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Abstract 

Background: Changes in climate and vegetation, in combination with fire 

exclusion, are altering and homogenizing fire regime attributes compared to 

historical conditions. Fire-regime changes are commonly quantified using 

departure metrics based on differences in measures of central tendency (i.e., 

means) between time periods. These metrics can mischaracterize complex 

changes to fire regime attributes because the distributions underlying these 

attributes are often not well described by parameters.  

Results: We developed a non-parametric index of fire regime departure that 

quantifies distributional changes to fire regime attributes between time periods 

using the Earth Mover’s Distance. We used this departure metric to compare fire 

frequency and burn severity between historical (~1600-1880) and contemporary 

(1985-2021) time periods in western US forests. In addition, we compared the 

proposed metrics with a standard suite of measures of central tendency. 
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Departure metrics based on measures of central tendency reported lower relative 

departures within frequent fire forests and higher relative departures within 

infrequent fire forests than the EMD-based method. We found that 89% of 

western US forests are experiencing less frequent and more severe wildfires than 

historical baselines. Large departures are associated with increased human land-

use intensity, and landscapes prioritized by the Wildfire Crisis Mitigation plan are 

on average, more departed than non-priority landscapes.  

Conclusions: This proposed method captures facets of fire regime departures 

that metrics based on measures of central tendency cannot. These new metrics 

can aid the evaluation and targeting of treatments to restore historical fire regimes 

and manage the resilience of fire-prone landscapes. 

Keywords: disturbance regimes; Earth Mover’s Distance; fire modeling; fire 

regimes; historical fire regimes; management; wildfire; Wasserstein metric. 

 

Resumen 

 

Antecedentes: Cambios en el clima y la vegetación, en combinación con la exclusión 

histórica del fuego, están alterando y homogeneizando los atributos de los regímenes de 

fuegos, comparado con las condiciones históricas. Los cambios en los regímenes de 

fuegos son comúnmente cuantificados usando métricas basadas en las diferencias en 

las medidas de la tendencia central (i.e. la media) entre períodos de tiempo.  Estas 

métricas pueden no caracterizar correctamente los cambios complejos en los atributos 

de los regímenes de fuegos, dado que las distribuciones que marcan esos atributos no 

siempre son bien descriptas por esos parámetros.  

 

Resultados: Desarrollamos un índice no paramétrico de desviación del régimen de 

fuegos que cuantifica los cambios en los atributos de estos regímenes entre períodos de 

tiempo usando la “distancia debida al movimiento de la tierra” o Earth Mover’s Distance 

(EMD) en idioma inglés. Usamos esta desviación para comparar la frecuencia histórica 

de fuego y la severidad de los mismos entre los períodos de tiempo (~1600-1880) y 

contemporáneo (1985-2021), en el oeste de los EEUU. Adicionalmente, comparamos las 

métricas propuestas con un conjunto estándar de medidas de tendencia central.  Las 

desviaciones en esas métricas resultaron más pequeñas dentro del contexto de fuegos 

frecuentes y más grandes cuando fueron relacionadas a fuegos forestales infrecuentes 

que las obtenidas mediante el método EMD.  Encontramos que el 89% de los incendios 

en los bosques del oeste de los EEUU están experimentando incendios menos 

frecuentes y más severos que lo que indican las bases históricas.  Las grandes 

desviaciones están asociadas a un incremento humano en el uso de la tierra, y los 

paisajes priorizados en el plan de mitigación de la Crisis de los Incendios están asimismo 

más desviados que los paisajes no priorizados en este plan.   
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Conclusiones: El método propuesto en este trabajo captura facetas de desviaciones de 

los regímenes de incendios que las métricas usuales de la tendencia central no pueden 

capturar. Estas nuevas métricas pueden ayudar en la evaluación y apuntar a lograr 

objetivos que tengan como meta el restaurar los regímenes históricos de fuego y 

manejar la resiliencia en paisajes propensos al fuego.   

 

 

Background 

Contemporary fire regimes are increasingly departing from historical conditions 

(Haugo et al. 2019; Hagmann et al. 2021; McClure et al. 2024; Parks et al. 2025). 

Managing ecosystems under changing fire regimes requires an understanding of 

how fire attributes such as frequency and severity and their distribution are 

changing in space and time (Buma et al. 2019; Cochrane and Bowman 2021). In 

this paper, we developed a new fire regime departure method that accounts for 

changes in the distribution of fire frequency and severity (independently and 

combined) over space. We applied this new method to quantify departures over 

western US forests between simulated historical (~1600-1880) and measured 

contemporary (1985-2021) time periods across the western US. 

Wildfire is a complex and critical ecosystem process that influences the 

composition, structure, and spatial patterns of forests in the western US and 

elsewhere (Balch et al. 2017; Sugihara et al. 2018; Coop et al. 2020). Lightning- 

and human-ignited wildfires have influenced western US forests for millennia, as 

evidenced by the numerous tree species with fire-adapted traits such as thick 

bark, resprouting, serotiny, and extensive paleoecological evidence (Whitlock et 

al. 2010; van Wagtendonk et al. 2018; Cochrane and Bowman 2021; Keeley and 

Pausas 2022). As a result, distinct forest types often have characteristic fire 

regime attributes that emerge from differences in local climate, topography, 

ignitions, and species’ fire-adaptations. These attributes include frequency, 

severity (effects on the landscape, i.e., tree mortality), size, seasonality, and 

several others (van Wagtendonk et al. 2018; Cochrane and Bowman 2021). For 

example, cold forests dominated by lodgepole pine generally experience 

infrequent (>100-year return interval), large, stand-replacing fires during the 

summer and fall. Additionally, all fire regimes exhibit variability that drives 

landscape heterogeneity; in the case of cold forests, a proportion of fires may be 

small and burn at low severity, potentially leading to clearings and changes in 
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species composition (Agee 1993; Cansler and McKenzie 2014; van Wagtendonk 

et al. 2018). 

 Fire regimes in the western US have changed since the late-1800s due to the 

removal of Indigenous burning, development, extensive livestock grazing, and 

persistent fire suppression (Cooper 1960; Eisenberg et al. 2019; Hessburg et al. 

2021; Kreider et al. 2024). These actions and policies reduced fire frequency and 

annual area burned in western US forest ecosystems (Bowman et al. 2011; 

Swetnam et al. 2016; Roos et al. 2021; Kreider et al. 2024) and result in a 

contemporary (1985-2021) fire deficit (Marlon et al. 2012; McClure et al. 2024; 

Parks et al. 2025). Fire exclusion promotes accumulation of fuels beyond 

historical baselines in many ecosystems (Halofsky et al. 2020; Hagmann et al. 

2021; Knight et al. 2022). When fires inevitably occur, they often burn at a 

relatively higher severity than was characteristic of historical fire regimes, 

particularly in forests characterized by low to moderate-severity fire (Mallek et al. 

2013; Haugo et al. 2019; Williams et al. 2023; McClure et al. 2024). These recent 

changes in fire frequency and severity have modified other fire regime attributes, 

such as high severity patch size, which can drive changes to forest development 

(Cansler and McKenzie 2014; Jager et al. 2021; Cova et al. 2023; Davis et al. 

2023; Buonanduci et al. 2023).  

Understanding the extent to which contemporary fire regimes are departed 

from historical conditions (~1600-1880) is important for the management of 

forested landscapes (Keane et al. 2009; Keane et al. 2011; Whitlock et al. 2010). 

Historical baselines allow managers to place current fire regimes in context (Higgs 

et al. 2014) and to anticipate how altered fire regimes may result in novel post-fire 

forest trajectories (Higgs et al. 2014; Buma et al. 2019; Coop et al. 2020; Turner 

and Seidl 2023). Despite widespread acknowledgement that fire regime attributes 

are complex and better characterized by distributions (Pickett and White 1986; 

Agee 1993; van Wagtendonk et al. 2018), fire regime departure metrics generally 

rely on measures of central tendency (i.e., the mean). For example, mean fire 

return intervals (MFRI) and mean fire severities are often compared between time 

periods. Some methods account for variability in fire-attributes over time, for 

example, historical range of variation (HRV; Keane et al., 2009; Turner & Seidl, 

2023). HRV describes the range of a chosen statistic (e.g., MFRI) over periods of 
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time and compares that range to the contemporary period to assess departure 

(Keane et al. 2009; Whitlock et al. 2010; Haugo et al. 2019). However, departure 

methods that account for variability in space at fine resolutions (e.g. 30 m) across 

the western US are rare (e.g. Farris et al. 2010; Swetnam et al. 2011; 

Blankenship et al. 2015; Haugo et al. 2019), so investigators typically leverage 

expensive paleo-reconstructions to substitute time for space (Whitlock et al. 2010; 

Marlon et al. 2012; Buma et al. 2019; Higuera et al. 2021; Margolis et al. 2022).  

Measures of central tendency inherently mask spatial variability in fire regimes. 

For example, MFRI, area burned, and mean fire severity collapse the spatial 

variance of fires into characteristic mean values on the landscape. Consider a 

hypothetical landscape that historically exhibited a broad range of fire 

frequencies, but contemporary fire exclusion has homogenized fire frequency 

(Fig. 1a). In this hypothetical landscape, the mean values for number of fire 

events are identical, yet the distribution of fire frequencies substantially differ 

between time periods (Fig. 1b). Similar patterns could be evident in terms of other 

fire-regime attributes over the hypothetical landscape. More broadly, departure 

metrics based on measures of central tendency do not quantify changes to the 

distribution of fire regime attributes and thus may obscure important changes in 

fire regime characteristics (Buma et al. 2019; Steel et al. 2021). Spatial variability 

in fire regimes contribute to ecosystem resilience and function by modifying forest 

structure. Thus, capturing this variability is crucial to forming a more complete 

understanding of fire regime departures (Martin and Sapsis 1992; Buma et al. 

2019; Hessburg et al. 2021; Jager et al. 2021).  

We propose using the Earth Mover’s Distance (EMD; also known as the 

Wasserstein metric) to measure differences in the distribution of fire frequency and 

severity values between time periods. EMD is a non-parametric measure of 

distributional dissimilarity (Kantorovich and Rubinstein 1958; Vaserstein 1969; 

Dobrushin 1970) that can be conceptualized as the minimum effort needed to move 

blocks from one structure to another structure (Appendix A). It is similar to other 

distributional divergence measures such as the Kolmogorov-Smirnov test and 

Kullback-Leibler Divergence (Clement and Desch 2007). However, EMD is unique 

among these metrics because it preserves the units of the input distributions, can 

differentiate between distributions with complete separation, and is not affected by 
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the ordering of the distributions (i.e. is a “true” distance metric, unlike Kullback-

Leibler; Peyré and Cuturi 2019). Each EMD property allows for comparisons 

between distributions of fire regime attributes, which can vary widely in magnitude 

and shape. A comparison between distributional dissimilarity metrics and the 

equations for EMD are described in detail in Appendix A (Clement and Desch 2007; 

Panaretos and Zemel 2019; Cai and Lim 2022). The use of EMD is new in ecology, 

but it has shown promise in measuring a range of ecological variables such as 

climate model accuracy, ice deformation, among others  (e.g. Hyun et al. 2022; Le et 

al. 2021; Parno et al. 2019; Vissio et al. 2020). Notably, Hoecker et al. (2023) 

calculated the EMD between contemporary and future fire attribute distributions 

within climate-defined fire regimes to project exposure to future fire regime changes. 

We aim to apply a similar approach by measuring EMD between historical and 

contemporary fire attribute distributions within geographically defined fire regimes to 

measure how fire regimes have changed from the past. 

In this paper, we developed a new fire-regime departure method using EMD 

that accounts for changes in fire frequency and severity distributions over space. 

We applied this method to quantify departures over western US forests between 

simulated historical (~1600-1880) and measured contemporary (1985-2021) time 

periods across a standardized grid of the western US. Fire frequency and severity 

are particularly important fire regime attributes shaping forest ecosystems in 

western US forests. Frequency and severity correlate well with other fire 

attributes, and we have sufficient understanding to contiguously map both across 

the western US over both time periods (Swetnam et al. 2011; Yocom-Kent et al. 

2015; LANDFIRE 2020; Cova et al. 2023; Buonaduci et al. 2023). Parallel to this 

new method, we calculated an existing suite of central tendency departure 

measures (Fire Regime Condition Class; S. Barrett et al. 2010) across the same 

landscapes to showcase how an EMD based metric captures distributional 

changes that metrics based on measures of central tendency would not. We 

quantified differences between the two types of metrics across the western US 

and developed two case studies to illustrate mechanisms behind the observed 

differences in departure metrics. 

Our proposed EMD-based metric has the potential to provide ecologists, fire 

scientists, and land managers with a more nuanced understanding of fire regime 
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departures in western US forests. Further, previous research indicates that human 

land uses influence fire regimes (Parks et al. 2014; Syphard et al. 2017; Hagmann et 

al. 2021; Kreider et al. 2024), so we investigated how our proposed metric of fire 

attribute departures relates to measures of human influence (e.g., percent of public 

vs private lands) across the western US. To understand the policy context of our 

approach, we applied our method across landscapes prioritized by the US “Wildfire 

Crisis Strategy” and discuss potential future uses in management (WCS; USFS 

2022).  

 

Methods 

     Overview 

For forests in the western US, we characterized contemporary (1985-2021) fire 

regime distributions with continuous, satellite-derived fire severity data and fire 

perimeters from the Monitoring Trends in Burn Severity (Eidenshrink et al. 2007) 

program processed using the scripts from Parks et al. (2019). Historical 

distributions (37 simulated years approximating a random set of years between 

1600 and 1880) were characterized using the LANDFIRE BioPhysical Setting 

product (BPS), which contains information regarding the average frequency of 

fires and proportion of those fires that burned under low, mixed, and high severity 

(LANDFIRE, 2020). Both the historical and contemporary datasets were 30-m 

resolution. To have consistent fire severity distributions between the two datasets, 

we calculated thresholds between the LANDFIRE fire severity classes and our 

chosen continuous measure of fire severity, the Composite Burn Index (CBI). Our 

full analysis used a 100-iteration bootstrap where we extracted fire frequency and 

severity of the contemporary period, then ran a simple probabilistic fire model to 

create distributions of fire frequency and fire severity in the historical period over 

the same pixels. Within each iteration, we calculated the EMD (equations in 

Appendix A) between these generated historical and contemporary distributions 

for fire frequency and fire severity, creating a distributional fire frequency 

departure (FFD), distributional fire severity departure (FSD), and a combined 

multivariate distributional fire regime departure index (MFRD; workflow for our 

main analysis shown in Fig. 2). The final outputs are the median values for each 

of our calculations across all bootstrap iterations, and they represent fire regime 
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change within the given landscape. We applied our methods to multiple spatial 

containers across the western US for statistical analyses and for management 

use.  

Study Area 

We aggregated fire frequency and severity data at 30-m resolution pixels (0.09 

ha) to multiple spatial containers including hexagonal grid cells (hexels; see Fig. 5 

for study area), firesheds (Ager et al. 2021), designated wilderness areas, among 

other spatial containers (see data availability and supplement for details) across 

the western US. We chose standardized hexels to simply visualize our results and 

to enable continuous west-wide analyses without the artifacts from unequal 

distances associated with squares. LANDFIRE BPS maps pre-euro American 

settlement vegetation with expert and data derived fire regime simulation models 

developed over the mapped extent. BPS is focused on biophysical types over 

large, unequal, areal extents. Therefore we assume BPS FRI values represent the 

fire rotation period and chose a hexel size of 150,000 ha - the median mapped 

areal coverage among biophysical settings (LANDFIRE 2020). We did not 

measure hexels if they had greater than 50% overlap with the ocean, Canada, or 

Mexico. We also removed hexels if they contained less than 10% forested area, 

as fire regime departures are only calculated for forested pixels. Some hexels did 

not have contemporary wildfires, so we only calculated fire frequency departure 

within them. These frequency-only hexels are included in the data and displayed 

in Figure 5. For final analysis, we only measured hexels with complete frequency 

and severity departures, leaving 960 hexels covering 65 million ha of forest where 

30.5 million ha burned during our contemporary study period (1985-2021) 

according to MTBS clipped to forested areas.  

Main analysis 

Frequency and severity distributions 

For each hexel, we randomly sampled 0.1% of forested 30m pixels (mean 

sampled area = 674ha). We conducted sensitivity tests for other densities (and 

other parameters) in Appendix D, all of which show low sensitivity to sampling 

density. The primary benefit is that a low sampling density enables faster 

computations. Additionally, we replicated our main analysis 100 times to capture 

variation in simulations and to capture different samples within a hexel. We defined 
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forest as those pixels labeled as “Conifer,” “Hardwood,” “Conifer-Hardwood,” or 

“Hardwood-Conifer” by LANDFIRE Existing Vegetation Type and BPS. We filtered 

to forested areas because satellite-derived Composite Burn Index (CBI) is not 

appropriate for use in non-forest systems (Parks et al. 2019). To produce 

contemporary fire frequency and severity distributions, we first processed the 

western US fire perimeters from Monitoring Trends in Burn Severity (MTBS) using 

the approach described by Parks et al. (2019) to obtain bias corrected CBI maps of 

every mapped fire greater than 404 hectares from 1985-2021. Parks et al., (2019) 

uses a Random Forest (Breiman 2001) model to predict CBI using multiple satellite 

derived spectral, climatic, and geographic variables in Google Earth Engine 

(Gorelick et al. 2017). These gridded CBI maps approximate field-based CBI 

measurements (Key and Benson 2006). Then we mosaicked individual fire maps 

into yearly fire maps from 1985-2021 and filtered to pixels (30m resolution) with 

>0.35 pre-fire NDVI as an additional step to remove pixels we presume to be non-

forest (Parks et al. 2023). 

We then counted the number of times each pixel burned (CBI values > 0) from 1985-

2021 to produce the contemporary fire frequency distribution within each hexel. 

Similarly, we extracted fire severity estimates for each fire that occurred in each pixel, 

which were split into 16 evenly spaced bins with values ranging from 0-3. 

To obtain historical fire frequency, we simulate the number of fires that occurred 

on each sampled pixel. That frequency is derived by the pixel’s MFRI given by 

BPS. We first extracted the mean fire return interval (MFRI) from the gridded 

biophysical setting layer at each sampled pixel. Then we randomly sampled from a 

binomial distribution at each pixel with parameters n = 37, P = 1 / MFRI, where n is 

the number of years (inclusive) in the contemporary period and P is the yearly 

probability of fire in the pixel given its biophysical setting. We then summarized 

these historical fire frequencies into a distribution of fire frequencies for each hexel.  

The historical and contemporary datasets have different measures of fire 

severity. Fire severity from the historical dataset (BPS; LANDFIRE 2020) is a 

categorical estimate based on tree mortality thresholds (0-25% 25-75%, 75-100% 

canopy mortality for low, moderate, and high severity, respectively), while the 

contemporary dataset (Eidenshrink et al. 2007; Parks et al. 2019) uses continuous 

CBI, which assigns a 0-3 score based on aggregated, visual estimates of fire 
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damage to herbs, shrubs, intermediate trees, large trees, and substrates one year 

following wildfire (Key and Benson 2006). We aligned these two datasets with 

ordered logistic regressions between CBI and fire severity classes defined by 

percent tree mortality.  

To build regression models, we used the CBI plot data from Parks et al. 

(2023), with supporting percent canopy mortality measures. This includes 72 plots 

in the 2011 Miller Fire (Gila Wilderness in New Mexico) and 46 plots in the 2011 

Hammer Creek fire (Bob Marshall Wilderness in Montana). First, we calculated 

plot level mortality using the weighted average of percent tree mortality by pre-fire 

tree coverage for intermediate and large trees. Then we modeled the relationship 

between CBI and percent tree mortality using two logistic regressions accounting 

for the ordering of severity classes (ordinal regression, e.g., mixed, and high 

severity are greater than low severity). We then computed the median and 95% 

confidence interval thresholds from a 1000 iteration bootstrap with thresholds 

optimized for greatest reliability using Cohen’s kappa (Adjei and Karim, 2016; 

Manel et al., 2001; Yilmaz and Demirhan, 2023). Threshold values with 95% 

confidence intervals for low to mixed+high (Tlm) were 1.56[1.33, 1.72] and 

low+mixed to high (Tmh) were 2.01[1.92, 2.17] (Fig. 3, accuracy statistics in 

Appendix B). We used 95% bootstrapped confidence intervals to account for 

potential threshold uncertainty that may result from a small sample size (n=118 

plots). 

Because our mortality/CBI thresholds will directly affect the historical severity, and 

thus severity departures, we performed five sensitivity tests for different thresholds and 

their effects on our results (Appendix D) and visually compared thresholds to the results 

in a similar percent mortality by CBI dataset (Saberi et al. 2022). Four sensitivity tests set 

static thresholds at the extremes of our estimated thresholds using the lower and upper 

95% confidence intervals. The fifth test used previously established thresholds from Miller 

and Thode (2007). We found that alternate thresholds did not significantly change results. 

Moreover, our thresholds closely match those reported by Saberi et al. (2022), who 

analyzed 315 plots across 14 fires in the Pacific Northwest. Saberi et al. found CBI values 

of approximately 1.3 at 25% tree mortality and ~2.0 at 75% mortality; our 95% confidence 

intervals were 1.33–1.72 and 1.92–2.17, respectively. However, they found CBI 

overestimated tree mortality in forests with large, open canopies (e.g., old-growth 
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ponderosa pine), suggesting that landscapes dominated by these types may show 

inflated severity departures. 

 With the CBI/mortality class thresholds calculated above, we estimated 

historical fire severity for each historical wildfire estimated above. Essentially, we 

ask “if the estimated fire had occurred, what severity would it be?” For each 

estimated historical fire, we assigned a severity class of low, mixed, or high, via 

weighted random selection with weights given by the percent likelihood of each 

severity class as described by the biophysical setting. For each estimated severity, 

we then drew randomly from a uniform distribution within the bounds of CBI and the 

outer thresholds between severity classes determined above. For example, if we 

assigned a low severity fire, we drew from a uniform distribution with a lower bound 

of zero and an upper bound of 1.72, the upper confidence bound determined from 

our threshold calculation. A mixed classification would range from 1.33 to 2.17. In 

total, this fire severity simulation provides fire severity estimates for each fire in 

each sampled pixel based on the biophysical setting. With these estimated fire 

severities, we then created fire severity distributions using the same 16 bins as 

described for contemporary fires for each hexel.  

Fire-regime Departure 

To compare departures from historical fire regimes across hexels with different 

characteristic fire regimes, we rescaled our distributions by the historical mean and 

standard deviation, producing Z-scores. Then we computed the Earth Mover’s Distance 

on frequency and severity, from historical to contemporary, independently. Because we 

applied EMD to Z-scored distributions, we can interpret departures approximately as Z-

scores relative to the mean of the historical fire regime. However, because the metric is 

distributional and fire frequency and severity are non-normal, we cannot make strong 

probabilistic inferences about what a given departure value represents, so we suggest 

using relative comparisons with Z-scores as a reference point (Panaretos and Zemel 

2019). We recommend performing regionally specific investigations to interpret our 

departure values. To aid interpretation, the full datasets (see data availability) contain 

non-standardized departures to provide values in the original units, number of fires and 

CBI.  

EMD can only be positive, so we modified attribute departures to show the net 

direction of change. We simply added a sign to the calculated fire frequency and severity 
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departures based on the change in MFRI and percent burned at high severity. Signed 

distributional fire frequency (FFD) and signed distributional fire severity departures (FSD) 

are the resulting metrics. Positive values stand for a net reduction in fire frequency, and a 

net greater proportion of high severity fire in the contemporary period compared to 

historical, respectively.  

Lastly, we calculated multivariate distributional fire regime departure index (MFRD), 

which represents the combined, additive effects of frequency and severity departures. 

FFD and FSD are normalized and continuous, so we combined them with the Euclidean 

distance √FFD2 + FSD2. Because we simulate fire regime attributes using 100 replicates, 

the key outputs for each hexel are the median normalized departures for FFD, FSD, and 

MFRD. See our data availability statement for pointers to our calculated statistics, 

descriptions of each, and locations for this analysis’s results. State-wide differences 

(excluding extremes) in fire-regime departures were computed on MFRD across all 

hexels using 1-way ANOVA and pairwise linear contrasts on 20% trimmed means (Wilcox 

et al. 2000; Ozdemir et al. 2018; Wilcox 2022). All effect sizes use explanatory power (ξ) 

from Wilcox and Tian (2011), where small, medium, and large effect sizes correspond to 

0.15, 0.35, and 0.50, respectively. 

Comparison to mean statistics 

We compared the proposed metrics to a commonly used suite of departure 

metrics based on means – the Fire-Regime Condition Class (FRCC; Barrett et al., 

2010). In each hexel, we used the fire frequency and severity information 

generated above to calculate historical and contemporary MFRI and proportion 

burned at high severity (Barrett et al. 2010; Johnson and Gutsell 1994). These 

values were then used to calculate FRCC fire frequency departure (FFDcc), fire 

severity departure (FSDcc) and fire regime departure (FRDcc) following the 

formulas in Barrett et al., (2010). 

To assess the difference between the proposed EMD-based metrics and 

mean-based FRCC metrics, we first computed the absolute values of FFD and 

FSD. Next, we transformed these absolute values, along with MFRD and the 

FRCC departure statistics, into percentiles (denoted by a P subscript) among the 

western US hexels, placing them all on the same 0-100 scale where 100 is the 

most departed landscape for a given metric. We then subtracted the relevant 

FRCC departure from the relevant distributional departure (e.g., MFRDP – FRDcc.P 
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= Δ P) to assess the difference in percentile between EMD-based metrics and 

FRCC. This process was performed on all datasets (Supplemental 3). 

To demonstrate how FFD, FSD, and MFRD differ from FRCC and to unpack 

potential mechanisms behind these differences, we provide two granular case 

studies focused on the Kalmiopsis wilderness and Olympic National Park. These 

were chosen to clearly show two archetypes for differing FRCC and distributional 

departures. Specifically, we discuss the historical and contemporary MFRI, FFDP, 

FFDcc.P and the underlying fire frequency distributions in both case studies. 

Contemporary human influence and Management Prioritization 

To investigate potential land-use and management associations to our 

proposed metrics, we first grouped hexels by state in the western US to analyze 

state-wide patterns of fire regime departure. Next, we analyzed relationships 

between MFRD and human influence. For each hexel, we calculated the average 

human footprint (Venter et al. 2016), the proportion covered by public lands, and 

the proportion covered by Wilderness and National Park lands (U.S. Geological 

Survey 2022). Human footprint combines eight human pressures (e.g., structures, 

roads, agriculture) into one characteristic score of human influence on landscapes 

(Venter et al. 2016). Human footprint, proportion of public lands, and proportion 

covered by Wilderness and National Park serve as indirect measures of fire 

exclusion activities and changes to the timing and frequency of anthropogenic 

ignitions (Balch et al. 2017; Boerigter et al. 2024). Each measure of human 

influence was grouped into five evenly spaced bins to address moderate skew 

and zero-inflation. We then calculated pairwise comparisons on 20% trimmed 

means (Wilcox 2022) to assess effect sizes of fire regime departure between 

different levels of human influence.  

MFRD may associate with current federal fire management programs, which 

can indicate a pathway towards achieving agency goals, so we examined whether 

firesheds designated as priority landscapes are more departed than non-priority 

landscapes (US Forest Service, 2023). The fireshed dataset delimits landscapes 

with similar wildfire risks, land tenure, and planned management (Ager et al. 

2021). Priority landscapes are designated by the US federal government as the 

firesheds (Ager et al. 2021) with highest need for future fire risk mitigation and the 

ability of communities to enact fire mitigation strategies (US Forest Service, 
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2023). For this analysis, we analyzed firesheds and then grouped them into 

priority and non-priority firesheds, determined by those with greater than 50% 

priority landscape coverage. We then calculated a t-test on 20% trimmed means 

(Wilcox 2022) between priority and non-priority firesheds to assess whether there 

are significant differences between these groups (Wilcox 2022). 

Package Credits 

Spatial data was manipulated using the R packages sf and terra (Hijmans et al. 

2022; Pebesma 2018; R Core Team 2022). Tabular data was manipulated using 

tidyverse, data.table (Barrett et al. 2023; Wickham et al. 2019), and overall 

analysis was performed with foreach, doParallel, and units (Daniel et al. 2022b, 

a; Pebesma et al. 2023). Robust statistical tests were performed with WSR2 (Mair et al., 

2024). Figures were generated with Rcolorbrewer, ggplot2 (Wickham et al. 2019; 

Neuwirth 2022) and in the Julia language with the packages OptimalTransport, 

Makie, and Distributions (Bezanson et al. 2017; Danisch and Krumbiegel 2021; 

Zhang et al. 2022; Lin et al. 2023). Calculation of EMD used the transport package 

in R (Schuhmacher et al. 2023). 

 

Results 

Fire Frequency and Severity Departures 

Overwhelmingly (89% of 960 hexels), forested landscapes across the western 

US are burning less frequently and more severely today than in the historical period 

(Fig. 4). Fire regime departures were most prevalent in California and southern 

Oregon, however all states showed notable departures (Fig. 4, 5A). Although there 

are hexels in the other quadrants of Figure 4, they do not appear to have strong 

regional clustering (Fig. 5A). Of hexels that did not burn in the contemporary period 

(e.g., places with long FRIs or severe fire deficits), 32% had a frequency departure 

greater than 1 - near the 75th percentile frequency departure across all hexels. 

 

Fire-Regime Departure metric 

A map of the distributional, multivariate fire regime departure metric (MFRD; Fig. 

5B) shows similar patterns as those described by distributional fire attribute 

departures. The 20% trimmed mean MFRD in California is statistically more 

departed than other states (P < 0.001, smallest California ξ: 0.68). Full pairwise 
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comparisons among states can be found in Appendix C. California, Oregon, and 

Nevada are the three most departed western States while Colorado is the least 

departed, followed by Utah, and Idaho.  

Relationship between Departure and Human Influence 

We found that fire regime departures increased with land use intensity (as 

measured by the human footprint; Fig. 5C). Furthermore, fire regime departures 

decreased as the percent coverage of public lands and the percent coverage of 

wilderness and national park increased (Fig. 5C; pair-wise comparisons in 

Appendix C).  

We found that priority landscapes are generally burning less frequently and more 

severely (Fig. 6). Additionally, priority landscapes have larger fire regime departures than 

non-priority landscapes (P value ≤ 0.001, ξ = 0.33). 

Comparison to Fire-Regime Condition Class (FRCC) 

 We found that the difference in percentiles (Δ P) for fire frequency 

departures between FRCC (FFDcc) and the proposed EMD-based metrics (FFD) 

are higher in frequent fire forests of California, Arizona, and New Mexico, 

meaning distributional fire frequency departure is reporting relatively larger 

departures in those regions than FRCC. We also found negative changes in 

infrequent fire forests of western Washington, Nevada, and the Central Rocky 

Mountains, meaning that FRCC suggests larger fire regime departures than the 

distributional fire frequency metric (Fig. 7). The mean Δ P.frequency, was -2 (SD = 

39, IQR = [-23,25]). For fire severity (Fig. 7), we found that the region near 

Yellowstone National Park has high Δ P.severity and there are large negative values 

near the Colorado Plateau and Eastern Cascades. Mean Δ P.severity was 0 (SD = 

31, IQR = [-21,16]). For MFRD (Fig. 7), we see the combined effects of both 

frequency and severity differences, and they show large positive differences in 

the Yellowstone region and large negative differences in the Colorado Plateau. 

The mean Δ P.regime was -1 (SD = 29, IQR = [-18,17]). 

Discussion 

Case study 1: Kalmiopsis Wilderness 

The Kalmiopsis Wilderness Area typifies a general finding of our study; a historically 

frequent, small-fire ecosystem where a fire attribute (frequency in this case) homogenized 

due to a few, large fires, and where mean statistics likely underestimate the nature and 
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extent of departure. We estimated a historical MFRI of 13 years, and the contemporary 

MFRI is 19 years. These values suggest a high frequency fire regime that changed 

minimally from 17th-19th century conditions (Fig. 8A). FRCC mean statistics reflect this 

with a 14th percentile departure in FFDcc. Upon closer inspection of the fire frequency 

distributions (Fig. 8B), the contemporary distribution is more homogenous than our 

estimate of the historical distribution. FFD captures homogenization of the fire frequency 

distribution resulting in a 43rd percentile fire frequency departure, substantially higher than 

differences in MFRI as the FRCC departure suggests.  

The proposed methods captured an ecological story about Kalmiopsis that MFRI 

could not tell but is supported by more intensive research methods. Paleoecological 

research suggests the historical fire regime of Kalmiopsis was maintained by cultural 

burning, resulting in a frequent fire ecosystem (MFRI 5-15yrs; Skinner et al. 2018; Knight 

et al. 2022). The loss of cultural burning has since led to the highest forest biomass in the 

last 3,000 years, indicating a lack of small, frequent fires that historically constrained 

biomass. In short, researchers used long-term fire scar records, oral histories, and 

biomass modeling to explain the homogenization of the landscape. Our analysis found a 

similar story despite using less intensive methods. 

Case study 2: Olympic National Park 

Conversely, Olympic National Park shows how mean statistics can artificially inflate 

departures. We estimated a historical MFRI of 308 years, a contemporary MFRI of 

~16,000 years, and a corresponding FRCC fire frequency departure (FFDcc) in the 90th 

percentile of western US wilderness areas and National Parks (Fig. 8A). FRCC departure 

is high because, as mean fire frequency approaches zero, common for infrequent fire 

ecosystems, the MFRI approaches infinity — inflating the mean departure statistic (Fig. 

8C). Inflated departure statistics could lead to suboptimal resource allocation if they are 

used to guide management prioritization (Haugo et al. 2019; Donato et al. 2023). The 

proposed approach mitigates this issue, with a lower relative departure that is the 14th 

percentile. Again, prior research has shown similar, but they did so by using multiple lines 

of evidence that are difficult to combine into intuitive statistics (Gavin et al. 2013; Haugo 

et al. 2019).  

The value of measuring changes in distributions 

This distributional approach addresses at least two key limitations of measures of 

central tendency that can lead to overgeneralizations (Fig. 8). First, complex interactions 
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between climate, land management, and vegetation may not change MFRI, but may 

change how fires burn in terms of their severity, such as the Kalmiopsis Wilderness case. 

Second, MFRI intrinsically approaches infinity when fire frequency is low, as shown in the 

Olympic National Park. Extending this logic across the western US (Fig. 7; Hagmann et 

al. 2021; Cova et al. 2023; Donato et al. 2023) we can infer large regions where means 

may mischaracterize fire regimes that changed in complex ways. For example, most of 

California has high differences in relative departure (ΔP), like Kalmiopsis. It’s likely that 

these landscapes are experiencing consolidation of area burned into individual, large fires 

rather than many small fires (Hagmann et al. 2021; Williams et al. 2023; Cova et al. 

2023). These complex changes drive ecosystem development, and our proposed 

methods introduce an intuitive metric that accounts for some of this complexity (Coop et 

al. 2020; Jones and Tingley 2022; Davis et al. 2023).   

Approaches like the one we have presented here, which use metrics that characterize 

the center, spread, and shape of statistical distributions and provide more nuanced 

information to natural resource managers than differences in means. Means (e.g., MFRI), 

and differences in means, may be more easily understood, but they can mischaracterize 

fire regime departures in areas with high spatial and temporal variance in wildfires (Fig 7 

and 8). Management plans designed around mean values can sacrifice accuracy in favor 

of simplicity (Koontz et al. 2020; Stephens et al. 2020). Concepts like “historical range of 

variability,” are also based on an understanding that shape and spread are relevant 

attributes of distributions that can inform management. These concepts have been 

operationalized by resources managers, for example, managers at Yosemite and Lassen 

Volcano National Parks use coarse distributions of acceptable fuel characteristics to 

design treatment implementation plans (Yosemite National Park 2004; National Park 

Service 2022). Distributional and statistical distance metrics offer a quantitative means to 

evaluate progress toward such targets and to assess whether management actions 

maintain or restore variability within desired bounds. Beyond this case study of fire 

frequency and severity, these tools can be extended to other ecosystem processes 

where both the mean state and its variability define resilience. 

EMD enables new research into how fire regimes and their changes influence other 

landscape scale processes. Many ecological and resource management questions can 

benefit from approaches that characterize differences in statistical, temporal, or spatial 

distributions as opposed to changes in specific statistical moments. One example for fire 
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science is to examine the hypothesis that diversity of fire over space (pyrodiversity) leads 

to habitat diversity, and consequently, biodiversity (Martin and Sapsis 1992). Recent work 

in this theory called for the integration of historical baselines into pyrodiversity research 

because species presence emerges from a combination of current conditions and 

historical legacies (Jones and Tingley 2022; Jones et al. 2022). Our study essentially 

measures how pyrodiversity changed over the last few centuries and can be readily 

applied to pyrodiversity research (Steel et al. 2021). Beyond the pyrodiversity-biodiversity 

hypothesis, we see relevant applications to understanding habitat diversity, continuous 

changes in fire regimes through time, and changes in fire behavior, to name a few 

(Cansler and McKenzie 2014; Zhang et al. 2020; Cova et al. 2023). Readers are referred 

to the literature on optimal transport theory for a deeper treatment (Peyré and Cuturi 

2020). 

Limitations 

Our results are sensitive to the assumptions and limitations of the datasets we used, 

namely LANDFIRE BPS (LANDFIRE 2020), and MTBS (Eidenshrink et al. 2007). 

LANDFIRE BPS uses expert information, paleoecological evidence, and simulation 

modeling to estimate historical fire regimes of vegetation groups, and our results reflect 

their methodological decisions (Barrett et al. 2010; LANDFIRE 2020). For example, 

LANDFIRE BPS does not report any low severity fire in the biophysical settings in the 

region south of Yellowstone National Park, likely explaining why we found lower 

contemporary fire severity despite recent increases in high severity reburns and evidence 

of low-severity fires in much of the ecosystem (Fig. 5A; Cansler et al. 2018; LANDFIRE 

2020; Spies et al. 2018; Turner et al. 2022).  

Furthermore, we assume that BPS fire return intervals and fire rotation periods are 

equivalent at the landscape scale (Johnson and Gutsell 1994; Hargrove et al. 2000; 

Farris et al. 2010; Swetnam et al. 2011; Haugo et al. 2015). However, specific studies 

posit that biases in the methods used to estimate fire regime attributes of BPS types may 

overestimate the historical frequency of low- and mixed-severity fire in dry forests (Baker 

2024). To address these concerns, we included the adjustments to the 48 BPS types 

modified by Baker (2024) in a sensitivity test (Appendix D).With this modification, the 

percentage of hexels burning less frequently and relatively more severely decreased from 

89% to 66% - a measurable effect, but one that doesn’t change the key takeaway that 

most of the western US appears to be burning less frequently and more severely than 
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historical estimates. A full spatial analysis of these differing results is beyond the scope of 

this study, but we note that the adjusted results show that much of the western Sierra 

Nevada range are no longer shown as burning less frequently and more severely 

(Appendix D) than BPS estimates. This is highly contradictory to multiple lines of 

evidence from this region that show that contemporary wildfires are burning less 

frequently and relatively more severely based on fire scars (Coppoletta et al. 2024; Parks 

et al. 2025), aerial photography (Lydersen and Collins 2018), process-based models 

(Barth et al. 2015), Indigenous oral histories (Stephens et al. 2023), and sediment core 

records (Klimaszewski-Patterson et al. 2024), all of which support using unmodified BPS 

fire return intervals as we have done here. 

We used MTBS, which only includes fires greater than 404 hectares (Eidenshrink et 

al. 2007; Picotte et al. 2020), which may introduce a bias in our departure measures 

towards less frequent, more severe departures (Cansler and McKenzie 2014; Cova et al. 

2023). To address this, we ran two tests comparing MTBS data to two California-focused 

datasets that include small fires from Koontz et al. (2020) and Cova et al. (2023). Overall, 

severity departures were slightly lower with the inclusion of small fires, but all three 

datasets yielded similar conclusions that California is burning less frequently and 

relatively more severe now than it did in the past (see Supplement 2). 

Our methods have three main limitations. First, we simulated fire frequency using a 

binomial model determined by each pixel’s MFRI. The frequency model is appropriate 

for simulating wildfires over periods of time since MFRI can approximately account for 

the lack of independence between yearly burn probabilities, but a more robust 

simulation would likely be more accurate and extendable to different time periods (Li 

et al. 1999; Reed and McKelvey 2002; Moran et al. 2025). Second, we simulated 

severity with a weighted piecewise uniform distribution. This severity model does not 

capture gradients in fire severity, so while the classes of severity should be accurate 

based on our bootstrapped thresholds, the transitions in CBI between classes are 

simplified (Agee 1993; Sugihara et al. 2018). Finally, we measured departures in fire 

frequency and severity separately. Fire regimes are made up of many correlated fire 

attributes (Sugihara et al. 2018). Developing the joint distributions of multiple fire 

attributes could quantify changes in the covariance between fire attributes and fire 

regimes more broadly, potentially exposing novel fire regime departures (Parks et al. 

2015; Steel et al., 2015).  
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Despite these limitations, our study is a step towards the development of 

statistically robust and ecologically meaningful multivariate distributional departure 

metrics in ecology. Metrics that characterize distributional changes in fire regimes 

provide a more nuanced characterization of departures than those based on means 

(Sugihara et al. 2018; Buma et al. 2019). Recognizing changes in the statistical 

distributions of fire regimes, when combined with land management practices, can 

highlight opportunities for restoring historical fire dynamics and supporting ecosystem 

resilience to future disturbances and climate changes. 

Fire regime departures of the western US 

Forested landscapes of the western US are burning less frequently and more severely 

today compared to a historical reference period (1600-1880; Fig. 5). Although annual 

area burned increased across the western US since 1985, contemporary fire frequency is 

still well below levels indicated by models of 17th-20th century fire regimes based on 

paleoecological data (Marlon et al. 2012; McClure et al. 2024). This paradoxical 

observation of rapid contemporary increases in fire activity that still remains below 

historical levels, is well documented by previous research (Haugo et al. 2019; Hagmann 

et al. 2021; Williams et al. 2023; Donato et al. 2023). This widespread fire deficit (Parks et 

al. 2015b) is understood to be increasing the relative incidence of uncharacteristically 

severe fires across the western US (Haugo et al. 2019; Hagmann et al. 2021; Higuera et 

al. 2021; Williams et al. 2023; McClure et al. 2024; Povak et al. 2025). Our analyses 

show that decreases in fire frequency correspond strongly with increases in fire severity, 

supporting this contention (Fig. 4 and 5). 

Areas with high contemporary human land use have the highest departures. We 

found higher departures in areas of high human footprint, lower public land coverage, 

and lower Wilderness and National Park coverage (Fig. 5C). These patterns are likely 

due in part to fire exclusion. Fire exclusion policies have been, and continue to be, 

implemented in areas with high human footprint due to the risk wildfires pose to 

community safety and assets (Miller 2006; Wagtendonk 2007; Iglesias et al. 2022; 

Boerigter et al. 2024). The deficit of wildland fire leads to increasing fuel accumulation, 

particularly in the sub canopy, and subsequently larger and more severe wildfires 

which further threaten communities, encouraging further fire suppression (McLauchlan 

et al. 2020; Higuera et al. 2023; Kreider et al. 2024) – a positive feedback of 

ecosystem degradation termed the fire suppression paradox (Calkin et al. 2015; 
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Cohen 2008; Kreider et al. 2024). While there is extensive evidence supporting this 

explanation, our relatively large hexels may produce departure values that are driven 

by simple changes in where fires occur (Kreider et al. 2024), rather than an intrinsic 

change in the fuels (Haugo et al. 2019; Povak et al. 2025). 

Federally prioritized landscapes provide another lens through which to assess the 

relationship between fire regime departure and human influence (Fig. 6). Priority 

landscapes designated in the Wildfire Crisis Implementation Plan were largely identified 

based on community vulnerability and capacity to mitigate wildfire hazard (US Forest 

Service, 2022). Our results show that priority landscapes have higher fire regime 

departures than non-priority landscapes, in part because of the prevalence of large 

priority landscapes in California (Fig. 5B), where the highest departure values in the 

western US occur. Fire regime departure and community risk are seemingly interlinked. 

We can, however, break the link between human influence and fire regime departures by 

implementing intentional fire management plans that returns frequent, low intensity fire to 

fire-prone forests (Ager, Evers, et al. 2021; Barros et al. 2021; Iglesias et al. 2022; 

Krawchuk et al. 2023; Syphard et al. 2013; North et al. 2024; Dunn et al. 2020).  

Our findings, that most ecosystems in the Western US exhibit lower frequency 

and higher severity fire activity than their historical references, support the use of 

prescribed and cultural burning, and managed wildfire, alone and in combination 

with mild-moderate mechanical treatments. These interventions reintroduce low 

severity fire and reduce fuel loads (Davis et al. 2023; 2024; Hessburg et al. 2005; 

Kalies and Yocom Kent 2016). Together, these moderate wildfire severity and 

reduce risk to nearby communities. Lower risk, in turn, eases the social and 

operational constraints on restoration, allowing managers to reestablish the full 

spectrum of fire effects, potentially including high-severity patches where 

appropriate (Miller et al. 2020; Stephens et al. 2020; Donato et al. 2023; Williams 

et al. 2024; Baker 2024; Davis et al. 2024). 
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List of abbreviations 

EMD: Earth Mover’s Distance 

MFRI: Mean Fire Return Interval Departure 

BPS: BioPhysical Setting 

HRV: Historical Range of Variation 

MTBS: Monitoring Trends in Burn Severity 

CBI: Composite Burn Index 

NDVI: Normalized Difference Vegetation Index 

FRCC: Fire Regime Condition Class 

FFDcc: FRCC Fire Frequency Departure 

FSDcc: FRCC Fire Severity Departure 

FRDcc: FRCC Fire Regime Departure 

FFD: Distributional Fire Frequency Departure 

FSD: Distributional Fire Severity Departure 

MFRD: Multivariate Distributional Fire Regime Departure 

SD: Standard Deviation 

IQR: Interquartile range 

 

Availability of data and materials 

Additionally, we provide R scripts for the full analysis and each databases 

analysis at https://github.com/souma4/Fire_Regime_Departure. We provide 

analyzed hexels, wilderness areas, protected areas, firesheds, HUC8 and HUC10 

datasets as GeoPackage files (gpkg, similar to GeoJSON) at the following 

database 

https://osf.io/vak2d/?view_only=e501253436074599a93dbb5cb627de47. Within 

each GeoPackage, we report all statistics described in Supplemental 1. In tandem 

with each dataset, we provide a database of every dataset, with each dataset 

containing maps of BPS, fire frequency, and average fire severity, and figures that 

show the historical and contemporary frequency and severity distributions for all 

landscapes within.  
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Figure Captions 
Figure 1: Conceptual diagram of fire regime change in a historically frequent fire 
ecosystem when observed over 37-year historical and contemporary periods. A) 
Transitioning from a frequent fire system to an infrequent fire system due to fire exclusion 
leads to homogenization in spatial patterns of fire occurrence. B) As a result, the 
statistical distributions of fire frequency during historical and contemporary are different. 
However, the contemporary and historical periods have the same mean fire frequency, 
marked by the dashed line. Means do not characterize the homogenization of the fire 
frequency distribution through time. 

Figure 2: Workflow of our analysis within a single landscape polygon. Circles represent 
numeric outputs while rectangles are operations. We sampled forested pixels (in green) 
and performed the operations in the light blue box for each pixel. Then we converted 
those results to normalized distributions of fire frequency and severity for historical and 
contemporary time periods. From these distributions, we calculated EMD between 
historical and contemporary fire frequency departure (FFD) and fire severity departure 
(FSD), which are combined into a multivariate fire regime departure (MFRD) index. This 
analysis is replicated 100 times for each landscape, and our primary summaries are the 
median FFD, FSD, and MFRD.  
 
Figure 3: Relationship between percent tree mortality (y-axis) and CBI (x-axis) from Parks 
et al. (2023). LANDFIRE classes low severity as < 25% tree mortality, mixed severity as 
between 25% and 75%, and high severity as > 75%. We show the median logistic 
regression curves with thresholds for low to mixed (Tlm) and mixed to high (Tmh) marked 
by vertical dashed lines and median and 95% bootstrapped confidence intervals by the 
error bars. Median and 95% confidence intervals for Tlm and Tmh are 1.56[1.33, 1.72], and 
2.01[1.92, 2.17], respectively. AUC is the mean bootstrapped AUC. Additional accuracy 
statistics are in Appendix B. 
 
Figure 4: Scatter plot of signed fire frequency (FFD; x-axis) and severity (FSD; y-axis) 
departures for hexels (≥ 10% forested) and states in the western US. Colored symbols 
show the 20% trimmed mean and 95% CIs for each state within our study area. 
Quadrants are labeled based on the average direction of change in each attribute. Points 
further away from (0,0) are more departed. Eighty-nine percent of hexels burned less 
frequently and more severely during the contemporary period compared to their historical 
baseline. 
 
Figure 5: A) Map of signed fire frequency (FFD) and severity departures (FSD) for hexels 
across western US forested areas. Colors further away from the center (white) are more 
departed. Color breaks are the absolute 33rd percentiles in each dimension (to ensure 
negative and positive color breaks are evenly spaced). B) Map of the multivariate 
distributional fire regime departure (MFRD) for hexels across forested areas within the 
western US. Larger values represent larger departures. We also display hexels that did 
not burn during the contemporary period in grey or blue-purple, where blue-purple stands 
for a frequency departure greater than 1. California has significantly higher departures 
than other states (linear contrasts in Appendix C). C) Mean and 95% confidence interval 
hexel multivariate fire regime departure (MFRD) plotted with multiple binned human land 
use metrics. Left to right are the average human footprint within a hexel, percentage 
covered by public lands, and percentage covered by Wilderness & National Park Service. 
In all analyses, increased human footprint, decreased public land coverage, and 
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decreased coverage by protected lands resulted in higher departures (α= 0.01, full 
pairwise tests are available in Appendix C).  
 
Figure 6: A) Map of firesheds with the Wildfire Crisis Strategy priority landscapes (WCS 
landscape) outlined in black. Firesheds highlighted in red are those with greater than 50% 
of their area within a WCS landscape. B) Boxplot of priority and nonpriority firesheds, 
error bars denoting the 95% Confidence Intervals on 20% trimmed means. 
 
Figure 7: Difference between the relative change for the proposed distributional metrics 
(in percentile) and the mean based FRCC metrics (in percentile) for fire frequency, 
severity, and regime departures (distributional – mean). Positive values are locations 
where the proposed EMD-based metrics reported a larger departure relative to the 
FRCC. Values further away from zero have the largest dissimilarity from FRCC. 
 
Figure 8: A) Inset map of the study areas and a stem plot illustrating differences between 
mean-based fire frequency relative departure (Fire Regime Condition Class; relative to 
the western U.S.) and distributional departure based on Earth Mover’s Distance (EMD). 
B) Fire frequency distributions for Kalmiopsis and Olympic National Parks, respectively. 
Each semi-transparent line represents one of the first 30 simulation runs (out of 100, 
reducing clutter), illustrating the non-normal variance in distributions. Dotted vertical lines 
show mean fire frequency, corresponding to historical and contemporary MFRIs: 13 and 
19 years for Kalmiopsis; 309 and ~17,000 years for Olympic. Kalmiopsis appears to have 
shifted from a frequent, variable regime to an infrequent, simplified one—poorly captured 
by mean-based metrics. In contrast, the distributions of Olympic remain similar despite 
large differences in MFRI, highlighting how EMD-based metrics can be resistant to large 
MFRI differences in infrequent fire systems. 
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