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Abstract

Background Increasing wildfire area burned has left millions of hectares in the western United States (US) in need
of reforestation. Recent federal legislation allows for increased investments in tree planting to address the backlog

of planting needs in previously burned areas. To support post-fire planning and assessment, we developed Regen-
mapper, a web-based decision support system (DSS) that provides spatial information on natural regeneration poten-
tial within post-fire environments. The program is freely available from a web browser (https://alpheus.dbs.umt.edu/
regenmapper) and is designed to function across all land ownership categories for the 11 western States.

Results Regenmapper allows users to select historical wildfires or upload their own burn severity maps for recent
fires. Within the burned area, it then predicts the potential for natural regeneration based on distance to mature live
trees (seed sources) and hydroclimatic conditions. To this end, we developed 30-m resolution soil water balance
and surface temperature models with corresponding projections for the 2050 period based on scenarios from the 6th
Coupled Model Intercomparison Project (CMIP6). These data are used to estimate the probability of natural seedling
regeneration based on historical or future biophysical conditions, respectively, and species-specific climatic toler-
ances. We also implement a simple planting prioritization algorithm based on distance to roads and the relative
effects of dispersal and climatic limitations to rapidly identify accessible sites that are unlikely to reforest naturally.
For US Forest Service managers, we develop an additional prioritization matrix based on fire severity, the probability
of natural regeneration, and where federal law mandates reforestation when fires burn through recently harvested
areas. Finally, we demonstrate model outputs in a case study approach through the 2017 Lolo Peak fire in Montana,
us.

Conclusions Investments in tree planting will influence the extent and trajectory of future forests, but drought,
climate change, and wildfires may challenge the ability of managers to re-establish forests over upcoming decades.
DSS's like Regenmapper will benefit the planning and execution of tree planting efforts by reducing time required
to conduct post-fire assessments and improving planting outcomes.
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Resumen

Antecedentes Elincremento del drea quemada ha dejado millones de hectéreas en el oeste de los EEUU con la
necesidad de ser reforestadas. La reciente legislacién federal permite las inversiones en plantacién de arboles para
cubrir la necesidad de alcanzar el trabajo pendiente de reforestar dreas previamente quemadas. Para apoyar el pla-
neamiento y determinacion de acciones en el post-fuego, desarrollamos el "Regenmapper’, un sistema de soporte de
decisiones basado en la web (DDS), que provee de informacién espacial sobre el potencial de la regeneraciéon natural
dentro de ambientes post-incendios. El programa es provisto de manera gratuita desde una pagina WEB (https://
alpheus.dbs.umt.edu/regenmapper) y fue disefiado para que funcione en todos los tipos de categorias de tenencia
de la tierra para los 11 estados del oeste de los EEUU.

Resultados El“Regenmapper” permite a los usuarios seleccionar los incendios histéricos pasados e ir cargando sus
propios mapas de severidad de fuegos recientes. Dentro del drea quemada, el programa predice luego el potencial
para la regeneracion natural basado en la distancia a los arboles maduros (fuentes de semilla) y las condiciones hidro-
climaticas. Posteriormente, desarrollamos modelos de balance agua en el suelo y de temperaturas del suelo superfi-
cial con sus correspondientes proyecciones para el periodo 2050, basados en escenarios del 6to. Proyecto Acoplado
de Entre-Comparaciones (CMIP6). Estos datos son usados para estimar la probabilidad de la regeneracion natural de
semilla basada en datos histéricos o proyectados a futuro de condiciones bioffsicas, respectivamente, y de toleran-
cias especie-especificas. Implementamos también un algoritmo de priorizacion de plantacion basado en la distancia
arutas o calles y los efectos relativos de la dispersion y las limitaciones climaticas para identificar rapidamente sitios
accesibles que sean no factibles de ser reforestados naturalmente. Para los gestores del Servicio Forestal, desarrolla-
mos una matriz de priorizaciones basada en la severidad del fuego, la probabilidad de regeneracién natural, y donde
la ley federal exige la reforestacion, cuando los incendios ocurrieran en dreas recientemente cosechadas. Finalmente,
demostramos los resultados de la aplicacion del modelo a un estudio de caso del incendio ocurrido en 2017 en Lolo
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Peak, en Montana, EEUU.

Conclusiones Las inversiones en la plantacién de arboles va a tener influencia en la extension y trayectoria de
futuros bosques, aunque la sequia, el cambio climatico y lo incendios pueden desafiar la habilidad de los gestores

para re-establecer los bosques en décadas por venir. Tanto
el DDS’s como el Regenmapper beneficiaran el planeami-
entoy la ejecucion de los esfuerzos de plantacion medi-
ante la reduccién del tiempo requerido para realizar las
determinaciones post-fuego y mejorar los resultados de la
plantacion.

Background

In recent decades, resource managers in the western
United States (US) have seen a dramatic increase in
reforestation needs driven largely by increased wild-
fire burned area (Dumroese et al. 2019; Dobrowski et al.
2024). Consequently, the demand for tree planting activi-
ties now outpaces the ability of managers to complete
them. The initial post-disturbance reorganization phase,
when most planting projects are planned and executed,
is a critical indicator of ecosystem resilience to distur-
bance and has lasting implications for the future of for-
ested ecosystems (Seidl and Turner 2022). Indeed, the
importance of understanding and predicting recruitment
dynamics in the western US has become evident as much

of the region has become more arid, with more frequent
droughts and high temperatures that have been linked
to widespread forest mortality (Moss et al. 2024) and
recruitment failure (Stevens-Rumann et al. 2018; Davis
etal. 2019, 2023).

Recent legislation, including passage of the Repairing
Public Lands by Adding Necessary Trees (REPLANT)
Act within the 2021 Bipartisan Infrastructure Investment
and Jobs Act (IIJA), allow for additional investments in
tree planting, primarily to address a backlog of reforesta-
tion needs in areas burned by wildfires. Given the mas-
sive land base that could potentially experience planting
(Cook-Patton et al. 2020), meeting that need requires
ramping up production at all levels of the supply chain,
including seed collection, seedling production, storage,
transportation, and field delivery (Fargione et al. 2021).
Moreover, labor and housing markets limit hiring abil-
ity, which could further constrain capacity (Altieri et al.
2023). These factors, and unforeseen forest losses in the
next decade could, despite best efforts, prevent forest
managers from meeting objectives set out in REPLANT
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and other policy directives. Careful selection of sites,
with planting designed to maximize survival, will be
important for maximizing forest recovery and return on
investment. While regional datasets and tools have been
developed to assist reforestation efforts using particular
tree species in California (Stewart et al. 2021) and the
southern Rocky Mountains (Rodman et al. 2022), tools
for broad-scale, consistent mapping across the West are
not yet available.

Post-fire tree regeneration of many western US conifers
is constrained by both the availability of tree seeds and
post-fire climatic conditions (Hansen et al. 2018, Davis
et al. 2019, Stevens-Rumann and Morgan 2019). Seed
availability acts as an initial filter on tree regeneration,
but climate can also limit new seedling establishment,
even when seeds are available from nearby trees (Davis
et al. 2019, Rodman et al. 2020a, b; Holden et al. 2024).
Indeed, while tree planting can help to bypass initial fil-
ters of seed availability and germination, hydroclimate is
strongly tied to regeneration success, with reduced sur-
vival of planted trees in warm, dry areas like the South-
west (Ouzts et al. 2015; Rodman et al. 2024), and on arid
sites within the southern Rocky Mountains (Marshall,
et al. 2024). Identifying locations where natural tree
regeneration is likely to occur after fire, as well as key
factors limiting tree regeneration (ie., climate vs. seed
availability) will provide valuable information for ini-
tial post-fire planning and prioritization of reforestation
activities.

Here, we describe Regenmapper—a new, web-based
reforestation decision support system (DSS) designed to
help managers meet the growing need for post-fire plant-
ing information across the western United States. Spe-
cifically, we (1) develop models to predict post-fire tree
recruitment using high spatial resolution biophysical lay-
ers and a large (ca. 10,000 field plots) database of post-fire
observations, (2) integrate these models into a publicly
available web-based tool for evaluating regeneration
potential for historical or recent fires, (3) develop logic
for prioritizing planting for both meeting federal law and
on biophysical and cost considerations, and (4) return
raster- and vector-based spatial data, as well as visual aids
to inform post-fire planning.

Methods

The primary function of Regenmapper is to provide
managers across a range of landownership categories
with easily accessible data about the post-fire environ-
ment at recently disturbed sites. Key outputs include
30-m resolution maps estimating the probability of tree
regeneration for common western conifer species, and
layers describing limitations related to climate and seed
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availability. A diagram illustrating the modeling process
is shown in Fig. 1.

Spatial predictors of post-fire recruitment

Historical and future hydroclimatic data

We represent the long-term biophysical and climatic
conditions at each site using 30-m resolution 95th per-
centile annual maximum potential soil surface tem-
perature (PSST) grids (Holden et al. 2024) and a 30-m
climatic water balance deficit (CWD) grid. To supple-
ment pre-existing maps of PSST, we developed the CWD
layer for the 1992-2021 normal period using time series
of daily weather data generated at a dense network of
points. These data were previously used to map PSST
and additional details on the point sampling distribu-
tion and mapping methods can be found in Holden et al.
(2024). At each of 61,000 sample points, we simulate the
daily water balance from 1992 to 2021 with a snow and
soil moisture model, using weather inputs (tempera-
ture, humidity, radiation, wind speed) extracted from
250-m-resolution daily grids (Holden et al. 2018). We
then use data from the 6th Coupled Model Intercompari-
son Project (CMIP6; Eyring et al. 2016) and a stochastic
weather simulator (Steinscheider and Brown 2013) to
generate daily weather inputs for the 2050 mean period
(2035-2065) at each sample point, using monthly mean
deviations in temperature and precipitation based on
five general circulation models (GCMs; Table S1). For
each variable of interest (e.g., CWD), we calculate the
climatological average value (e.g., 1992-2021 or 2035-
2065 mean annual climatic water deficit) for each point
and then interpolate those values using geographically
weighted regression with elevation and solar radiation as
covariates. This point-based modeling approach allows
for gridding the water balance outputs at a relatively fine
30-m spatial resolution, which would be computationally
intractable when applying the same algorithms to high-
resolution grids. Additional details on the gridding pro-
cess are provided in the supplementary materials.

Post-fire seed availability

Access to nearby seeds from live trees is a primary
constraint on post-fire conifer regeneration (Stevens-
Rumann & Morgan 2019; Davis et al. 2023). We devel-
oped two alternative methods for estimating pre-fire
vegetation cover and distance to live trees. For recent
(2021—present) wildfires, pre-fire forest canopy cover is
extracted from the Rangeland Analysis Platform (RAP)
v.3.0 dataset (Allred et al. 2021), which provides annual
30-m raster grids for 6 vegetation cover types (i.e., shrub,
grass, tree) across the continental US. For an enlarged
area around the fire extent, we classify any tree cover val-
ues>10% as pre-existing forest. We then overlay these



Holden et al. Fire Ecology

(2025) 21:83 Page 4 of 16
USER _
Fire year | |, : h | LS9END
INPUTS y DNBR/BARC/RAVG Vegetatlon stand .
Severity threshold s polygans | raster input
Height threshold | | (optional) .
vector input
¥ raster output
DATA Extract GIS
EXTRACTION raster and |« J plotsfigures
vectar
|layers
(30m GEDI| (30m RAP | [ 30m water 3omsoil | (usrsg) | USFSFACTS |
canopy ‘ ’ forest ’ halance deficit surface OSM wilderness
height || cover || historical/2050 temperature Roads land ownership
- historical/2050 7_ |Suitable timber base”)
RASTER CALC “« e
AND MODEL Calculate C existing
alculate . USFS
PREDICTION distance to distance to | | 'ErOreStalion |y instrative
. needs under .
nearest live nearest NFMA or priarity
tree road related policy (0-9)
¥ v | I
dict Planting Planting
future (2050) Hredit - Local Marans 2!
regeneration < pmr?aat?.s"rlg i Plzgzxty K-means — ':::323(
robabili . .
P ty regeneration —* calculation > LGt (1-5)
——
SUMMARY AND Fire and distance to seed spatial
VISUALIZATION | pacter plats historgram and summary polygon with
statisticss raster
| attributes )

Fig. 1 A diagram illustrating the basic Regenmapper workflow and outputs for assessing potential for natural regeneration in post-fire

environments

maps with Landsat-derived burn severity maps to calcu-
late the distance to the nearest unburned or low-severity
pixel that was forest prior to the fire. This is the primary
distance to seed source input used in the model. As an
alternative method for earlier (pre-2021) fires, canopy
height data from the fusion of spaceborne LiDAR (i.e.,

GEDI) and Landsat data are also available (Potapov et al.
2021). Here, users have the option to select a height
threshold above which surrounding vegetation is consid-
ered to be a seed-bearing tree. Figure S1 shows examples
of distance to seed source estimates using both GEDI and
RAP vegetation models.
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Post-fire recruitment models

We used data on post-fire tree seedling recruitment
assembled by Davis et al. (2023) to develop binomial
(logit link) generalized linear mixed models (GLMM:s)
of post-fire recruitment potential. While our methods
follow those described by Davis et al. (2023), several
hundred plots were omitted at the request of individual
data contributors or because they were beyond the geo-
graphic scope of this tool (i.e., South Dakota), thus our
results may vary slightly from those described in the
previous study. The reduced data included 10,100 plots
in 322 unique fires across the western US (Figure S10).

Prior to fitting GLMMs, we used boosted regression
tree models (BRT; Friedman 2001, Friedman 2002) to
search for potential two-way interaction terms. Variable
plot sizes in these data require the use of an offset term,
precluding the use of common machine learning algo-
rithms like BRT for final predictions. Here, we used BRTs
as an exploratory tool, treating log (plot area) as a predic-
tor in the model. We then used spatial cross-validation
and feature selection, repeated for a range of different
random spatial data configurations, to identify important
predictors. For these data, we randomly assigned obser-
vations into groups by fire ID using a range of k=3-20
CV folds (approx. 33-5% of the data withheld in each
fold). For each of the 14 iterations of the data, we opti-
mized a BRT model using forward feature selection
(Meyer et al. 2018), retaining selected variables each time
and then summarized the occurrence of individual pre-
dictor variables across all 14 iterations (Erickson et al.
2023). This approach provides a robust way of identifying
an optimal set of predictor variables for a given dataset.
Using a reduced variable model, we then fit a final BRT
model for each of the 14 CV scenarios and queried the
model for significant 2-way interactions which we then
evaluated as candidate predictors in GLMM models.
BRT analysis showed some support for clay and sand
fractions and interactions with CWD, and a strong inter-
action between CWD and length of time between a fire
and when field sampling occurred.

We developed GLMMs for seven individual coni-
fer species which are widely distributed in the US West
(subalpine fir, Abies lasiocarpa; western larch, Larix
occidentalis; Engelmann spruce, Picea engelmannii;
lodgepole pine, Pinus contorta; Douglas-fir: Pseudotsuga
menziesii; and a combined model for Jeffrey pine, P. jef-
freyi and ponderosa pine, P ponderosa). Additionally,
we developed an all-species model, where any juvenile
conifer density greater than zero was coded as a posi-
tive response, which we provide for users conducting
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rapid post-fire assessments where the primary concern
is identifying areas where any regeneration is unlikely.
We modified individual and all-species species models
from Davis et al. (2023) by replacing the 30-year mean
climate variables and the heat load index with the finer
resolution CWD and PSST metrics described above and
then repeated model selection with the new climate vari-
ables for all species. All candidate models included time
since fire when plots were sampled (years), distance to
seed source (nearest adult live tree), percent surround-
ing post-fire live tree cover (in a 300-m radius), 30-year
mean annual CWD, and PSST as fixed effects. The ini-
tial full model for each species also included maximum

and minimum growing season (April-September) CWD
anomaly in the 5 years post-fire, percent soil clay con-
tent (Ramcharan, et al. 2018) and its interaction with
30-year CWD, the interaction between time since fire
and 30-year CWD, the interaction between PSST and fire
severity, and interactions between post-fire CWD anom-
alies and the following variables: 30-year CWD, PSST,
and either fire severity or surrounding tree cover. All
candidate models also included fire ID as a random inter-
cept term and an offset of log(plot size). Models were too
complex if we included interactions between post-fire
CWD anomalies and both fire severity and surround-
ing tree cover, so we selected one by comparing AIC of
initial models. We then used tenfold cross validation to
iteratively remove interaction terms, post-fire climate
anomaly variables, and soil clay content to maximize
model skill based on cross-validated AUC. If removing
an interaction or variable resulted in higher cross-vali-
dated model skill, then we removed the interaction/vari-
able that resulted in the greatest increase and repeated
the cross-validation until removing interactions/variables
reduced model skill. Where cross-validated AUC values
were within 0.005 of each other, we chose the model with
the lowest AIC. Plots located within the same fire were all
included within a single fold and predictions to fires used
for validation assumed the fire-level intercept was equal
to the global intercept.

We report both the full (ie., no independently with-
held data) and cross-validated model accuracy. We used
partial effects plots to interpret fixed effects in the final
GLMMs, where the effect of the target variable was
evaluated across the full range of the data with all other
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predictors set to their median value. Model predictions
are made using values of 100 m? for plot area and 5 years
for time since fire; thus, regeneration potential is defined
as one more seedlings being present at 5 years post-fire in
a 100-m? area. Finally, predictions from the final GLMM
models were classified using a threshold calculated by
maximizing the sum of the model sensitivity and speci-
ficity (Freeman and Moisen 2008).

Planting prioritization
Cost and biophysical conditions
Following large 5 years, it may not be possible to plant
in each location that there is an identified reforestation
need. To this end, we developed a planting prioritization
index (PPI) which balances access considerations, poten-
tial for natural tree regeneration, and climatic conditions
that may influence planting outcomes.

The index is calculated using the following equation:

1

Planting Priority Index; = <RdD‘t)
oadDistance
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Administrative prioritization

For US Forest Service managers, factors such as suit-
ability for timber production and land designations (e.g.,
wilderness areas) help determine management options.
Some prior management activities (e.g., regeneration
harvest or final harvest) are required to be reforested
within 5 years under the National Forest Management
Act (NFMA) of 1976. These administrative factors do
not change when a site burns and influence management
prioritization after a wildfire. Here, we developed a deci-
sion matrix to guide planting decisions, based primar-
ily on these policy considerations and our projections
of potential for natural regeneration (Table 1). We use a
10-class (0-9) scale that prioritizes pre-existing planting
needs and severely burned areas within FS lands man-
aged for timber production. Using the spatial extent of
the fire boundary, we query the Forest Activities Tracking
System (FACTS), a database of management activities on
USES lands, retaining any spatial polygons with pre-exist-

> * RegenClim % (1 — RegenProb)

where RoadDistance (a simple proxy for planting cost)
is the distance from the center of each 30-m pixel to the
nearest road extracted from OpenStreetMap (OSM) and
USES road databases, RegenClim is the probability of nat-
ural regeneration, assuming that a seed source is available
(climate constraints only), and RegenProb is the predicted
probability of natural regeneration considering all effects
(climate and distance to seed). Here, we isolate climatic
effects from the regression model by setting distance to
adult trees to a constant value of 10 m and surrounding
tree cover to the median dataset value (17%) for all ras-
ter cells prior to prediction. The PPI function is applied
to each 30-m grid cell within the fire and assigns higher
values to cells that are near roads, have a low probability
of regenerating naturally, and a high climatic suitability.
Figure S11 shows the relative effects of each term across a
range of possible values. To further simplify the resulting
30-m resolution cost index raster, we classify the output
into 5 discrete classes within each fire following Holden
and Evans (2010). First, we calculate local Moran’s I sta-
tistic on the cost index raster to identify groups of adja-
cent pixels with similar values. Then we apply K-means
clustering to group the Moran’s [ values into discrete
classes. The result is a set of spatially discrete units,
ranked from low to high (1-5) with the largest values
indicating sites near roads that are unlikely to regener-
ate without planting and where climatic conditions make
successful planting more likely.

ing reforestation needs (Table S10). Then, using national
wilderness boundaries, special land designations, and
regional suitable timber base layers (where available), we
apply logic from the decision matrix (Table 1) to 30-m
fire severity and land ownership raster layers to produce
spatial maps of administrative priorities. Currently, these
data are integrated in Regenmapper for US Forest Service
Regions 1, 2, and 3, and we plan to assemble these data-
sets for the remaining western regions in the near-future.

Results

Post-fire conifer regeneration models

Here, we illustrate updated GLMMs that are used to pre-
dict the probability of tree recruitment within Regen-
mapper. The selected “all species” model predicted the
probability of recruitment with a cross-validated AUC of
0.74 (80% correctly classified). Coefficients and standard
errors are shown in Table 1 and marginal effects plots
for model predictors are shown in Fig. 2. Regeneration
probability declined with increasing distance to seed
source, lower surrounding tree cover, and higher soil sur-
face temperatures. Clay content and its interaction with
CWD suggest that high soil clay content in wet environ-
ments negatively affects post-fire regeneration, while in
more arid sites, it may have a neutral or slight buffering
effect against moisture extremes, presumably by increas-
ing moisture retention. The interaction between CWD
and time since fire similarly shows contrasting effects for
wet and dry areas and implies that the years between the
fire and sampling date acts something like an exposure
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Table 1 Decision matrix for post-fire planting prioritization on U.S. Forest Service land in the intermountain west. This prioritization
integrates policy considerations that apply to U.S. Forest Service managers (see methods) and projections of potential for natural
regeneration. Pre-existing needs are determined using spatial data from FACTS and relevant activity codes are listed in supplementary

table S10
Fire severity Pre- Suitable base Natural Regen Priority  Diagnoses Potential FACTS activity
existing regen mapper cell
need predicted value
High or Moderate Yes N/A N 9 Very High  Plant Plan planting in year 3 post distur-
bance; plan pre-treatment exam
for reforestation year 1
High or Moderate Yes N/A Y 8 Very High  Natural Regen Initiate Natural Regeneration (NRG)
and plan certification of natural
regeneration without site preparation
High or Moderate  No Yes N 7 High Plant See Regenmapper Cell Value =9
Potential FACTS Activity Sequence
High or Moderate No Yes Y 6 High Natural Regen Initiate NRG and plan certification
of natural regeneration without site
preparation; plan pretreatment exam
for reforestation year 1
High or Moderate No No N 5 Medium  Plant See Regenmapper Cell Value=9
Potential FACTS Activity Seq
High or Moderate No No Y 4 Medium  Natural Regen See Regenmapper Cell Value=6
Potential FACTS Activity Seq
Any N/A No or N/A YorN 3 Variable  Natural Recovery, OR Natural Recovery; plan follow-up
monitoring in 20 years; OR
Natural Regen. Plan certification of natural regen.
or Plant depending  without site preparation or planting
on objectives depending on management objec-
tives. See respective Regenmapper
Cell Values =6-7 for Potential FACTS
Activity Seq
Low Yes N/A Y 2 Medium  Natural Regen Initiate NRG and plan certification
of natural regeneration without site
preparation Plan pretreatment exam
for reforestation year 1 and stocking
survey year 3
Low No Yes Y 1 N/A No Refo. Action/ Site may be adequately stocked;
Stand Improvement  assess and plan Sl activities stocked.
(S) Need, OR If not adequately stocked, consider
natural regeneration, OR
Y 1 Low Natural Regen See Regenmapper Cell Value=2
Potential FACTS Activity Sequence
Any N/A No N/A 0 N/A Natural Recovery Natural Recovery; plan follow-up

monitoring in 20 years

term, with wet areas showing increased probability of
recruitment over time, and dry areas showing the oppo-
site pattern. Results for the six individual species models,
including marginal effects plots, are shown in Figs. S3-S9
and Tables S3-8. The accuracy of these models ranges
from AUC=0.67 for Engelmann spruce to 0.77 for sub-
alpine fir. Summaries for all models including full and
cross-validated accuracies are shown in table S9.

2017 Lolo Peak fire case study
As an example workflow that might be utilized by man-
agers, we show model predictions and Regenmapper

outputs for the Lolo Peak fire, which burned roughly
65,000 acres near Florence, Montana in 2017 (Fig. 3).
Inset maps for a small area of the fire along the Bitter-
root valley are shown in Fig. 4 and spatial predictions for
the six individual species’ models are shown in Fig. 5 and
Figure S9. For this example, distance to nearest potential
live tree was generated using the canopy height layer of
Potapov et al. (2021), with 8 m selected as the thresh-
old for meeting seed-producing height, and with both
moderate and high-severity classes considered high
severity. Patterns of contemporary and future regenera-
tion predictions reveal uphill shifts in area suitable for
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regeneration over time (Fig. 4). Terrain effects related to
aspect and solar insolation are also evident, with future
projections illustrating a loss of regeneration potential on
some south and west-facing slopes.

Regenmapper outputs designed for prioritization
and planning are shown in Fig. 6. Some intuitive pat-
terns are evident in the Planting Prioritization Index

(PPI) map: large, high-severity patches with a low
probability of natural regeneration that are near roads
receive the highest priority (class 5), while areas dis-
tant from roads rank low. The administrative prioriti-
zation for USFS has broadly similar spatial patterns,
but with distinct class boundaries for varying land
management designations. The FACTS query for the
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Fig. 3 Post-fire regeneration predictions for the 2017 Lolo Peak fire near Florence, Montana. Panel A shows the full model prediction,

including seed distance effects for the all species model. Panel B shows the same model using surface temperature and climatic water deficit
projections for 2050. Panel € shows the spatial effects of climate in the model, with distance to seed set to a uniform value. Panel D shows distance
to nearest seed source for context. The black rectangle in panel A shows the inset area in Fig. 4

Lolo Peak fire (accessed Sept. 27th, 2024) returned
spatial polygons indicating prior management activi-
ties that may trigger reforestation action. These are
visible as Class 8 and 9 in Fig. 6.

Discussion

Regeneration failure following large wildfires is recog-
nized as a threat to sustaining western forests (Coop,
et al. 2020). As fire size increases (Iglesias et al. 2022)
and short-interval fires increasingly impact western land-
scapes (Harvey et al. 2023), we expect that more area
within wildfire perimeters will be far from surviving trees
that can act as seed sources (Buonanduci et al. 2024,

2023). Active reforestation in these areas may be required
if recovery and persistence of conifer-dominated forests
is the goal. As post-fire tree planting becomes more com-
mon, the increased workload limits time for spatial anal-
yses and there is significant potential benefit from a DSS
that delivers useful information about post-fire planting
conditions. Regenmapper is designed to rapidly deliver
actionable information on post-fire planting conditions,
providing the best available science in a user-friendly for-
mat that can be incorporated in management planning.
The models we developed for predicting post-fire
recruitment are consistent with previous studies in show-
ing that distance to and abundance of nearby live trees
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<« Fig. 6 Regenmapper outputs related to prioritization for the 2017
Lolo Peak fire near Florence, Montana: A Distance to nearest
road in kilometers; B 5-class planting prioritization index; C USFS
administrative prioritization based on the decision matrix in Table 2.
Panel C shows the final planting diagnosis that includes land
management plan considerations. “NREC” means natural recovery
in designated wilderness, “NR"means natural regeneration, and “Var”
is variable. Classes 8 and 9 are the highest priority classes and occur
when existing reforestation needs or incomplete regeneration/final
harvests are identified in the USFS FACTS database

and climatological mean CWD are strong predictors of
regeneration (Fig. 2; Table 2; Stevens-Rumann and Mor-
gan 2019; Stevens-Rumann et al. 2018; Rodman et al.
2020a, b; Davis et al. 2023). We did not include an inter-
action term between CWD and distance to seed source
in our models; however, the difference in dispersal curves
between mesic and dry sites (Fig. 2) is noteworthy, as it
underscores the fundamental differences in vulnerability
between mesic and dry forests, with stronger dispersal
constraints in hot, dry areas. Similarly, the interaction
between time since fire (how long after a fire sampling
occurred) and CWD underscores the potential for diver-
gent responses in dry and mesic areas, with time acting
as an exposure term at dry sites and conversely as an
agent of opportunity in more mesic sites. Extreme sur-
face temperatures have been linked to seedling mortality
in field and laboratory experiments (Kolb and Roberecht
1996; Rank 2022) and previous studies of post-fire coni-
fer regeneration (Davis et al. 2019). In all of our models,
PSST was consistently among the strongest predictors
of post-fire regeneration (Supp. Tables S3-S9). Together
with CWD, this variable provides a useful mechanis-
tic physical template for predicting post-fire recruit-
ment of coniferous tree species. Nevertheless, there are
potentially large sources of uncertainty associated with
the model inputs, including the threshold selected to
define forest presence in the modeled canopy cover data,
delayed post-fire mortality of nearby seed sources, and
the quality of post-fire burn severity maps (Kolden et al.
2015).

A number of factors, including seedling production
and hiring capacity, could limit the ability to meet large-
scale planting objectives (Fargione et al. 2021). Further-
more, new fires each year can add significantly to the land
base already slated for planting, making it more difficult
to address a backlog of needs in older fires (Dobrowski
et al. 2024). These constraints point to a need to prior-
itize some sites for immediate planting and defer or even
abandon others. Regenmapper helps address this need by
providing maps of natural regeneration probability and
climate suitability for conifer seedlings within specific fire
perimeters at a management-relevant spatial resolution.
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Table 2 GLMM output from the combined species model. Covariates were not transformed prior to model fitting, therefore,
coefficient estimates are on the scale of each predictor. An asterisk indicates an interaction term between two variables

Fixed Effects Estimate SE Z-value p
Intercept -0.58 1.21 —-048 0.63
Time since fire 0.34 0.04 7.90 0.00
30-year mean annual deficit 0.00 0.00 -083 041
Fire severity (RBR) 0.00 0.00 039 0.69
Max postfire GS deficit [1st degree] 67.16 26.89 2.50 0.01
Max postfire GS deficit [2nd degree] —89.99 25.76 -349 0.00
PSST -0.08 0.02 —3.30 0.00
Distance seed source -0.01 0.00 -1346 0.00
Clay fraction [1st degree] —106.95 2349 —4.55 0.00
Clay fraction [2nd degree] 20.08 1947 1.03 0.30
Surrounding tree cover 0.05 0.00 11.60 0.00
Time since fire*30-year mean annual deficit 0.00 0.00 -737 0.00
Fire severity*Max postfire GS deficit[1st degree] —0.06 0.02 —244 0.01
Fire severity*Max postfire GS deficit[2nd degree] 0.01 0.03 037 0.71
30-year mean annual deficit* Max postfire GS deficit[1st degree] -0.14 0.05 -2.99 0.00
30-year mean annual deficit* Max postfire GS deficit[2nd degree] 0.11 0.05 231 0.02
30-year mean annual deficit* Clay fraction [1st degree] 0.14 0.03 4.28 0.00
30-year mean annual deficit* Clay fraction [2nd degree] -0.03 0.03 -1.06 0.29
Random effects

o 3.29

Too fire_ID 347

ICC 0.51

N e o 322

Observations 9804

Our prioritization index helps to further refine planting
opportunities by integrating these ecological layers with
distance to road, a contributor to increased reforestation
cost and difficulty (Fargione et al. 2021). There are clear
opportunities for maximizing return on investment, for
example by avoiding costly plantings in sites that are now
too hot or dry for seedlings to survive and instead target-
ing sites where regeneration without planting is unlikely
but climate remains suitable for seedlings. The 5-class pri-
oritization index is intended as a first step toward consid-
ering these factors in post-fire planning, but broader-scale
analyses aimed at optimizing site selection across fires
and regions is a logical next step for improving the DSS.
Planting on land managed by the US Forest Service
is often guided by legal and administrative priorities
in addition to ecological or optimality constraints. To
improve utility and accessibility, we added a decision
matrix specific to Forest Service policy considerations
and we provide output data in several formats. The deci-
sion matrix developed for Forest Service users integrates
regeneration probability, previous management informa-
tion from FACTS, suitable timber layers, where avail-
able, and specially designated lands (such as wilderness),

for each national forest. The resulting 30-m resolution
10-class priority map assigns the highest priority where
reforestation is required by law, but natural regeneration
is unlikely, while also highlighting areas like wilderness
where management is not allowed. End-users report that
raster data and GIS can be barriers for some users, so to
maximize utility for a range of user groups, we convert
outputs from raster to vector (polygon) format. Users can
also upload their own polygon layer (typically represent-
ing vegetation units or “stands”) which we attribute with
local raster summary values.

Study limitations

We acknowledge several important limitations and
caveats to Regenmapper in its current form that should
be considered by users. First, the quality and accuracy
of post-fire severity maps used as inputs can have large
effects on outputs. Satellite-derived maps of fire sever-
ity may only identify the locations of live trees with ca.
80% accuracy (Chapman et al. 2020). In addition, post-
fire planting assessments are often made in the months
immediately following a fire using whatever cloud-free
imagery is available. Consequently, they will not capture
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effects of delayed mortality, which could lead to optimis-
tic estimates of potential for natural regeneration (Dyer
et al. 2025). Users are given the flexibility to define and
group different severity classes in maps, but this is nev-
ertheless an issue when assessing severity immediately
after a fire. Furthermore, because our “all-species” model
includes lodgepole pine (Pinus contorta) which is sero-
tinous in some areas, our estimate regeneration in loca-
tions that are far from live trees could be optimistic in
areas where this species is absent. Conversely, in areas
with highly serotinous populations of lodgepole pine, we
may underestimate regeneration probability. Neverthe-
less, a comparison of models with and without lodge-
pole pine indicated only minor differences in predictions.
Currently, Regenmapper provides two maps designed to
help prioritize site selection. The first is administrative
and specific to US Forest Service users. The second is a
simple planting prioritization index (PPI) aimed at iden-
tifying severely burned sites that have a low probability
of natural regeneration and that are accessible by road.
This is a highly simplified index that we consider a start-
ing point for conversations about potential site selection.
Spatially explicit optimization methods (e.g., Ager 2024)
have been designed for balancing site selection given
multiple criteria that could provide more robust esti-
mates of potential planting sites that consider both cost
and biophysical constraints.

Conclusion

Increased investments in reforestation are a unique,
once-in-a-generation opportunity to shape the trajec-
tory of forests throughout the western US. Drought,
climate change, and wildfires will continue to pose seri-
ous challenges and contribute significant uncertainty to
how successful we are in regrowing forests over the next
decade. Future increases in planting needs will lead to
a greater need for landscape prioritization and triage in
coming decades and decision support to facilitate these
efforts, which can be supported using DSSs such as
Regenmapper.
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