSSD, 
571 areas that had high ERI (>0.6) were most likely to also feature high VI – these are likely the same safety 
572 zone-suitable areas just discussed. However, there are many areas that have relatively high VI with 
573 relatively low ERI and relatively low VI with relatively high ERI. With respect to the former cases, these 
574 could be cliffs, steep mountain peaks and ridges, where foot travel is limited, but visibility is generally 
575 high. With respect to the latter cases, there are many vegetation types within this study area where 
576 visibility is low, due to the presence of tall trees, but mobility is high, due to the sparseness of 
577 understory vegetation. One example of this is ponderosa pine forests, which are abundant throughout 
578 this study area and feature tall canopies but often feature open, grassy understory areas that are easily 
579 traversed on foot. Taken together, the fact that these metrics are at least somewhat correlated points 
580 towards opportunities for identification of areas that are generally better or worse for promoting 
581 firefighter safety. Simultaneously, the variance left unexplained in these correlations speaks to the 
582 individual value each metric provides.
583
584 An examination of the dominant vegetation types provided valuable insight into the spatial distribution 
585 of the GeoLCES metrics (Figure 11). Separate analyses of variance aimed at modeling each of the three 
586 GeoLCES metrics as a function of vegetation type revealed that 20% of variance in ERI, 45% of variance 
587 in VI, and 33% of variance in pSSD could be explained by vegetation type alone. We attribute ERI being 
588 the least explainable by vegetation type to the inherent variability in terrain and vegetation density 
589 within vegetation types. For example, a dense piñon-juniper woodland and a sparse piñon-juniper 
590 woodland, although mapped as belonging to the same vegetation type based on species dominance, will 
591 feature significantly different mobility levels. By comparison, vegetation type was able to account for a 
592 higher proportion of variance in VI and pSSD. Especially with respect to pSSD, there were only a few 
593 vegetation types that featured relatively high pSSD, all of which were grassland, shrubland, or non-
594 vegetated. All of the tree-dominated vegetation types had near-zero pSSD values, given the fact that 
595 they are dominantly considered heat sources in our study, rather than potential safety zones.
596
597 VI had similar relationships to vegetation type as pSSD, with a few exceptions. Whereas pSSD was near 
598 zero in Madrean Encinal, Mogollon chaparral, and Rocky Mountain Gambel oak-mixed montane 
599 shrubland, VI had somewhat higher values in these vegetation types. All three of them feature mixtures 
600 of grasses, shrubs, and short-stature woodland trees, whose height may have been tall enough to 
601 necessitate a moderate fuel separation (low pSSD), but perhaps short enough to retain a useful degree 
602 of visibility over the top of the canopy. Southern Rocky Mountain ponderosa pine woodland, despite 
603 yielding low VI and pSSD, was the highest-mobility forest or woodland type. These forests can have tall 
604 trees, both making them inadequate for safety zones and impeding visibility, but they also have open 
605 understories, facilitating efficient pedestrian travel. Conversely, North American warm desert bedrock 
606 cliff and outcrop tended to have somewhat higher VI, given the lack of vegetation and potential for 
607 providing localized high points with large viewsheds, but lower ERI, given the terrain roughness that 
608 they feature.
609
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610
611 Figure 11. Comparison between the three GeoLCES metrics and 2020 LANDFIRE Existing Vegetation Type data. The three 
612 boxplots on the left represent the distribution of GeoLCES pixel values grouped by the 15 most abundant vegetation types 
613 throughout the study area. Taken together, these vegetation types comprise 95% of the study area. The colors of the vegetation 
614 types in the box plots correspond to the colors on the map, ordered by the average GeoLCES metric values from lowest (left, red) 
615 to highest (right, purple).
616
617 The results of our use-case demonstration can be seen in Figure 12 and Table 4. Taken together, the 
618 51.7km2 Doagy Fire was encompassed by nearly 36km of containment line (Division A: 14km; Division W: 
619 11km; Division F: 11km). The average ERI along the containment line was 0.689 suggesting that, on 
620 average, one could evacuate with nearly 70% of optimal speed from positions along the containment 
621 line based on vegetation present before the line was established. The average VI was 0.084, meaning 
622 only 8.4% of one’s surroundings could be seen within a 1km radius, on average, along and immediately 
623 surrounding the containment line. Thus, while mobility may have been generally high, visibility was 
624 generally low. This is likely attributable to the piñon-juniper woodland vegetation, dominant throughout 
625 the fire area, where relatively widely spaced trees can promote efficient walking but low (2-5m) and 
626 dense canopies can limit local-scale visibility. There were two areas that had potentially viable safety 
627 zones, one in the northwest and one in the northeast, which were desert grassland-dominated, 
628 relatively flat areas.
629
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630 Breaking the results down by division, Division W had the best safety zone access and highest mobility, 
631 though the middle third of the containment line (~4-8km) featured limited visibility. If Division W hand 
632 crews were to be sent to this middle section of the containment line, it would be critical to have a well-
633 placed lookout providing them with visibility support. Division A was farthest, on average, from a safety 
634 zone, with portions of the line being over 6km from the nearest safety zone, though it is worth noting 
635 that firefighters often use already-burned (“black”) areas as safety zones, which would not be accounted 
636 for in these pre-fire data. Division A also had the lowest average visibility, possibly giving this division the 
637 highest hazard potential of the three. This is especially true towards the end of their containment line, 
638 where ERI was low, VI was generally less than 5%, and distance to safety zone was at a maximum. 
639 Armed with this information, a Division Supervisor might focus attention on whether Division A had 
640 sufficient safety zone access. Division F featured the highest average visibility, the lowest mobility, and a 
641 middling distance to the nearest safety zone. Much of Division F’s containment line fell within a narrow 
642 valley, which at once provides a good view of surrounding valley walls and mountains, but limits 
643 mobility. It had good access to a safety zone on the far end of its containment line, but the beginning of 
644 the line was over 5km from the nearest safety zone. However, although not shown in Figure 12, there 
645 was an area less than 1km from the Division F containment line that featured a pSSD of 0.86, meaning it 
646 provided 86% of SSD – nearly suitable for a safety zone. With mechanical or fire-induced manipulation 
647 of the fuels, that area could potentially have been modified to meet suitability requirements.
648
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649
650 Figure 12. Operational use-case demonstration of GeoLCES. (A) A map of the containment line, split into three divisions, 
651 surrounding the 2021 Doagy Fire that occurred within our study area. The map also shows potential safety zones, mapped as 
652 areas with pSSD ≥ 1. (B-D) Graphs that quantify ERI (top), VI (middle), and distance to the nearest safety zone (bottom) for each 
653 of the three division’s containment lines. The color of the lines in (B-D) correspond to the color of the lines in (A), with all 
654 representing distance along the lines, to facilitate direct visual comparison.
655
656 Table 4. Mean ERI, VI, and distance to the nearest safety zone (SZ) along each of the three divisions’ sections of the containment 
657 line, as well as the containment line as a whole.

Division Mean ERI Mean VI Mean Distance to SZ (km)
A 0.695 0.078 4.020
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F 0.628 0.088 3.321

W 0.743 0.087 1.409

All 0.689 0.084 3.005

658

659 4. Discussion
660 One of the most important decisions made by wildland fire incident managers is where to direct 
661 resources to best provide a safe and effective response. Indeed, “safe and effective response” was 
662 defined as the highest priority in the US National Cohesive Wildland Fire Management Strategy. With 
663 respect to the effectiveness component, firefighters must be placed strategically on the landscape so as 
664 to minimize fire spread towards homes, communities, and other values at risk. There are many datasets 
665 available to incident management personnel to help maximize fire response effectiveness, including 
666 potential operational delineations [58], suppression difficulty index [59,60], and potential control 
667 locations [61]. These datasets are among those provided by operational decision support tools such as 
668 the Wildland Fire Decision Support System (WFDSS) and the Risk Management Assistance (RMA) 
669 dashboard, and are widely used in the US fire management community to increase response 
670 effectiveness [62–64]. Although given equal or sometimes greater weight than effectiveness, the safety 
671 component of “safe and effective response” has fewer operational datasets to facilitate robust, spatially 
672 explicit evaluation of wildland firefighter safety. The Wildland Firefighter Estimated Ground Evacuation 
673 Time and Snag Hazard are two examples of widely used, safety-focused datasets, but are somewhat 
674 narrow in their scope, with the former being focused on travel time to hospitals and the latter focused 
675 on the likelihood of snag fall [65–67]. In this study, we have introduced GeoLCES: a new, multivariate set 
676 of spatial metrics designed to be analyzed in concert with one another to facilitate the pre-fire 
677 evaluation and implementation of one of the most important safety protocols employed by wildland 
678 firefighters. 
679
680 GeoLCES’s reliance on lidar is both a strength and a potential weakness. The strength lies in lidar’s 
681 unparalleled ability to map terrain and vegetation structure in a manner and with a resolution that is 
682 most pertinent to assessing firefighter safety. For example, ERI is heavily influenced by ground surface 
683 roughness, which is a measure only reliably attainable through the generation of a very high-resolution 
684 DTM. ERI also depends on vegetation density near the ground surface – another metric where lidar’s 
685 mapping capacity vastly exceeds that of other datasets. VI is derived from viewsheds, which are 
686 immensely more accurate and precise when based on high-resolution, lidar-derived DSMs. Similarly, 
687 pSSD is most strongly influenced by vegetation height, for which lidar is the gold standard data source of 
688 broad-scale measurement. The strengths of lidar in deriving incomparably accurate proxies for 
689 firefighter safety are clear. However, lidar – especially airborne lidar – is not available everywhere. 
690 Thanks to the USGS 3D Elevation Program, most of the contiguous US now has lidar data, but given the 
691 vegetation structural changes that occur in fire-prone portions of the country, much of the data – at 
692 least the portions of the data used for measuring vegetation structure – can quickly become outdated. 
693 Indeed, several major fires have even occurred within our study area in the time since the lidar data we 
694 used were flown, rendering our GeoLCES metrics inaccurate within recent fire extents.
695
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696 Although we used Gila National Forest as a case study, the primary objective of this study was not to 
697 map a static product that could be used in perpetuity. It was to introduce an analytical framework, 
698 describe it in sufficient methodological detail to facilitate replication, discuss the potential management 
699 implications of applying the framework, demonstrate its application on an operationally useful scale 
700 (i.e., a US National Forest), and provide a specific, operationally relevant use case example. Thus, the 
701 fact that fires have altered fuel structure since our study’s lidar data were flown does not substantively 
702 affect the work we have presented here. We designed GeoLCES to be broadly applicable and agnostic to 
703 a specific study area. All that is required for input is a lidar point cloud – be it one that is already in 
704 existence or one that could be specifically collected in a targeted manner at the scale of an individual 
705 incident to facilitate pre-fire decision support. The recent proliferation of lidar-equipped unoccupied 
706 aerial systems could be employed with minimal effort to map GeoLCES at a more local scale where there 
707 are no existing lidar data or those data are out of date.
708
709 In the complete absence of lidar data, it is possible that alternative, more widely available datasets 
710 could be used as substitutes. Our analyses of variance that compared GeoLCES metrics to LANDFIRE data 
711 clearly showed that vegetation type alone was able to explain a potentially useful amount of variance in 
712 at least VI, and to a lesser extent pSSD and ERI. Many of the metrics GeoLCES relies on (e.g., vegetation 
713 height, elevation, slope) are available on a US-wide or even global basis; however, they are produced at 
714 much coarser resolutions than that which GeoLCES currently relies on. Future work should seek to 
715 quantify the accuracy and management implication tradeoffs between GeoLCES versions produced with 
716 differing input datasets that vary in precision and spatiotemporal availability.
717
718 Each element of GeoLCES possesses its own uncertainty. VI, as mapped by VisiMod, is a modeled 
719 product, and thus has inherent error. Our demonstration of mapping VI in Gila National Forest yielded 
720 high predictive performance (Figure 6). However, individual pixel-level errors still persisted. We also 
721 utilized an omnidirectional VI to capture general situational awareness. In fighting fire, visibility in the 
722 direction of the fire may be of higher importance. Directional visibility can be modeled using VisiMod 
723 based on a given range of view angles [34]. Although we believe STRIDE represents the best-available 
724 and most relevant travel rate prediction model for assessing mobility in diverse environments, STRIDE 
725 was not developed with data from wildland firefighters. Given the above-average fitness and experience 
726 traversing complex landscapes on foot, firefighters likely move faster than the average individual. 
727 However, ERI being a proportional measure of mobility rather than an absolute measure of speed likely 
728 minimizes the effect of this limitation. pSSD is driven by the best-available fire physics and in situ 
729 measurements, but quantifying the spatial dimensions of heat exposure is constantly evolving as more 
730 data become available. The SSD calculation in Eq. 2 and the multiplicative factors in Table 2 are useful 
731 guidelines that err on the side of caution, but they may still change over time as the science evolves. 
732 Furthermore, it is common for firefighters to leverage areas that have already burned (“black”) as safety 
733 zones, which would not be accounted for in this pre-fire decision support dataset.
734
735 In light of these uncertainties, it is critically important to mention the fact that GeoLCES, like all other 
736 spatial decision support datasets, should not be accepted at face value without field validation. We do 
737 not propose GeoLCES as a replacement for the experience and intuition that firefighters bring to their 
738 own in situ safety evaluation. Instead, we propose it as a supplement thereto, aimed at increasing the 
739 efficiency, consistency, and reliability of their safety protocol implementation. But every element of 
740 GeoLCES has inherent uncertainty, from the travel rate equation that drives ERI to the modeled visibility 
741 outputs from VisiMod to the potential landscape structural changes that occurred since lidar data were 
742 collected. Thus, GeoLCES should be treated as a useful pre-fire decision support tool to inform safety, 
743 and not an absolute measure of safety.
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744 5. Conclusions
745 Wildland firefighters put their lives on the line to help minimize the harmful effects of fire. Over the past 
746 decade, the role of spatial data in decision support has expanded, our understanding of the mechanisms 
747 that drive firefighter safety have improved, and the availability of invaluable and highly safety-relevant 
748 datasets such as airborne lidar has grown exponentially. During this same time frame, we have worked 
749 to develop several spatial metrics that address individual components of firefighter safety, including ERI, 
750 VI, and pSSD. Though potentially valuable on their own, only through their combined, simultaneous 
751 evaluation can a more comprehensive understanding of firefighter safety be obtained. LCES is among 
752 the most important safety protocols available to wildland firefighters, yet its implementation is, to date, 
753 driven entirely by in situ information. Though ground-level, incident-specific, locally informed knowledge 
754 plays and should continue to play a critical role in LCES, we believe that leveraging the best-available 
755 data, science, and computational algorithms can make LCES safer and more effective. GeoLCES offers a 
756 new analytical framework that, if properly applied, has the potential to increase wildland firefighter 
757 safety. In an era of increasing wildfire activity, we can and should leverage all of the best tools available 
758 to mitigate risk to a population of professionals who engage in critical, life-saving work. 
759
760 We recognize that there are already a host of extant, operational spatial decision support datasets and 
761 tools. Continually throwing new information at an already information-rich problem has the potential to 
762 exceed firefighters’ capacity to ingest that new information and yield actionable fire management 
763 strategies. Thus, it is important that we be judicious in the introduction of new tools into the wildland 
764 fire community and work closely with fire personnel everywhere along the chain of command to ensure 
765 that our technological advances are meeting the needs of the end user community. Here we have 
766 introduced GeoLCES to the scientific and fire management communities as an important first step in 
767 that process.
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