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Abstract 

Background  Increasing wildfire area burned has left millions of hectares in the western United States (US) in need 
of reforestation. Recent federal legislation allows for increased investments in tree planting to address the backlog 
of planting needs in previously burned areas. To support post-fire planning and assessment, we developed Regen-
mapper, a web-based decision support system (DSS) that provides spatial information on natural regeneration poten-
tial within post-fire environments. The program is freely available from a web browser (https://​alphe​us.​dbs.​umt.​edu/​
regen​mapper) and is designed to function across all land ownership categories for the 11 western States.

Results  Regenmapper allows users to select historical wildfires or upload their own burn severity maps for recent 
fires. Within the burned area, it then predicts the potential for natural regeneration based on distance to mature live 
trees (seed sources) and hydroclimatic conditions. To this end, we developed 30-m resolution soil water balance 
and surface temperature models with corresponding projections for the 2050 period based on scenarios from the 6th 
Coupled Model Intercomparison Project (CMIP6). These data are used to estimate the probability of natural seedling 
regeneration based on historical or future biophysical conditions, respectively, and species-specific climatic toler-
ances. We also implement a simple planting prioritization algorithm based on distance to roads and the relative 
effects of dispersal and climatic limitations to rapidly identify accessible sites that are unlikely to reforest naturally. 
For US Forest Service managers, we develop an additional prioritization matrix based on fire severity, the probability 
of natural regeneration, and where federal law mandates reforestation when fires burn through recently harvested 
areas. Finally, we demonstrate model outputs in a case study approach through the 2017 Lolo Peak fire in Montana, 
US.

Conclusions  Investments in tree planting will influence the extent and trajectory of future forests, but drought, 
climate change, and wildfires may challenge the ability of managers to re-establish forests over upcoming decades. 
DSS’s like Regenmapper will benefit the planning and execution of tree planting efforts by reducing time required 
to conduct post-fire assessments and improving planting outcomes.
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Resumen 

Antecedentes  El incremento del área quemada ha dejado millones de hectáreas en el oeste de los EEUU con la 
necesidad de ser reforestadas. La reciente legislación federal permite las inversiones en plantación de árboles para 
cubrir la necesidad de alcanzar el trabajo pendiente de reforestar áreas previamente quemadas. Para apoyar el pla-
neamiento y determinación de acciones en el post-fuego, desarrollamos el “Regenmapper”, un sistema de soporte de 
decisiones basado en la web (DDS), que provee de información espacial sobre el potencial de la regeneración natural 
dentro de ambientes post-incendios. El programa es provisto de manera gratuita desde una página WEB (https://
alpheus.dbs.umt.edu/regenmapper) y fue diseñado para que funcione en todos los tipos de categorías de tenencia 
de la tierra para los 11 estados del oeste de los EEUU. 

Resultados  El “Regenmapper” permite a los usuarios seleccionar los incendios históricos pasados e ir cargando sus 
propios mapas de severidad de fuegos recientes. Dentro del área quemada, el programa predice luego el potencial 
para la regeneración natural basado en la distancia a los árboles maduros (fuentes de semilla) y las condiciones hidro-
climáticas. Posteriormente, desarrollamos modelos de balance agua en el suelo y de temperaturas del suelo superfi-
cial con sus correspondientes proyecciones para el período 2050, basados en escenarios del 6to. Proyecto Acoplado 
de Entre-Comparaciones (CMIP6). Estos datos son usados para estimar la probabilidad de la regeneración natural de 
semilla basada en datos históricos o proyectados a futuro de condiciones biofísicas, respectivamente, y de toleran-
cias especie-específicas. Implementamos también un algoritmo de priorización de plantación basado en la distancia 
a rutas o calles y los efectos relativos de la dispersión y las limitaciones climáticas para identificar rápidamente sitios 
accesibles que sean no factibles de ser reforestados naturalmente. Para los gestores del Servicio Forestal, desarrolla-
mos una matriz de priorizaciones basada en la severidad del fuego, la probabilidad de regeneración natural, y donde 
la ley federal exige la reforestación, cuando los incendios ocurrieran en áreas recientemente cosechadas. Finalmente, 
demostramos los resultados de la aplicación del modelo a un estudio de caso del incendio ocurrido en 2017 en Lolo 
Peak, en Montana, EEUU.

Conclusiones  Las inversiones en la plantación de árboles va a tener influencia en la extensión y trayectoria de 
futuros bosques, aunque la sequía, el cambio climático y lo incendios pueden desafiar la habilidad de los gestores 

para re-establecer los bosques en décadas por venir. Tanto 
el DDS´s como el Regenmapper beneficiarán el planeami-
ento y la ejecución de los esfuerzos de plantación medi-
ante la reducción del tiempo requerido para realizar las 
determinaciones post-fuego y mejorar los resultados de la 
plantación. 

Background
In recent decades, resource managers in the western 
United States (US) have seen a dramatic increase in 
reforestation needs driven largely by increased wild-
fire burned area (Dumroese et al. 2019; Dobrowski et al. 
2024). Consequently, the demand for tree planting activi-
ties now outpaces the ability of managers to complete 
them. The initial post-disturbance reorganization phase, 
when most planting projects are planned and executed, 
is a critical indicator of ecosystem resilience to distur-
bance and has lasting implications for the future of for-
ested ecosystems (Seidl and Turner 2022). Indeed, the 
importance of understanding and predicting recruitment 
dynamics in the western US has become evident as much 

of the region has become more arid, with more frequent 
droughts and high temperatures that have been linked 
to widespread forest mortality (Moss et  al. 2024) and 
recruitment failure (Stevens-Rumann et  al.  2018; Davis 
et al. 2019, 2023).

Recent legislation, including passage of the Repairing 
Public Lands by Adding Necessary Trees (REPLANT) 
Act within the 2021 Bipartisan Infrastructure Investment 
and Jobs Act (IIJA), allow for additional investments in 
tree planting, primarily to address a backlog of reforesta-
tion needs in areas burned by wildfires. Given the mas-
sive land base that could potentially experience planting 
(Cook-Patton et  al. 2020), meeting that need requires 
ramping up production at all levels of the supply chain, 
including seed collection, seedling production, storage, 
transportation, and field delivery (Fargione et  al. 2021). 
Moreover, labor and housing markets limit hiring abil-
ity, which could further constrain capacity (Altieri et al. 
2023). These factors, and unforeseen forest losses in the 
next decade could, despite best efforts, prevent forest 
managers from meeting objectives set out in REPLANT 
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and other policy directives. Careful selection of sites, 
with planting designed to maximize survival, will be 
important for maximizing forest recovery and return on 
investment. While regional datasets and tools have been 
developed to assist reforestation efforts using particular 
tree species in California (Stewart et  al. 2021) and the 
southern Rocky Mountains (Rodman et  al. 2022), tools 
for broad-scale, consistent mapping across the West are 
not yet available.

Post-fire tree regeneration of many western US conifers 
is constrained by both the availability of tree seeds and 
post-fire climatic conditions (Hansen et  al. 2018, Davis 
et  al. 2019, Stevens-Rumann and Morgan 2019). Seed 
availability acts as an initial filter on tree regeneration, 
but climate can also limit new seedling establishment, 
even when seeds are available from nearby trees (Davis 
et al. 2019, Rodman et al. 2020a, b; Holden et al. 2024). 
Indeed, while tree planting can help to bypass initial fil-
ters of seed availability and germination, hydroclimate is 
strongly tied to regeneration success, with reduced sur-
vival of planted trees in warm, dry areas like the South-
west (Ouzts et al. 2015; Rodman et al. 2024), and on arid 
sites within the southern Rocky Mountains (Marshall, 
et  al.  2024). Identifying locations where natural tree 
regeneration is likely to occur after fire, as well as key 
factors limiting tree regeneration (i.e., climate vs. seed 
availability) will provide valuable information for ini-
tial post-fire planning and prioritization of reforestation 
activities.

Here, we describe Regenmapper—a new, web-based 
reforestation decision support system (DSS) designed to 
help managers meet the growing need for post-fire plant-
ing information across the western United States. Spe-
cifically, we (1) develop models to predict post-fire tree 
recruitment using high spatial resolution biophysical lay-
ers and a large (ca. 10,000 field plots) database of post-fire 
observations, (2) integrate these models into a publicly 
available web-based tool for evaluating regeneration 
potential for historical or recent fires, (3) develop logic 
for prioritizing planting for both meeting federal law and 
on biophysical and cost considerations, and (4) return 
raster- and vector-based spatial data, as well as visual aids 
to inform post-fire planning.

Methods
The primary function of Regenmapper is to provide 
managers across a range of landownership categories 
with easily accessible data about the post-fire environ-
ment at recently disturbed sites. Key outputs include 
30-m resolution maps estimating the probability of tree 
regeneration for common western conifer species, and 
layers describing limitations related to climate and seed 

availability. A diagram illustrating the modeling process 
is shown in Fig. 1.

Spatial predictors of post‑fire recruitment
Historical and future hydroclimatic data
We represent the long-term biophysical and climatic 
conditions at each site using 30-m resolution 95th per-
centile annual maximum potential soil surface tem-
perature (PSST) grids (Holden et  al. 2024) and a 30-m 
climatic water balance deficit (CWD) grid. To supple-
ment pre-existing maps of PSST, we developed the CWD 
layer for the 1992–2021 normal period using time series 
of daily weather data generated at a dense network of 
points. These data were previously used to map PSST 
and additional details on the point sampling distribu-
tion and mapping methods can be found in Holden et al. 
(2024). At each of 61,000 sample points, we simulate the 
daily water balance from 1992 to 2021 with a snow and 
soil moisture model, using weather inputs (tempera-
ture, humidity, radiation, wind speed) extracted from 
250-m-resolution daily grids (Holden et  al. 2018). We 
then use data from the 6th Coupled Model Intercompari-
son Project (CMIP6; Eyring et al. 2016) and a stochastic 
weather simulator (Steinscheider and Brown 2013) to 
generate daily weather inputs for the 2050 mean period 
(2035–2065) at each sample point, using monthly mean 
deviations in temperature and precipitation based on 
five general circulation models (GCMs; Table  S1). For 
each variable of interest (e.g., CWD), we calculate the 
climatological average value (e.g., 1992–2021 or 2035–
2065 mean annual climatic water deficit) for each point 
and then interpolate those values using geographically 
weighted regression with elevation and solar radiation as 
covariates. This point-based modeling approach allows 
for gridding the water balance outputs at a relatively fine 
30-m spatial resolution, which would be computationally 
intractable when applying the same algorithms to high-
resolution grids. Additional details on the gridding pro-
cess are provided in the supplementary materials.

Post‑fire seed availability
Access to nearby seeds from live trees is a primary 
constraint on post-fire conifer regeneration (Stevens-
Rumann & Morgan 2019; Davis et  al. 2023). We devel-
oped two alternative methods for estimating pre-fire 
vegetation cover and distance to live trees. For recent 
(2021–present) wildfires, pre-fire forest canopy cover is 
extracted from the Rangeland Analysis Platform (RAP) 
v.3.0 dataset (Allred et  al. 2021), which provides annual 
30-m raster grids for 6 vegetation cover types (i.e., shrub, 
grass, tree) across the continental US. For an enlarged 
area around the fire extent, we classify any tree cover val-
ues > 10% as pre-existing forest. We then overlay these 
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maps with Landsat-derived burn severity maps to calcu-
late the distance to the nearest unburned or low-severity 
pixel that was forest prior to the fire. This is the primary 
distance to seed source input used in the model. As an 
alternative method for earlier (pre-2021) fires, canopy 
height data from the fusion of spaceborne LiDAR (i.e., 

GEDI) and Landsat data are also available (Potapov et al. 
2021). Here, users have the option to select a height 
threshold above which surrounding vegetation is consid-
ered to be a seed-bearing tree. Figure S1 shows examples 
of distance to seed source estimates using both GEDI and 
RAP vegetation models.

Fig. 1  A diagram illustrating the basic Regenmapper workflow and outputs for assessing potential for natural regeneration in post-fire 
environments
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Post‑fire recruitment models
We used data on post-fire tree seedling recruitment 
assembled by Davis et  al. (2023) to develop binomial 
(logit link) generalized linear mixed models (GLMMs) 
of post-fire recruitment potential. While our methods 
follow those described by Davis et  al. (2023), several 
hundred plots were omitted at the request of individual 
data contributors or because they were beyond the geo-
graphic scope of this tool (i.e., South Dakota), thus our 
results may vary slightly from those described in the 
previous study. The reduced data included 10,100 plots 
in 322 unique fires across the western US (Figure S10).

Prior to fitting GLMMs, we used boosted regression 
tree models (BRT; Friedman 2001, Friedman 2002) to 
search for potential two-way interaction terms. Variable 
plot sizes in these data require the use of an offset term, 
precluding the use of common machine learning algo-
rithms like BRT for final predictions. Here, we used BRTs 
as an exploratory tool, treating log (plot area) as a predic-
tor in the model. We then used spatial cross-validation 
and feature selection, repeated for a range of different 
random spatial data configurations, to identify important 
predictors. For these data, we randomly assigned obser-
vations into groups by fire ID using a range of k = 3–20 
CV folds (approx. 33–5% of the data withheld in each 
fold). For each of the 14 iterations of the data, we opti-
mized a BRT model using forward feature selection 
(Meyer et al. 2018), retaining selected variables each time 
and then summarized the occurrence of individual pre-
dictor variables across all 14 iterations (Erickson et  al. 
2023). This approach provides a robust way of identifying 
an optimal set of predictor variables for a given dataset. 
Using a reduced variable model, we then fit a final BRT 
model for each of the 14 CV scenarios and queried the 
model for significant 2-way interactions which we then 
evaluated as candidate predictors in GLMM models. 
BRT analysis showed some support for clay and sand 
fractions and interactions with CWD, and a strong inter-
action between CWD and length of time between a fire 
and when field sampling occurred.

We developed GLMMs for seven individual coni-
fer species which are widely distributed in the US West 
(subalpine fir, Abies lasiocarpa; western larch, Larix 
occidentalis; Engelmann spruce, Picea engelmannii; 
lodgepole pine, Pinus contorta; Douglas-fir: Pseudotsuga 
menziesii; and a combined model for Jeffrey pine, P. jef-
freyi and ponderosa pine, P. ponderosa). Additionally, 
we developed an all-species model, where any juvenile 
conifer density greater than zero was coded as a posi-
tive response, which we provide for users conducting 

rapid post-fire assessments where the primary concern 
is identifying areas where any regeneration is unlikely. 
We modified individual and all-species species models 
from Davis et  al. (2023) by replacing the 30-year mean 
climate variables and the heat load index with the finer 
resolution CWD and PSST metrics described above and 
then repeated model selection with the new climate vari-
ables for all species. All candidate models included time 
since fire when plots were sampled (years), distance to 
seed source (nearest adult live tree), percent surround-
ing post-fire live tree cover (in a 300-m radius), 30-year 
mean annual CWD, and PSST as fixed effects. The ini-
tial full model for each species also included maximum 

and minimum growing season (April–September) CWD 
anomaly in the 5  years post-fire, percent soil clay con-
tent (Ramcharan, et  al.  2018)  and its interaction with 
30-year CWD, the interaction between time since fire 
and 30-year CWD, the interaction between PSST and fire 
severity, and interactions between post-fire CWD anom-
alies and the following variables: 30-year CWD, PSST, 
and either fire severity or surrounding tree cover. All 
candidate models also included fire ID as a random inter-
cept term and an offset of log(plot size). Models were too 
complex if we included interactions between post-fire 
CWD anomalies and both fire severity and surround-
ing tree cover, so we selected one by comparing AIC of 
initial models. We then used tenfold cross validation to 
iteratively remove interaction terms, post-fire climate 
anomaly variables, and soil clay content to maximize 
model skill based on cross-validated AUC. If removing 
an interaction or variable resulted in higher cross-vali-
dated model skill, then we removed the interaction/vari-
able that resulted in the greatest increase and repeated 
the cross-validation until removing interactions/variables 
reduced model skill. Where cross-validated AUC values 
were within 0.005 of each other, we chose the model with 
the lowest AIC. Plots located within the same fire were all 
included within a single fold and predictions to fires used 
for validation assumed the fire-level intercept was equal 
to the global intercept.

We report both the full (i.e., no independently with-
held data) and cross-validated model accuracy. We used 
partial effects plots to interpret fixed effects in the final 
GLMMs, where the effect of the target variable was 
evaluated across the full range of the data with all other 
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predictors set to their median value. Model predictions 
are made using values of 100 m2 for plot area and 5 years 
for time since fire; thus, regeneration potential is defined 
as one more seedlings being present at 5 years post-fire in 
a 100-m2 area. Finally, predictions from the final GLMM 
models were classified using a threshold calculated by 
maximizing the sum of the model sensitivity and speci-
ficity (Freeman and Moisen 2008).

Planting prioritization
Cost and biophysical conditions
Following large 5  years, it may not be possible to plant 
in each location that there is an identified reforestation 
need. To this end, we developed a planting prioritization 
index (PPI) which balances access considerations, poten-
tial for natural tree regeneration, and climatic conditions 
that may influence planting outcomes.

The index is calculated using the following equation:

where RoadDistance (a simple proxy for planting cost) 
is the distance from the center of each 30-m pixel to the 
nearest road extracted from OpenStreetMap (OSM) and 
USFS road databases, RegenClim is the probability of nat-
ural regeneration, assuming that a seed source is available 
(climate constraints only), and RegenProb is the predicted 
probability of natural regeneration considering all effects 
(climate and distance to seed). Here, we isolate climatic 
effects from the regression model by setting distance to 
adult trees to a constant value of 10 m and surrounding 
tree cover to the median dataset value (17%) for all ras-
ter cells prior to prediction. The PPI function is applied 
to each 30-m grid cell within the fire and assigns higher 
values to cells that are near roads, have a low probability 
of regenerating naturally, and a high climatic suitability. 
Figure S11 shows the relative effects of each term across a 
range of possible values. To further simplify the resulting 
30-m resolution cost index raster, we classify the output 
into 5 discrete classes within each fire following Holden 
and Evans (2010). First, we calculate local Moran’s I sta-
tistic on the cost index raster to identify groups of adja-
cent pixels with similar values. Then we apply K-means 
clustering to group the Moran’s I values into discrete 
classes. The result is a set of spatially discrete units, 
ranked from low to high (1–5) with the largest values 
indicating sites near roads that are unlikely to regener-
ate without planting and where climatic conditions make 
successful planting more likely.

Planting Priority Indexi =
1

RoadDistance)
∗ RegenClim ∗ (1− RegenProb)

Administrative prioritization
For US Forest Service managers, factors such as suit-
ability for timber production and land designations (e.g., 
wilderness areas) help determine management options. 
Some prior management activities (e.g., regeneration 
harvest or final harvest) are required to be reforested 
within 5  years under the National Forest Management 
Act (NFMA) of 1976. These administrative factors do 
not change when a site burns and influence management 
prioritization after a wildfire. Here, we developed a deci-
sion matrix to guide planting decisions, based primar-
ily on these policy considerations and our projections 
of potential for natural regeneration (Table 1). We use a 
10-class (0–9) scale that prioritizes pre-existing planting 
needs and severely burned areas within FS lands man-
aged for timber production. Using the spatial extent of 
the fire boundary, we query the Forest Activities Tracking 
System (FACTS), a database of management activities on 
USFS lands, retaining any spatial polygons with pre-exist-

ing reforestation needs (Table S10). Then, using national 
wilderness boundaries, special land designations, and 
regional suitable timber base layers (where available), we 
apply logic from the decision matrix (Table  1) to 30-m 
fire severity and land ownership raster layers to produce 
spatial maps of administrative priorities. Currently, these 
data are integrated in Regenmapper for US Forest Service 
Regions 1, 2, and 3, and we plan to assemble these data-
sets for the remaining western regions in the near-future.

Results
Post‑fire conifer regeneration models
Here, we illustrate updated GLMMs that are used to pre-
dict the probability of tree recruitment within Regen-
mapper. The selected “all species” model predicted the 
probability of recruitment with a cross-validated AUC of 
0.74 (80% correctly classified). Coefficients and standard 
errors are shown in Table  1 and marginal effects plots 
for model predictors are shown in Fig.  2. Regeneration 
probability declined with increasing distance to seed 
source, lower surrounding tree cover, and higher soil sur-
face temperatures. Clay content and its interaction with 
CWD suggest that high soil clay content in wet environ-
ments negatively affects post-fire regeneration, while in 
more arid sites, it may have a neutral or slight buffering 
effect against moisture extremes, presumably by increas-
ing moisture retention. The interaction between CWD 
and time since fire similarly shows contrasting effects for 
wet and dry areas and implies that the years between the 
fire and sampling date acts something like an exposure 
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term, with wet areas showing increased probability of 
recruitment over time, and dry areas showing the oppo-
site pattern. Results for the six individual species models, 
including marginal effects plots, are shown in Figs. S3-S9 
and Tables S3-8. The accuracy of these models ranges 
from AUC = 0.67 for Engelmann spruce to 0.77 for sub-
alpine fir. Summaries for all models including full and 
cross-validated accuracies are shown in table S9.

2017 Lolo Peak fire case study
As an example workflow that might be utilized by man-
agers, we show model predictions and Regenmapper 

outputs for the Lolo Peak fire, which burned roughly 
65,000 acres near Florence, Montana in 2017 (Fig.  3). 
Inset maps for a small area of the fire along the Bitter-
root valley are shown in Fig. 4 and spatial predictions for 
the six individual species’ models are shown in Fig. 5 and 
Figure S9. For this example, distance to nearest potential 
live tree was generated using the canopy height layer of 
Potapov et  al. (2021), with 8  m selected as the thresh-
old for meeting seed-producing height, and with both 
moderate and high-severity classes considered high 
severity. Patterns of contemporary and future regenera-
tion predictions reveal uphill shifts in area suitable for 

Table 1  Decision matrix for post-fire planting prioritization on U.S. Forest Service land in the intermountain west. This prioritization 
integrates policy considerations that apply to U.S. Forest Service managers (see methods) and projections of potential for natural 
regeneration. Pre-existing needs are determined using spatial data from FACTS and relevant activity codes are listed in supplementary 
table S10

Fire severity Pre-
existing 
need

Suitable base Natural 
regen 
predicted

Regen 
mapper cell 
value

Priority Diagnoses Potential FACTS activity

High or Moderate Yes N/A N 9 Very High Plant Plan planting in year 3 post distur-
bance; plan pre-treatment exam 
for reforestation year 1

High or Moderate Yes N/A Y 8 Very High Natural Regen Initiate Natural Regeneration (NRG) 
and plan certification of natural 
regeneration without site preparation

High or Moderate No Yes N 7 High Plant See Regenmapper Cell Value = 9 
Potential FACTS Activity Sequence

High or Moderate No Yes Y 6 High Natural Regen Initiate NRG and plan certification 
of natural regeneration without site 
preparation; plan pretreatment exam 
for reforestation year 1

High or Moderate No No N 5 Medium Plant See Regenmapper Cell Value = 9 
Potential FACTS Activity Seq

High or Moderate No No Y 4 Medium Natural Regen See Regenmapper Cell Value = 6 
Potential FACTS Activity Seq

Any N/A No or N/A Y or N 3 Variable Natural Recovery, OR Natural Recovery; plan follow-up 
monitoring in 20 years; OR

Natural Regen. 
or Plant depending 
on objectives

Plan certification of natural regen. 
without site preparation or planting 
depending on management objec-
tives. See respective Regenmapper 
Cell Values = 6–7 for Potential FACTS 
Activity Seq

Low Yes N/A Y 2 Medium Natural Regen Initiate NRG and plan certification 
of natural regeneration without site 
preparation Plan pretreatment exam 
for reforestation year 1 and stocking 
survey year 3

Low No Yes Y 1 N/A No Refo. Action/
Stand Improvement 
(SI) Need, OR

Site may be adequately stocked; 
assess and plan SI activities stocked. 
If not adequately stocked, consider 
natural regeneration, OR

Y 1 Low Natural Regen See Regenmapper Cell Value = 2 
Potential FACTS Activity Sequence

Any N/A No N/A 0 N/A Natural Recovery Natural Recovery; plan follow-up 
monitoring in 20 years
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regeneration over time (Fig. 4). Terrain effects related to 
aspect and solar insolation are also evident, with future 
projections illustrating a loss of regeneration potential on 
some south and west-facing slopes.

Regenmapper outputs designed for prioritization 
and planning are shown in Fig.  6. Some intuitive pat-
terns are evident in the Planting Prioritization Index 

(PPI) map: large, high-severity patches with a low 
probability of natural regeneration that are near roads 
receive the highest priority (class 5), while areas dis-
tant from roads rank low. The administrative prioriti-
zation for USFS has broadly similar spatial patterns, 
but with distinct class boundaries for varying land 
management designations. The FACTS query for the 

Fig. 2  Marginal effects plots for the GLMM model predicting post-fire recruitment for all species combined. Shaded bands represent 95% 
confidence intervals



Page 9 of 16Holden et al. Fire Ecology           (2025) 21:83 	

Lolo Peak fire (accessed Sept. 27th, 2024) returned 
spatial polygons indicating prior management activi-
ties that may trigger reforestation action. These are 
visible as Class 8 and 9 in Fig. 6.

Discussion
Regeneration failure following large wildfires is recog-
nized as a threat to sustaining western forests (Coop, 
et  al.  2020). As fire size increases (Iglesias et  al. 2022) 
and short-interval fires increasingly impact western land-
scapes (Harvey et  al. 2023), we expect that more area 
within wildfire perimeters will be far from surviving trees 
that can act as seed sources (Buonanduci et  al. 2024, 

2023). Active reforestation in these areas may be required 
if recovery and persistence of conifer-dominated forests 
is the goal. As post-fire tree planting becomes more com-
mon, the increased workload limits time for spatial anal-
yses and there is significant potential benefit from a DSS 
that delivers useful information about post-fire planting 
conditions. Regenmapper is designed to rapidly deliver 
actionable information on post-fire planting conditions, 
providing the best available science in a user-friendly for-
mat that can be incorporated in management planning.

The models we developed for predicting post-fire 
recruitment are consistent with previous studies in show-
ing that distance to and abundance of nearby live trees 

Fig. 3  Post-fire regeneration predictions for the 2017 Lolo Peak fire near Florence, Montana. Panel A shows the full model prediction, 
including seed distance effects for the all species model. Panel B shows the same model using surface temperature and climatic water deficit 
projections for 2050. Panel C shows the spatial effects of climate in the model, with distance to seed set to a uniform value. Panel D shows distance 
to nearest seed source for context. The black rectangle in panel A shows the inset area in Fig. 4
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Fig. 4  Regeneration probability for a small region of the 2017 Lolo Peak fire near Florence, Montana: A&B). The top 2 panels show predictions using 
historical inputs, the bottom panels are for a 2050 average based on 5 GCMs. Panels to the right show regeneration probability classified using 0.6 
as a threshold, selected based on maximizing sensitivity and specificity
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Fig. 5  Probability of recruitment model predictions for six conifer species in the 2017 Lolo Peak fire near Florence, Montana: A Ponderosa pine; B 
Douglas fir; C western larch; D lodgepole pine; E Engelmann spruce; F subalpine fir. The color values for each panel are rescaled using the optimal 
classification threshold for each species’ model to enable visual comparison
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and climatological mean CWD are strong predictors of 
regeneration (Fig. 2; Table 2; Stevens-Rumann and Mor-
gan 2019; Stevens-Rumann et  al. 2018; Rodman et  al. 
2020a, b; Davis et al. 2023). We did not include an inter-
action term between CWD and distance to seed source 
in our models; however, the difference in dispersal curves 
between mesic and dry sites (Fig. 2) is noteworthy, as it 
underscores the fundamental differences in vulnerability 
between mesic and dry forests, with stronger dispersal 
constraints in hot, dry areas. Similarly, the interaction 
between time since fire (how long after a fire sampling 
occurred) and CWD underscores the potential for diver-
gent responses in dry and mesic areas, with time acting 
as an exposure term at dry sites and conversely as an 
agent of opportunity in more mesic sites. Extreme sur-
face temperatures have been linked to seedling mortality 
in field and laboratory experiments (Kolb and Roberecht 
1996; Rank 2022) and previous studies of post-fire coni-
fer regeneration (Davis et al. 2019). In all of our models, 
PSST was consistently among the strongest predictors 
of post-fire regeneration (Supp. Tables S3-S9). Together 
with CWD, this variable provides a useful mechanis-
tic physical template for predicting post-fire recruit-
ment of coniferous tree species. Nevertheless, there are 
potentially large sources of uncertainty associated with 
the model inputs, including the threshold selected to 
define forest presence in the modeled canopy cover data, 
delayed post-fire mortality of nearby seed sources, and 
the quality of post-fire burn severity maps (Kolden et al. 
2015).

A number of factors, including seedling production 
and hiring capacity, could limit the ability to meet large-
scale planting objectives (Fargione et  al. 2021). Further-
more, new fires each year can add significantly to the land 
base already slated for planting, making it more difficult 
to address a backlog of needs in older fires (Dobrowski 
et  al. 2024). These constraints point to a need to prior-
itize some sites for immediate planting and defer or even 
abandon others. Regenmapper helps address this need by 
providing maps of natural regeneration probability and 
climate suitability for conifer seedlings within specific fire 
perimeters at a management-relevant spatial resolution. 

Fig. 6  Regenmapper outputs related to prioritization for the 2017 
Lolo Peak fire near Florence, Montana: A Distance to nearest 
road in kilometers; B 5-class planting prioritization index; C USFS 
administrative prioritization based on the decision matrix in Table 2. 
Panel C shows the final planting diagnosis that includes land 
management plan considerations. “NREC” means natural recovery 
in designated wilderness, “NR” means natural regeneration, and “Var” 
is variable. Classes 8 and 9 are the highest priority classes and occur 
when existing reforestation needs or incomplete regeneration/final 
harvests are identified in the USFS FACTS database

◂
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Our prioritization index helps to further refine planting 
opportunities by integrating these ecological layers with 
distance to road, a contributor to increased reforestation 
cost and difficulty (Fargione et  al. 2021). There are clear 
opportunities for maximizing return on investment, for 
example by avoiding costly plantings in sites that are now 
too hot or dry for seedlings to survive and instead target-
ing sites where regeneration without planting is unlikely 
but climate remains suitable for seedlings. The 5-class pri-
oritization index is intended as a first step toward consid-
ering these factors in post-fire planning, but broader-scale 
analyses aimed at optimizing site selection across fires 
and regions is a logical next step for improving the DSS.

Planting on land managed by the US Forest Service 
is often guided by legal and administrative priorities 
in addition to ecological or optimality constraints. To 
improve utility and accessibility, we added a decision 
matrix specific to Forest Service policy considerations 
and we provide output data in several formats. The deci-
sion matrix developed for Forest Service users integrates 
regeneration probability, previous management informa-
tion from FACTS, suitable timber layers, where avail-
able, and specially designated lands (such as wilderness), 

for each national forest. The resulting 30-m resolution 
10-class priority map assigns the highest priority where 
reforestation is required by law, but natural regeneration 
is unlikely, while also highlighting areas like wilderness 
where management is not allowed. End-users report that 
raster data and GIS can be barriers for some users, so to 
maximize utility for a range of user groups, we convert 
outputs from raster to vector (polygon) format. Users can 
also upload their own polygon layer (typically represent-
ing vegetation units or “stands”) which we attribute with 
local raster summary values.

Study limitations
We acknowledge several important limitations and 
caveats to Regenmapper in its current form that should 
be considered by users. First, the quality and accuracy 
of post-fire severity maps used as inputs can have large 
effects on outputs. Satellite-derived maps of fire sever-
ity may only identify the locations of live trees with ca. 
80% accuracy (Chapman et  al.  2020). In addition, post-
fire planting assessments are often made in the months 
immediately following a fire using whatever cloud-free 
imagery is available. Consequently, they will not capture 

Table 2  GLMM output from the combined species model. Covariates were not transformed prior to model fitting, therefore, 
coefficient estimates are on the scale of each predictor. An asterisk indicates an interaction term between two variables

Fixed Effects Estimate SE Z-value p

Intercept  − 0.58 1.21  − 0.48 0.63

Time since fire 0.34 0.04 7.90 0.00

30-year mean annual deficit 0.00 0.00  − 0.83 0.41

Fire severity (RBR) 0.00 0.00 0.39 0.69

Max postfire GS deficit [1st degree] 67.16 26.89 2.50 0.01

Max postfire GS deficit [2nd degree]  − 89.99 25.76  − 3.49 0.00

PSST  − 0.08 0.02  − 3.30 0.00

Distance seed source  − 0.01 0.00  − 13.46 0.00

Clay fraction [1st degree]  − 106.95 23.49  − 4.55 0.00

Clay fraction [2nd degree] 20.08 19.47 1.03 0.30

Surrounding tree cover 0.05 0.00 11.60 0.00

Time since fire*30-year mean annual deficit 0.00 0.00  − 7.37 0.00

Fire severity*Max postfire GS deficit[1st degree]  − 0.06 0.02  − 2.44 0.01

Fire severity*Max postfire GS deficit[2nd degree] 0.01 0.03 0.37 0.71

30-year mean annual deficit* Max postfire GS deficit[1st degree]  − 0.14 0.05  − 2.99 0.00

30-year mean annual deficit* Max postfire GS deficit[2nd degree] 0.11 0.05 2.31 0.02

30-year mean annual deficit* Clay fraction [1st degree] 0.14 0.03 4.28 0.00

30-year mean annual deficit* Clay fraction [2nd degree]  − 0.03 0.03  − 1.06 0.29

Random effects

σ2 3.29

τ00 fire_ID 3.47

ICC 0.51

N fire_ID 322

Observations 9804
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effects of delayed mortality, which could lead to optimis-
tic estimates of potential for natural regeneration (Dyer 
et  al. 2025). Users are given the flexibility to define and 
group different severity classes in maps, but this is nev-
ertheless an issue when assessing severity immediately 
after a fire. Furthermore, because our “all-species” model 
includes lodgepole pine (Pinus contorta) which is sero-
tinous in some areas, our estimate regeneration in loca-
tions that are far from live trees could be optimistic in 
areas where this species is absent. Conversely, in areas 
with highly serotinous populations of lodgepole pine, we 
may underestimate regeneration probability. Neverthe-
less, a comparison of models with and without lodge-
pole pine indicated only minor differences in predictions. 
Currently, Regenmapper provides two maps designed to 
help prioritize site selection. The first is administrative 
and specific to US Forest Service users. The second is a 
simple planting prioritization index (PPI) aimed at iden-
tifying severely burned sites that have a low probability 
of natural regeneration and that are accessible by road. 
This is a highly simplified index that we consider a start-
ing point for conversations about potential site selection. 
Spatially explicit optimization methods (e.g., Ager 2024) 
have been designed for balancing site selection given 
multiple criteria that could provide more robust esti-
mates of potential planting sites that consider both cost 
and biophysical constraints.

Conclusion
Increased investments in reforestation are a unique, 
once-in-a-generation opportunity to shape the trajec-
tory of forests throughout the western US. Drought, 
climate change, and wildfires will continue to pose seri-
ous challenges and contribute significant uncertainty to 
how successful we are in regrowing forests over the next 
decade. Future increases in planting needs will lead to 
a greater need for landscape prioritization and triage in 
coming decades and decision support to facilitate these 
efforts, which can be supported using DSSs such as 
Regenmapper.
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