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Abstract

Background: Changes in climate and vegetation, in combination with fire
exclusion, are altering and homogenizing fire regime attributes compared to
historical conditions. Fire-regime changes are commonly quantified using
departure metrics based on differences in measures of central tendency (i.e.,
means) between time periods. These metrics can mischaracterize complex
changes to fire regime attributes because the distributions underlying these
attributes are often not well described by parameters.

Results: We developed a non-parametric index of fire regime departure that
guantifies distributional changes to fire regime attributes between time periods
using the Earth Mover’s Distance. We used this departure metric to compare fire
frequency and burn severity between historical (~1600-1880) and contemporary
(1985-2021) time periods in western US forests. In addition, we compared the

proposed metrics with a standard suite of measures of central tendency.



Departure metrics based on measures of central tendency reported lower relative
departures within frequent fire forests and higher relative departures within
infrequent fire forests than the EMD-based method. We found that 89% of
western US forests are experiencing less frequent and more severe wildfires than
historical baselines. Large departures are associated with increased human land-
use intensity, and landscapes prioritized by the Wildfire Crisis Mitigation plan are
on average, more departed than non-priority landscapes.

Conclusions: This proposed method captures facets of fire regime departures
that metrics based on measures of central tendency cannot. These new metrics
can aid the evaluation and targeting of treatments to restore historical fire regimes
and manage the resilience of fire-prone landscapes.

Keywords: disturbance regimes; Earth Mover’s Distance; fire modeling; fire

regimes; historical fire regimes; management; wildfire; Wasserstein metric.

Resumen

Antecedentes: Cambios en el clima y la vegetacion, en combinacién con la exclusion
historica del fuego, estan alterando y homogeneizando los atributos de los regimenes de
fuegos, comparado con las condiciones historicas. Los cambios en los regimenes de
fuegos son comunmente cuantificados usando métricas basadas en las diferencias en
las medidas de la tendencia central (i.e. la media) entre periodos de tiempo. Estas
métricas pueden no caracterizar correctamente los cambios complejos en los atributos
de los regimenes de fuegos, dado que las distribuciones que marcan esos atributos no
siempre son bien descriptas por esos parametros.

Resultados: Desarrollamos un indice no paramétrico de desviacion del régimen de
fuegos que cuantifica los cambios en los atributos de estos regimenes entre periodos de
tiempo usando la “distancia debida al movimiento de la tierra” o Earth Mover’s Distance
(EMD) en idioma inglés. Usamos esta desviacion para comparar la frecuencia histérica
de fuego y la severidad de los mismos entre los periodos de tiempo (~1600-1880) y
contemporaneo (1985-2021), en el oeste de los EEUU. Adicionalmente, comparamos las
métricas propuestas con un conjunto estandar de medidas de tendencia central. Las
desviaciones en esas métricas resultaron mas pequefias dentro del contexto de fuegos
frecuentes y mas grandes cuando fueron relacionadas a fuegos forestales infrecuentes
gue las obtenidas mediante el método EMD. Encontramos que el 89% de los incendios
en los bosques del oeste de los EEUU estan experimentando incendios menos
frecuentes y mas severos que lo que indican las bases histéricas. Las grandes
desviaciones estan asociadas a un incremento humano en el uso de la tierra, y los
paisajes priorizados en el plan de mitigacion de la Crisis de los Incendios estan asimismo
mas desviados que los paisajes no priorizados en este plan.



Conclusiones: El método propuesto en este trabajo captura facetas de desviaciones de
los regimenes de incendios que las métricas usuales de la tendencia central no pueden
capturar. Estas nuevas métricas pueden ayudar en la evaluacion y apuntar a lograr
objetivos que tengan como meta el restaurar los regimenes historicos de fuego y
manejar la resiliencia en paisajes propensos al fuego.

Background

Contemporary fire regimes are increasingly departing from historical conditions
(Haugo et al. 2019; Hagmann et al. 2021; McClure et al. 2024; Parks et al. 2025).
Managing ecosystems under changing fire regimes requires an understanding of
how fire attributes such as frequency and severity and their distribution are
changing in space and time (Buma et al. 2019; Cochrane and Bowman 2021). In
this paper, we developed a new fire regime departure method that accounts for
changes in the distribution of fire frequency and severity (independently and
combined) over space. We applied this new method to quantify departures over
western US forests between simulated historical (~1600-1880) and measured
contemporary (1985-2021) time periods across the western US.

Wildfire is a complex and critical ecosystem process that influences the
composition, structure, and spatial patterns of forests in the western US and
elsewhere (Balch et al. 2017; Sugihara et al. 2018; Coop et al. 2020). Lightning-
and human-ignited wildfires have influenced western US forests for millennia, as
evidenced by the numerous tree species with fire-adapted traits such as thick
bark, resprouting, serotiny, and extensive paleoecological evidence (Whitlock et
al. 2010; van Wagtendonk et al. 2018; Cochrane and Bowman 2021; Keeley and
Pausas 2022). As a result, distinct forest types often have characteristic fire
regime attributes that emerge from differences in local climate, topography,
ignitions, and species’ fire-adaptations. These attributes include frequency,
severity (effects on the landscape, i.e., tree mortality), size, seasonality, and
several others (van Wagtendonk et al. 2018; Cochrane and Bowman 2021). For
example, cold forests dominated by lodgepole pine generally experience
infrequent (>100-year return interval), large, stand-replacing fires during the
summer and fall. Additionally, all fire regimes exhibit variability that drives
landscape heterogeneity; in the case of cold forests, a proportion of fires may be

small and burn at low severity, potentially leading to clearings and changes in



species composition (Agee 1993; Cansler and McKenzie 2014; van Wagtendonk
et al. 2018).

Fire regimes in the western US have changed since the late-1800s due to the
removal of Indigenous burning, development, extensive livestock grazing, and
persistent fire suppression (Cooper 1960; Eisenberg et al. 2019; Hessburg et al.
2021; Kreider et al. 2024). These actions and policies reduced fire frequency and
annual area burned in western US forest ecosystems (Bowman et al. 2011;
Swetnam et al. 2016; Roos et al. 2021; Kreider et al. 2024) and resultin a
contemporary (1985-2021) fire deficit (Marlon et al. 2012; McClure et al. 2024;
Parks et al. 2025). Fire exclusion promotes accumulation of fuels beyond
historical baselines in many ecosystems (Halofsky et al. 2020; Hagmann et al.
2021; Knight et al. 2022). When fires inevitably occur, they often burn at a
relatively higher severity than was characteristic of historical fire regimes,
particularly in forests characterized by low to moderate-severity fire (Mallek et al.
2013; Haugo et al. 2019; Williams et al. 2023; McClure et al. 2024). These recent
changes in fire frequency and severity have modified other fire regime attributes,
such as high severity patch size, which can drive changes to forest development
(Cansler and McKenzie 2014; Jager et al. 2021; Cova et al. 2023; Dauvis et al.
2023; Buonanduci et al. 2023).

Understanding the extent to which contemporary fire regimes are departed
from historical conditions (~1600-1880) is important for the management of
forested landscapes (Keane et al. 2009; Keane et al. 2011; Whitlock et al. 2010).
Historical baselines allow managers to place current fire regimes in context (Higgs
et al. 2014) and to anticipate how altered fire regimes may result in novel post-fire
forest trajectories (Higgs et al. 2014; Buma et al. 2019; Coop et al. 2020; Turner
and Seidl 2023). Despite widespread acknowledgement that fire regime attributes
are complex and better characterized by distributions (Pickett and White 1986;
Agee 1993; van Wagtendonk et al. 2018), fire regime departure metrics generally
rely on measures of central tendency (i.e., the mean). For example, mean fire
return intervals (MFRI) and mean fire severities are often compared between time
periods. Some methods account for variability in fire-attributes over time, for
example, historical range of variation (HRV; Keane et al., 2009; Turner & Seidl,

2023). HRV describes the range of a chosen statistic (e.g., MFRI) over periods of



time and compares that range to the contemporary period to assess departure
(Keane et al. 2009; Whitlock et al. 2010; Haugo et al. 2019). However, departure
methods that account for variability in space at fine resolutions (e.g. 30 m) across
the western US are rare (e.qg. Farris et al. 2010; Swetnam et al. 2011;
Blankenship et al. 2015; Haugo et al. 2019), so investigators typically leverage
expensive paleo-reconstructions to substitute time for space (Whitlock et al. 2010;
Marlon et al. 2012; Buma et al. 2019; Higuera et al. 2021; Margolis et al. 2022).

Measures of central tendency inherently mask spatial variability in fire regimes.
For example, MFRI, area burned, and mean fire severity collapse the spatial
variance of fires into characteristic mean values on the landscape. Consider a
hypothetical landscape that historically exhibited a broad range of fire
frequencies, but contemporary fire exclusion has homogenized fire frequency
(Fig. 1a). In this hypothetical landscape, the mean values for number of fire
events are identical, yet the distribution of fire frequencies substantially differ
between time periods (Fig. 1b). Similar patterns could be evident in terms of other
fire-regime attributes over the hypothetical landscape. More broadly, departure
metrics based on measures of central tendency do not quantify changes to the
distribution of fire regime attributes and thus may obscure important changes in
fire regime characteristics (Buma et al. 2019; Steel et al. 2021). Spatial variability
in fire regimes contribute to ecosystem resilience and function by modifying forest
structure. Thus, capturing this variability is crucial to forming a more complete
understanding of fire regime departures (Martin and Sapsis 1992; Buma et al.
2019; Hessburg et al. 2021; Jager et al. 2021).

We propose using the Earth Mover’s Distance (EMD; also known as the
Wasserstein metric) to measure differences in the distribution of fire frequency and
severity values between time periods. EMD is a non-parametric measure of
distributional dissimilarity (Kantorovich and Rubinstein 1958; Vaserstein 1969;
Dobrushin 1970) that can be conceptualized as the minimum effort needed to move
blocks from one structure to another structure (Appendix A). It is similar to other
distributional divergence measures such as the Kolmogorov-Smirnov test and
Kullback-Leibler Divergence (Clement and Desch 2007). However, EMD is unique
among these metrics because it preserves the units of the input distributions, can

differentiate between distributions with complete separation, and is not affected by



the ordering of the distributions (i.e. is a “true” distance metric, unlike Kullback-
Leibler; Peyré and Cuturi 2019). Each EMD property allows for comparisons
between distributions of fire regime attributes, which can vary widely in magnitude
and shape. A comparison between distributional dissimilarity metrics and the
equations for EMD are described in detail in Appendix A (Clement and Desch 2007;
Panaretos and Zemel 2019; Cai and Lim 2022). The use of EMD is new in ecology,
but it has shown promise in measuring a range of ecological variables such as
climate model accuracy, ice deformation, among others (e.g. Hyun et al. 2022; Le et
al. 2021; Parno et al. 2019; Vissio et al. 2020). Notably, Hoecker et al. (2023)
calculated the EMD between contemporary and future fire attribute distributions
within climate-defined fire regimes to project exposure to future fire regime changes.
We aim to apply a similar approach by measuring EMD between historical and
contemporary fire attribute distributions within geographically defined fire regimes to
measure how fire regimes have changed from the past.

In this paper, we developed a new fire-regime departure method using EMD
that accounts for changes in fire frequency and severity distributions over space.
We applied this method to quantify departures over western US forests between
simulated historical (~1600-1880) and measured contemporary (1985-2021) time
periods across a standardized grid of the western US. Fire frequency and severity
are particularly important fire regime attributes shaping forest ecosystems in
western US forests. Frequency and severity correlate well with other fire
attributes, and we have sufficient understanding to contiguously map both across
the western US over both time periods (Swetnam et al. 2011; Yocom-Kent et al.
2015; LANDFIRE 2020; Cova et al. 2023; Buonaduci et al. 2023). Parallel to this
new method, we calculated an existing suite of central tendency departure
measures (Fire Regime Condition Class; S. Barrett et al. 2010) across the same
landscapes to showcase how an EMD based metric captures distributional
changes that metrics based on measures of central tendency would not. We
guantified differences between the two types of metrics across the western US
and developed two case studies to illustrate mechanisms behind the observed
differences in departure metrics.

Our proposed EMD-based metric has the potential to provide ecologists, fire
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departures in western US forests. Further, previous research indicates that human
land uses influence fire regimes (Parks et al. 2014; Syphard et al. 2017; Hagmann et
al. 2021; Kreider et al. 2024), so we investigated how our proposed metric of fire
attribute departures relates to measures of human influence (e.g., percent of public
vs private lands) across the western US. To understand the policy context of our
approach, we applied our method across landscapes prioritized by the US “Wildfire
Crisis Strategy” and discuss potential future uses in management (WCS; USFS
2022).

Methods

Overview

For forests in the western US, we characterized contemporary (1985-2021) fire
regime distributions with continuous, satellite-derived fire severity data and fire
perimeters from the Monitoring Trends in Burn Severity (Eidenshrink et al. 2007)
program processed using the scripts from Parks et al. (2019). Historical
distributions (37 simulated years approximating a random set of years between
1600 and 1880) were characterized using the LANDFIRE BioPhysical Setting
product (BPS), which contains information regarding the average frequency of
fires and proportion of those fires that burned under low, mixed, and high severity
(LANDFIRE, 2020). Both the historical and contemporary datasets were 30-m
resolution. To have consistent fire severity distributions between the two datasets,
we calculated thresholds between the LANDFIRE fire severity classes and our
chosen continuous measure of fire severity, the Composite Burn Index (CBI). Our
full analysis used a 100-iteration bootstrap where we extracted fire frequency and
severity of the contemporary period, then ran a simple probabilistic fire model to
create distributions of fire frequency and fire severity in the historical period over
the same pixels. Within each iteration, we calculated the EMD (equations in
Appendix A) between these generated historical and contemporary distributions
for fire frequency and fire severity, creating a distributional fire frequency
departure (FFD), distributional fire severity departure (FSD), and a combined
multivariate distributional fire regime departure index (MFRD; workflow for our
main analysis shown in Fig. 2). The final outputs are the median values for each

of our calculations across all bootstrap iterations, and they represent fire regime



change within the given landscape. We applied our methods to multiple spatial
containers across the western US for statistical analyses and for management
use.

Study Area

We aggregated fire frequency and severity data at 30-m resolution pixels (0.09
ha) to multiple spatial containers including hexagonal grid cells (hexels; see Fig. 5
for study area), firesheds (Ager et al. 2021), designated wilderness areas, among
other spatial containers (see data availability and supplement for details) across
the western US. We chose standardized hexels to simply visualize our results and
to enable continuous west-wide analyses without the artifacts from unequal
distances associated with squares. LANDFIRE BPS maps pre-euro American
settlement vegetation with expert and data derived fire regime simulation models
developed over the mapped extent. BPS is focused on biophysical types over
large, unequal, areal extents. Therefore we assume BPS FRI values represent the
fire rotation period and chose a hexel size of 150,000 ha - the median mapped
areal coverage among biophysical settings (LANDFIRE 2020). We did not
measure hexels if they had greater than 50% overlap with the ocean, Canada, or
Mexico. We also removed hexels if they contained less than 10% forested area,
as fire regime departures are only calculated for forested pixels. Some hexels did
not have contemporary wildfires, so we only calculated fire frequency departure
within them. These frequency-only hexels are included in the data and displayed
in Figure 5. For final analysis, we only measured hexels with complete frequency
and severity departures, leaving 960 hexels covering 65 million ha of forest where
30.5 million ha burned during our contemporary study period (1985-2021)
according to MTBS clipped to forested areas.
Main analysis

Frequency and severity distributions

For each hexel, we randomly sampled 0.1% of forested 30m pixels (mean
sampled area = 674ha). We conducted sensitivity tests for other densities (and
other parameters) in Appendix D, all of which show low sensitivity to sampling
density. The primary benefit is that a low sampling density enables faster
computations. Additionally, we replicated our main analysis 100 times to capture

variation in simulations and to capture different samples within a hexel. We defined
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forest as those pixels labeled as “Conifer,” “Hardwood,” “Conifer-Hardwood,” or
“‘Hardwood-Conifer” by LANDFIRE Existing Vegetation Type and BPS. We filtered
to forested areas because satellite-derived Composite Burn Index (CBI) is not
appropriate for use in non-forest systems (Parks et al. 2019). To produce
contemporary fire frequency and severity distributions, we first processed the
western US fire perimeters from Monitoring Trends in Burn Severity (MTBS) using
the approach described by Parks et al. (2019) to obtain bias corrected CBI maps of
every mapped fire greater than 404 hectares from 1985-2021. Parks et al., (2019)
uses a Random Forest (Breiman 2001) model to predict CBI using multiple satellite
derived spectral, climatic, and geographic variables in Google Earth Engine
(Gorelick et al. 2017). These gridded CBI maps approximate field-based CBI
measurements (Key and Benson 2006). Then we mosaicked individual fire maps
into yearly fire maps from 1985-2021 and filtered to pixels (30m resolution) with
>0.35 pre-fire NDVI as an additional step to remove pixels we presume to be non-
forest (Parks et al. 2023).

We then counted the number of times each pixel burned (CBI values > 0) from 1985-
2021 to produce the contemporary fire frequency distribution within each hexel.
Similarly, we extracted fire severity estimates for each fire that occurred in each pixel,
which were split into 16 evenly spaced bins with values ranging from 0-3.

To obtain historical fire frequency, we simulate the number of fires that occurred
on each sampled pixel. That frequency is derived by the pixel's MFRI given by
BPS. We first extracted the mean fire return interval (MFRI) from the gridded
biophysical setting layer at each sampled pixel. Then we randomly sampled from a
binomial distribution at each pixel with parameters n = 37, P = 1/ MFRI, where n is
the number of years (inclusive) in the contemporary period and P is the yearly
probability of fire in the pixel given its biophysical setting. We then summarized
these historical fire frequencies into a distribution of fire frequencies for each hexel.

The historical and contemporary datasets have different measures of fire
severity. Fire severity from the historical dataset (BPS; LANDFIRE 2020) is a
categorical estimate based on tree mortality thresholds (0-25% 25-75%, 75-100%
canopy mortality for low, moderate, and high severity, respectively), while the
contemporary dataset (Eidenshrink et al. 2007; Parks et al. 2019) uses continuous

CBI, which assigns a 0-3 score based on aggregated, visual estimates of fire



damage to herbs, shrubs, intermediate trees, large trees, and substrates one year
following wildfire (Key and Benson 2006). We aligned these two datasets with
ordered logistic regressions between CBI and fire severity classes defined by
percent tree mortality.

To build regression models, we used the CBI plot data from Parks et al.
(2023), with supporting percent canopy mortality measures. This includes 72 plots
in the 2011 Miller Fire (Gila Wilderness in New Mexico) and 46 plots in the 2011
Hammer Creek fire (Bob Marshall Wilderness in Montana). First, we calculated
plot level mortality using the weighted average of percent tree mortality by pre-fire
tree coverage for intermediate and large trees. Then we modeled the relationship
between CBI and percent tree mortality using two logistic regressions accounting
for the ordering of severity classes (ordinal regression, e.g., mixed, and high
severity are greater than low severity). We then computed the median and 95%
confidence interval thresholds from a 1000 iteration bootstrap with thresholds
optimized for greatest reliability using Cohen’s kappa (Adjei and Karim, 2016;
Manel et al., 2001; Yilmaz and Demirhan, 2023). Threshold values with 95%
confidence intervals for low to mixed+high (T,,) were 1.56[1.33, 1.72] and
low+mixed to high (Tmn) were 2.01[1.92, 2.17] (Fig. 3, accuracy statistics in
Appendix B). We used 95% bootstrapped confidence intervals to account for
potential threshold uncertainty that may result from a small sample size (n=118
plots).

Because our mortality/CBI thresholds will directly affect the historical severity, and
thus severity departures, we performed five sensitivity tests for different thresholds and
their effects on our results (Appendix D) and visually compared thresholds to the results
in a similar percent mortality by CBI dataset (Saberi et al. 2022). Four sensitivity tests set
static thresholds at the extremes of our estimated thresholds using the lower and upper
95% confidence intervals. The fifth test used previously established thresholds from Miller
and Thode (2007). We found that alternate thresholds did not significantly change results.
Moreover, our thresholds closely match those reported by Saberi et al. (2022), who
analyzed 315 plots across 14 fires in the Pacific Northwest. Saberi et al. found CBI values
of approximately 1.3 at 25% tree mortality and ~2.0 at 75% mortality; our 95% confidence
intervals were 1.33-1.72 and 1.92-2.17, respectively. However, they found CBI

overestimated tree mortality in forests with large, open canopies (e.g., old-growth



ponderosa pine), suggesting that landscapes dominated by these types may show
inflated severity departures.

With the CBI/mortality class thresholds calculated above, we estimated
historical fire severity for each historical wildfire estimated above. Essentially, we
ask “if the estimated fire had occurred, what severity would it be?” For each
estimated historical fire, we assigned a severity class of low, mixed, or high, via
weighted random selection with weights given by the percent likelihood of each
severity class as described by the biophysical setting. For each estimated severity,
we then drew randomly from a uniform distribution within the bounds of CBI and the
outer thresholds between severity classes determined above. For example, if we
assigned a low severity fire, we drew from a uniform distribution with a lower bound
of zero and an upper bound of 1.72, the upper confidence bound determined from
our threshold calculation. A mixed classification would range from 1.33 to 2.17. In
total, this fire severity simulation provides fire severity estimates for each fire in
each sampled pixel based on the biophysical setting. With these estimated fire
severities, we then created fire severity distributions using the same 16 bins as
described for contemporary fires for each hexel.
Fire-regime Departure

To compare departures from historical fire regimes across hexels with different
characteristic fire regimes, we rescaled our distributions by the historical mean and
standard deviation, producing Z-scores. Then we computed the Earth Mover’s Distance
on frequency and severity, from historical to contemporary, independently. Because we
applied EMD to Z-scored distributions, we can interpret departures approximately as Z-
scores relative to the mean of the historical fire regime. However, because the metric is
distributional and fire frequency and severity are non-normal, we cannot make strong
probabilistic inferences about what a given departure value represents, so we suggest
using relative comparisons with Z-scores as a reference point (Panaretos and Zemel
2019). We recommend performing regionally specific investigations to interpret our
departure values. To aid interpretation, the full datasets (see data availability) contain
non-standardized departures to provide values in the original units, number of fires and
CBIl.

EMD can only be positive, so we modified attribute departures to show the net

direction of change. We simply added a sign to the calculated fire frequency and severity



departures based on the change in MFRI and percent burned at high severity. Signed
distributional fire frequency (FFD) and signed distributional fire severity departures (FSD)
are the resulting metrics. Positive values stand for a net reduction in fire frequency, and a
net greater proportion of high severity fire in the contemporary period compared to
historical, respectively.

Lastly, we calculated multivariate distributional fire regime departure index (MFRD),
which represents the combined, additive effects of frequency and severity departures.
FFD and FSD are normalized and continuous, so we combined them with the Euclidean

distance VFFD? + FSD2. Because we simulate fire regime attributes using 100 replicates,
the key outputs for each hexel are the median normalized departures for FFD, FSD, and
MFRD. See our data availability statement for pointers to our calculated statistics,
descriptions of each, and locations for this analysis’s results. State-wide differences
(excluding extremes) in fire-regime departures were computed on MFRD across all
hexels using 1-way ANOVA and pairwise linear contrasts on 20% trimmed means (Wilcox
et al. 2000; Ozdemir et al. 2018; Wilcox 2022). All effect sizes use explanatory power (§)
from Wilcox and Tian (2011), where small, medium, and large effect sizes correspond to
0.15, 0.35, and 0.50, respectively.
Comparison to mean statistics

We compared the proposed metrics to a commonly used suite of departure
metrics based on means — the Fire-Regime Condition Class (FRCC; Barrett et al.,
2010). In each hexel, we used the fire frequency and severity information
generated above to calculate historical and contemporary MFRI and proportion
burned at high severity (Barrett et al. 2010; Johnson and Gutsell 1994). These
values were then used to calculate FRCC fire frequency departure (FFDc), fire
severity departure (FSD() and fire regime departure (FRD) following the
formulas in Barrett et al., (2010).

To assess the difference between the proposed EMD-based metrics and
mean-based FRCC metrics, we first computed the absolute values of FFD and
FSD. Next, we transformed these absolute values, along with MFRD and the
FRCC departure statistics, into percentiles (denoted by a P subscript) among the
western US hexels, placing them all on the same 0-100 scale where 100 is the
most departed landscape for a given metric. We then subtracted the relevant
FRCC departure from the relevant distributional departure (e.g., MFRDp — FRD¢ p



= A p) to assess the difference in percentile between EMD-based metrics and
FRCC. This process was performed on all datasets (Supplemental 3).

To demonstrate how FFD, FSD, and MFRD differ from FRCC and to unpack
potential mechanisms behind these differences, we provide two granular case
studies focused on the Kalmiopsis wilderness and Olympic National Park. These
were chosen to clearly show two archetypes for differing FRCC and distributional
departures. Specifically, we discuss the historical and contemporary MFRI, FFDp,
FFD¢.p and the underlying fire frequency distributions in both case studies.
Contemporary human influence and Management Prioritization

To investigate potential land-use and management associations to our
proposed metrics, we first grouped hexels by state in the western US to analyze
state-wide patterns of fire regime departure. Next, we analyzed relationships
between MFRD and human influence. For each hexel, we calculated the average
human footprint (Venter et al. 2016), the proportion covered by public lands, and
the proportion covered by Wilderness and National Park lands (U.S. Geological
Survey 2022). Human footprint combines eight human pressures (e.g., structures,
roads, agriculture) into one characteristic score of human influence on landscapes
(Venter et al. 2016). Human footprint, proportion of public lands, and proportion
covered by Wilderness and National Park serve as indirect measures of fire
exclusion activities and changes to the timing and frequency of anthropogenic
ignitions (Balch et al. 2017; Boerigter et al. 2024). Each measure of human
influence was grouped into five evenly spaced bins to address moderate skew
and zero-inflation. We then calculated pairwise comparisons on 20% trimmed
means (Wilcox 2022) to assess effect sizes of fire regime departure between
different levels of human influence.

MFRD may associate with current federal fire management programs, which
can indicate a pathway towards achieving agency goals, so we examined whether
firesheds designated as priority landscapes are more departed than non-priority
landscapes (US Forest Service, 2023). The fireshed dataset delimits landscapes
with similar wildfire risks, land tenure, and planned management (Ager et al.
2021). Priority landscapes are designated by the US federal government as the
firesheds (Ager et al. 2021) with highest need for future fire risk mitigation and the

ability of communities to enact fire mitigation strategies (US Forest Service,



2023). For this analysis, we analyzed firesheds and then grouped them into
priority and non-priority firesheds, determined by those with greater than 50%
priority landscape coverage. We then calculated a t-test on 20% trimmed means
(Wilcox 2022) between priority and non-priority firesheds to assess whether there
are significant differences between these groups (Wilcox 2022).

Package Credits

Spatial data was manipulated using the R packages sf and terra (Hijmans et al.
2022; Pebesma 2018; R Core Team 2022). Tabular data was manipulated using
tidyverse, data.table (Barrett et al. 2023; Wickham et al. 2019), and overall
analysis was performed with foreach, doParallel, and units (Daniel et al. 2022b,
a; Pebesma et al. 2023). Robust statistical tests were performed with WSR2 (Mair et al.,
2024). Figures were generated with Rcolorbrewer, ggplot2 (Wickham et al. 2019;
Neuwirth 2022) and in the Julia language with the packages OptimalTransport,
Makie, and Distributions (Bezanson et al. 2017; Danisch and Krumbiegel 2021;
Zhang et al. 2022; Lin et al. 2023). Calculation of EMD used the transport package
in R (Schuhmacher et al. 2023).

Results
Fire Frequency and Severity Departures

Overwhelmingly (89% of 960 hexels), forested landscapes across the western
US are burning less frequently and more severely today than in the historical period
(Fig. 4). Fire regime departures were most prevalent in California and southern
Oregon, however all states showed notable departures (Fig. 4, 5A). Although there
are hexels in the other quadrants of Figure 4, they do not appear to have strong
regional clustering (Fig. 5A). Of hexels that did not burn in the contemporary period
(e.g., places with long FRIs or severe fire deficits), 32% had a frequency departure
greater than 1 - near the 75" percentile frequency departure across all hexels.

Fire-Regime Departure metric

A map of the distributional, multivariate fire regime departure metric (MFRD; Fig.
5B) shows similar patterns as those described by distributional fire attribute
departures. The 20% trimmed mean MFRD in California is statistically more

departed than other states (P < 0.001, smallest California ¢: 0.68). Full pairwise



comparisons among states can be found in Appendix C. California, Oregon, and
Nevada are the three most departed western States while Colorado is the least
departed, followed by Utah, and ldaho.

Relationship between Departure and Human Influence

We found that fire regime departures increased with land use intensity (as
measured by the human footprint; Fig. 5C). Furthermore, fire regime departures
decreased as the percent coverage of public lands and the percent coverage of
wilderness and national park increased (Fig. 5C; pair-wise comparisons in
Appendix C).

We found that priority landscapes are generally burning less frequently and more
severely (Fig. 6). Additionally, priority landscapes have larger fire regime departures than
non-priority landscapes (P value < 0.001, ¢ = 0.33).

Comparison to Fire-Regime Condition Class (FRCC)

We found that the difference in percentiles (A p) for fire frequency
departures between FRCC (FFD.) and the proposed EMD-based metrics (FFD)
are higher in frequent fire forests of California, Arizona, and New Mexico,
meaning distributional fire frequency departure is reporting relatively larger
departures in those regions than FRCC. We also found negative changes in
infrequent fire forests of western Washington, Nevada, and the Central Rocky
Mountains, meaning that FRCC suggests larger fire regime departures than the
distributional fire frequency metric (Fig. 7). The mean A p frequency, Was -2 (SD =
39, IQR =[-23,25]). For fire severity (Fig. 7), we found that the region near
Yellowstone National Park has high A p severity @nd there are large negative values
near the Colorado Plateau and Eastern Cascades. Mean A p severity Was 0 (SD =
31, IQR =[-21,16]). For MFRD (Fig. 7), we see the combined effects of both
frequency and severity differences, and they show large positive differences in
the Yellowstone region and large negative differences in the Colorado Plateau.
The mean A p regime Was -1 (SD = 29, IQR = [-18,17]).

Discussion

Case study 1: Kalmiopsis Wilderness

The Kalmiopsis Wilderness Area typifies a general finding of our study; a historically
frequent, small-fire ecosystem where a fire attribute (frequency in this case) homogenized

due to a few, large fires, and where mean statistics likely underestimate the nature and



extent of departure. We estimated a historical MFRI of 13 years, and the contemporary
MFRI is 19 years. These values suggest a high frequency fire regime that changed
minimally from 17"-19™ century conditions (Fig. 8A). FRCC mean statistics reflect this
with a 14" percentile departure in FFD.. Upon closer inspection of the fire frequency
distributions (Fig. 8B), the contemporary distribution is more homogenous than our
estimate of the historical distribution. FFD captures homogenization of the fire frequency
distribution resulting in a 43" percentile fire frequency departure, substantially higher than
differences in MFRI as the FRCC departure suggests.

The proposed methods captured an ecological story about Kalmiopsis that MFRI
could not tell but is supported by more intensive research methods. Paleoecological
research suggests the historical fire regime of Kalmiopsis was maintained by cultural
burning, resulting in a frequent fire ecosystem (MFRI 5-15yrs; Skinner et al. 2018; Knight
et al. 2022). The loss of cultural burning has since led to the highest forest biomass in the
last 3,000 years, indicating a lack of small, frequent fires that historically constrained
biomass. In short, researchers used long-term fire scar records, oral histories, and
biomass modeling to explain the homogenization of the landscape. Our analysis found a
similar story despite using less intensive methods.

Case study 2: Olympic National Park

Conversely, Olympic National Park shows how mean statistics can artificially inflate
departures. We estimated a historical MFRI of 308 years, a contemporary MFRI of
~16,000 years, and a corresponding FRCC fire frequency departure (FFD) in the 90™
percentile of western US wilderness areas and National Parks (Fig. 8A). FRCC departure
is high because, as mean fire frequency approaches zero, common for infrequent fire
ecosystems, the MFRI approaches infinity — inflating the mean departure statistic (Fig.
8C). Inflated departure statistics could lead to suboptimal resource allocation if they are
used to guide management prioritization (Haugo et al. 2019; Donato et al. 2023). The
proposed approach mitigates this issue, with a lower relative departure that is the 14™
percentile. Again, prior research has shown similar, but they did so by using multiple lines
of evidence that are difficult to combine into intuitive statistics (Gavin et al. 2013; Haugo
et al. 2019).

The value of measuring changes in distributions

This distributional approach addresses at least two key limitations of measures of

central tendency that can lead to overgeneralizations (Fig. 8). First, complex interactions



between climate, land management, and vegetation may not change MFRI, but may
change how fires burn in terms of their severity, such as the Kalmiopsis Wilderness case.
Second, MFRI intrinsically approaches infinity when fire frequency is low, as shown in the
Olympic National Park. Extending this logic across the western US (Fig. 7; Hagmann et
al. 2021; Cova et al. 2023; Donato et al. 2023) we can infer large regions where means
may mischaracterize fire regimes that changed in complex ways. For example, most of
California has high differences in relative departure (Ap), like Kalmiopsis. It’s likely that
these landscapes are experiencing consolidation of area burned into individual, large fires
rather than many small fires (Hagmann et al. 2021; Williams et al. 2023; Cova et al.
2023). These complex changes drive ecosystem development, and our proposed
methods introduce an intuitive metric that accounts for some of this complexity (Coop et
al. 2020; Jones and Tingley 2022; Davis et al. 2023).

Approaches like the one we have presented here, which use metrics that characterize
the center, spread, and shape of statistical distributions and provide more nuanced
information to natural resource managers than differences in means. Means (e.g., MFRI),
and differences in means, may be more easily understood, but they can mischaracterize
fire regime departures in areas with high spatial and temporal variance in wildfires (Fig 7
and 8). Management plans designed around mean values can sacrifice accuracy in favor
of simplicity (Koontz et al. 2020; Stephens et al. 2020). Concepts like “historical range of
variability,” are also based on an understanding that shape and spread are relevant
attributes of distributions that can inform management. These concepts have been
operationalized by resources managers, for example, managers at Yosemite and Lassen
Volcano National Parks use coarse distributions of acceptable fuel characteristics to
design treatment implementation plans (Yosemite National Park 2004; National Park
Service 2022). Distributional and statistical distance metrics offer a quantitative means to
evaluate progress toward such targets and to assess whether management actions
maintain or restore variability within desired bounds. Beyond this case study of fire
frequency and severity, these tools can be extended to other ecosystem processes
where both the mean state and its variability define resilience.

EMD enables new research into how fire regimes and their changes influence other
landscape scale processes. Many ecological and resource management questions can
benefit from approaches that characterize differences in statistical, temporal, or spatial

distributions as opposed to changes in specific statistical moments. One example for fire



science is to examine the hypothesis that diversity of fire over space (pyrodiversity) leads
to habitat diversity, and consequently, biodiversity (Martin and Sapsis 1992). Recent work
in this theory called for the integration of historical baselines into pyrodiversity research
because species presence emerges from a combination of current conditions and
historical legacies (Jones and Tingley 2022; Jones et al. 2022). Our study essentially
measures how pyrodiversity changed over the last few centuries and can be readily
applied to pyrodiversity research (Steel et al. 2021). Beyond the pyrodiversity-biodiversity
hypothesis, we see relevant applications to understanding habitat diversity, continuous
changes in fire regimes through time, and changes in fire behavior, to name a few
(Cansler and McKenzie 2014; Zhang et al. 2020; Cova et al. 2023). Readers are referred
to the literature on optimal transport theory for a deeper treatment (Peyré and Cuturi
2020).

Limitations

Our results are sensitive to the assumptions and limitations of the datasets we used,
namely LANDFIRE BPS (LANDFIRE 2020), and MTBS (Eidenshrink et al. 2007).
LANDFIRE BPS uses expert information, paleoecological evidence, and simulation
modeling to estimate historical fire regimes of vegetation groups, and our results reflect
their methodological decisions (Barrett et al. 2010; LANDFIRE 2020). For example,
LANDFIRE BPS does not report any low severity fire in the biophysical settings in the
region south of Yellowstone National Park, likely explaining why we found lower
contemporary fire severity despite recent increases in high severity reburns and evidence
of low-severity fires in much of the ecosystem (Fig. 5A; Cansler et al. 2018; LANDFIRE
2020; Spies et al. 2018; Turner et al. 2022).

Furthermore, we assume that BPS fire return intervals and fire rotation periods are
equivalent at the landscape scale (Johnson and Gutsell 1994; Hargrove et al. 2000;
Farris et al. 2010; Swetnam et al. 2011; Haugo et al. 2015). However, specific studies
posit that biases in the methods used to estimate fire regime attributes of BPS types may
overestimate the historical frequency of low- and mixed-severity fire in dry forests (Baker
2024). To address these concerns, we included the adjustments to the 48 BPS types
modified by Baker (2024) in a sensitivity test (Appendix D).With this modification, the
percentage of hexels burning less frequently and relatively more severely decreased from
89% to 66% - a measurable effect, but one that doesn’t change the key takeaway that

most of the western US appears to be burning less frequently and more severely than



historical estimates. A full spatial analysis of these differing results is beyond the scope of
this study, but we note that the adjusted results show that much of the western Sierra
Nevada range are no longer shown as burning less frequently and more severely
(Appendix D) than BPS estimates. This is highly contradictory to multiple lines of
evidence from this region that show that contemporary wildfires are burning less
frequently and relatively more severely based on fire scars (Coppoletta et al. 2024; Parks
et al. 2025), aerial photography (Lydersen and Collins 2018), process-based models
(Barth et al. 2015), Indigenous oral histories (Stephens et al. 2023), and sediment core
records (Klimaszewski-Patterson et al. 2024), all of which support using unmodified BPS
fire return intervals as we have done here.

We used MTBS, which only includes fires greater than 404 hectares (Eidenshrink et
al. 2007; Picotte et al. 2020), which may introduce a bias in our departure measures
towards less frequent, more severe departures (Cansler and McKenzie 2014; Cova et al.
2023). To address this, we ran two tests comparing MTBS data to two California-focused
datasets that include small fires from Koontz et al. (2020) and Cova et al. (2023). Overall,
severity departures were slightly lower with the inclusion of small fires, but all three
datasets yielded similar conclusions that California is burning less frequently and
relatively more severe now than it did in the past (see Supplement 2).

Our methods have three main limitations. First, we simulated fire frequency using a
binomial model determined by each pixel's MFRI. The frequency model is appropriate
for simulating wildfires over periods of time since MFRI can approximately account for
the lack of independence between yearly burn probabilities, but a more robust
simulation would likely be more accurate and extendable to different time periods (Li
et al. 1999; Reed and McKelvey 2002; Moran et al. 2025). Second, we simulated
severity with a weighted piecewise uniform distribution. This severity model does not
capture gradients in fire severity, so while the classes of severity should be accurate
based on our bootstrapped thresholds, the transitions in CBI between classes are
simplified (Agee 1993; Sugihara et al. 2018). Finally, we measured departures in fire
frequency and severity separately. Fire regimes are made up of many correlated fire
attributes (Sugihara et al. 2018). Developing the joint distributions of multiple fire
attributes could quantify changes in the covariance between fire attributes and fire
regimes more broadly, potentially exposing novel fire regime departures (Parks et al.
2015; Steel et al., 2015).



Despite these limitations, our study is a step towards the development of
statistically robust and ecologically meaningful multivariate distributional departure
metrics in ecology. Metrics that characterize distributional changes in fire regimes
provide a more nuanced characterization of departures than those based on means
(Sugihara et al. 2018; Buma et al. 2019). Recognizing changes in the statistical
distributions of fire regimes, when combined with land management practices, can
highlight opportunities for restoring historical fire dynamics and supporting ecosystem
resilience to future disturbances and climate changes.

Fire regime departures of the western US

Forested landscapes of the western US are burning less frequently and more severely
today compared to a historical reference period (1600-1880; Fig. 5). Although annual
area burned increased across the western US since 1985, contemporary fire frequency is
still well below levels indicated by models of 17™-20™ century fire regimes based on
paleoecological data (Marlon et al. 2012; McClure et al. 2024). This paradoxical
observation of rapid contemporary increases in fire activity that still remains below
historical levels, is well documented by previous research (Haugo et al. 2019; Hagmann
et al. 2021; Williams et al. 2023; Donato et al. 2023). This widespread fire deficit (Parks et
al. 2015b) is understood to be increasing the relative incidence of uncharacteristically
severe fires across the western US (Haugo et al. 2019; Hagmann et al. 2021; Higuera et
al. 2021; Williams et al. 2023; McClure et al. 2024; Povak et al. 2025). Our analyses
show that decreases in fire frequency correspond strongly with increases in fire severity,
supporting this contention (Fig. 4 and 5).

Areas with high contemporary human land use have the highest departures. We
found higher departures in areas of high human footprint, lower public land coverage,
and lower Wilderness and National Park coverage (Fig. 5C). These patterns are likely
due in part to fire exclusion. Fire exclusion policies have been, and continue to be,
implemented in areas with high human footprint due to the risk wildfires pose to
community safety and assets (Miller 2006; Wagtendonk 2007; Iglesias et al. 2022;
Boerigter et al. 2024). The deficit of wildland fire leads to increasing fuel accumulation,
particularly in the sub canopy, and subsequently larger and more severe wildfires
which further threaten communities, encouraging further fire suppression (McLauchlan
et al. 2020; Higuera et al. 2023; Kreider et al. 2024) — a positive feedback of

ecosystem degradation termed the fire suppression paradox (Calkin et al. 2015;



Cohen 2008; Kreider et al. 2024). While there is extensive evidence supporting this
explanation, our relatively large hexels may produce departure values that are driven
by simple changes in where fires occur (Kreider et al. 2024), rather than an intrinsic
change in the fuels (Haugo et al. 2019; Povak et al. 2025).

Federally prioritized landscapes provide another lens through which to assess the
relationship between fire regime departure and human influence (Fig. 6). Priority
landscapes designated in the Wildfire Crisis Implementation Plan were largely identified
based on community vulnerability and capacity to mitigate wildfire hazard (US Forest
Service, 2022). Our results show that priority landscapes have higher fire regime
departures than non-priority landscapes, in part because of the prevalence of large
priority landscapes in California (Fig. 5B), where the highest departure values in the
western US occur. Fire regime departure and community risk are seemingly interlinked.
We can, however, break the link between human influence and fire regime departures by
implementing intentional fire management plans that returns frequent, low intensity fire to
fire-prone forests (Ager, Evers, et al. 2021; Barros et al. 2021; Iglesias et al. 2022;
Krawchuk et al. 2023; Syphard et al. 2013; North et al. 2024; Dunn et al. 2020).

Our findings, that most ecosystems in the Western US exhibit lower frequency
and higher severity fire activity than their historical references, support the use of
prescribed and cultural burning, and managed wildfire, alone and in combination
with mild-moderate mechanical treatments. These interventions reintroduce low
severity fire and reduce fuel loads (Davis et al. 2023; 2024; Hessburg et al. 2005;
Kalies and Yocom Kent 2016). Together, these moderate wildfire severity and
reduce risk to nearby communities. Lower risk, in turn, eases the social and
operational constraints on restoration, allowing managers to reestablish the full
spectrum of fire effects, potentially including high-severity patches where
appropriate (Miller et al. 2020; Stephens et al. 2020; Donato et al. 2023; Williams
et al. 2024; Baker 2024; Davis et al. 2024).



List of abbreviations

EMD: Earth Mover’s Distance

MFRI: Mean Fire Return Interval Departure
BPS: BioPhysical Setting

HRV: Historical Range of Variation

MTBS: Monitoring Trends in Burn Severity
CBI: Composite Burn Index

NDVI: Normalized Difference Vegetation Index
FRCC: Fire Regime Condition Class

FFD¢:: FRCC Fire Frequency Departure
FSD..: FRCC Fire Severity Departure

FRD..: FRCC Fire Regime Departure

FFD: Distributional Fire Frequency Departure
FSD: Distributional Fire Severity Departure
MFRD: Multivariate Distributional Fire Regime Departure
SD: Standard Deviation

IQR: Interquartile range

Availability of data and materials

Additionally, we provide R scripts for the full analysis and each databases
analysis at https://github.com/soumad/Fire_Regime_Departure. We provide
analyzed hexels, wilderness areas, protected areas, firesheds, HUC8 and HUC10
datasets as GeoPackage files (gpkg, similar to GeoJSON) at the following
database
https://osf.io/vak2d/?view_only=e501253436074599a93dbb5cb627de47. Within
each GeoPackage, we report all statistics described in Supplemental 1. In tandem
with each dataset, we provide a database of every dataset, with each dataset
containing maps of BPS, fire frequency, and average fire severity, and figures that
show the historical and contemporary frequency and severity distributions for all

landscapes within.
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Figure Captions

Figure 1: Conceptual diagram of fire regime change in a historically frequent fire
ecosystem when observed over 37-year historical and contemporary periods. A)
Transitioning from a frequent fire system to an infrequent fire system due to fire exclusion
leads to homogenization in spatial patterns of fire occurrence. B) As a result, the
statistical distributions of fire frequency during historical and contemporary are different.
However, the contemporary and historical periods have the same mean fire frequency,
marked by the dashed line. Means do not characterize the homogenization of the fire
frequency distribution through time.

Figure 2: Workflow of our analysis within a single landscape polygon. Circles represent
numeric outputs while rectangles are operations. We sampled forested pixels (in green)
and performed the operations in the light blue box for each pixel. Then we converted
those results to normalized distributions of fire frequency and severity for historical and
contemporary time periods. From these distributions, we calculated EMD between
historical and contemporary fire frequency departure (FFD) and fire severity departure
(FSD), which are combined into a multivariate fire regime departure (MFRD) index. This
analysis is replicated 100 times for each landscape, and our primary summaries are the
median FFD, FSD, and MFRD.

Figure 3: Relationship between percent tree mortality (y-axis) and CBI (x-axis) from Parks
et al. (2023). LANDFIRE classes low severity as < 25% tree mortality, mixed severity as
between 25% and 75%, and high severity as > 75%. We show the median logistic
regression curves with thresholds for low to mixed (T») and mixed to high (Tn,) marked
by vertical dashed lines and median and 95% bootstrapped confidence intervals by the
error bars. Median and 95% confidence intervals for T\, and T, are 1.56[1.33, 1.72], and
2.01[1.92, 2.17], respectively. AUC is the mean bootstrapped AUC. Additional accuracy
statistics are in Appendix B.

Figure 4: Scatter plot of signed fire frequency (FFD; x-axis) and severity (FSD; y-axis)
departures for hexels (= 10% forested) and states in the western US. Colored symbols
show the 20% trimmed mean and 95% Cls for each state within our study area.
Quadrants are labeled based on the average direction of change in each attribute. Points
further away from (0,0) are more departed. Eighty-nine percent of hexels burned less
frequently and more severely during the contemporary period compared to their historical
baseline.

Figure 5: A) Map of signed fire frequency (FFD) and severity departures (FSD) for hexels
across western US forested areas. Colors further away from the center (white) are more
departed. Color breaks are the absolute 33" percentiles in each dimension (to ensure
negative and positive color breaks are evenly spaced). B) Map of the multivariate
distributional fire regime departure (MFRD) for hexels across forested areas within the
western US. Larger values represent larger departures. We also display hexels that did
not burn during the contemporary period in grey or blue-purple, where blue-purple stands
for a frequency departure greater than 1. California has significantly higher departures
than other states (linear contrasts in Appendix C). C) Mean and 95% confidence interval
hexel multivariate fire regime departure (MFRD) plotted with multiple binned human land
use metrics. Left to right are the average human footprint within a hexel, percentage
covered by public lands, and percentage covered by Wilderness & National Park Service.
In all analyses, increased human footprint, decreased public land coverage, and



decreased coverage by protected lands resulted in higher departures (a= 0.01, full
pairwise tests are available in Appendix C).

Figure 6: A) Map of firesheds with the Wildfire Crisis Strategy priority landscapes (WCS
landscape) outlined in black. Firesheds highlighted in red are those with greater than 50%
of their area within a WCS landscape. B) Boxplot of priority and nonpriority firesheds,
error bars denoting the 95% Confidence Intervals on 20% trimmed means.

Figure 7: Difference between the relative change for the proposed distributional metrics
(in percentile) and the mean based FRCC metrics (in percentile) for fire frequency,
severity, and regime departures (distributional — mean). Positive values are locations
where the proposed EMD-based metrics reported a larger departure relative to the
FRCC. Values further away from zero have the largest dissimilarity from FRCC.

Figure 8: A) Inset map of the study areas and a stem plot illustrating differences between
mean-based fire frequency relative departure (Fire Regime Condition Class; relative to
the western U.S.) and distributional departure based on Earth Mover’s Distance (EMD).
B) Fire frequency distributions for Kalmiopsis and Olympic National Parks, respectively.
Each semi-transparent line represents one of the first 30 simulation runs (out of 100,
reducing clutter), illustrating the non-normal variance in distributions. Dotted vertical lines
show mean fire frequency, corresponding to historical and contemporary MFRIs: 13 and
19 years for Kalmiopsis; 309 and ~17,000 years for Olympic. Kalmiopsis appears to have
shifted from a frequent, variable regime to an infrequent, simplified one—poorly captured
by mean-based metrics. In contrast, the distributions of Olympic remain similar despite
large differences in MFRI, highlighting how EMD-based metrics can be resistant to large
MFRI differences in infrequent fire systems.
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