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Abstract 

Background Wildfires in western U.S. dry forest ecosystems have increased in size and severity during recent 
decades due primarily to more than a century of fire suppression, exclusion of Indigenous fire, and a rapidly warm-
ing climate. Fuel treatments have been employed to restore historical forest conditions and mitigate burn severity. 
However, their influence on burn severity in the context of other environmental variables and firefighting operations 
has not been extensively explored. The 2021 Bootleg Fire in south-central Oregon provided an opportunity to evalu-
ate the effectiveness of mechanical thinning (Tx), broadcast burning (Rx), and both treatments combined (TxRx) 
near the Sycan Marsh Preserve, where pre-fire LiDAR data were also available.

Results We assessed burn severity 1 year after the Bootleg Fire accounting for the local variability of top environ-
mental drivers, fuel treatments, and firefighting operations. We modeled the influence of burn severity drivers using 
Random Forest and examined mean predictor effects (global scale) and their spatially explicit variability across obser-
vations (local scale) using SHapley Additive exPlanations (SHAP) analysis. Within units treated with broadcast burn-
ing, the percentage of area burned at low severity was over 80%. In contrast, units treated with thinning-only 
and untreated forests were dominated by area burned at moderate (45%) and high (42%) severity, respectively. All 
treatment types facilitated firefighting operations. Broadcast burning units, in which suppression activities occurred 
during the Bootleg Fire, showed a marginal decrease in predicted burn severity. Under consistent severe weather 
conditions, our results underscored the central role of fuel characteristics, including fuel treatments, and their local 
variability in influencing burn severity. The most important determinant of burn severity was Rx, followed by top driv-
ers representing fuel structure and accumulation.

Conclusions Our study highlights that fuel characteristics and broadcast burning disproportionally impacted 
burn severity, with Rx being the most effective and economical treatment. By creating a reproducible framework 
to explain burn severity, at both global and local scales, we gained nuanced insights about the drivers of burn severity 
that could inform and enhance fire and fuel management practices across multi-ownership landscapes.

Keywords Bootleg fire, South-central Oregon, Dry conifer forests, Fuel treatments, Prescribed fire, Firefighting, Burn 
severity, LiDAR, Random forest, SHAP analysis

Resumen 

Antecedentes Los incendios de vegetación en ecosistemas de bosques secos del oeste de los Estados Unidos se 
han incrementado en tamaño y severidad en décadas recientes, primariamente debido a una centuria de supresión 

*Correspondence:
Astrid Sanna
astrid87@uw.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-025-00387-y&domain=pdf
http://orcid.org/0009-0000-2321-3955


Page 2 of 22Sanna et al. Fire Ecology           (2025) 21:44 

de incendios, la exclusión de las quemas realizadas otrora por los indígenas, y un rápido calentamiento del clima. Los 
tratamientos de combustibles han sido empleados para restaurar las condiciones históricas de los bosques y mitigar 
la severidad de esos incendios. Sin embargo, su influencia en la severidad de las quemas en el contexto de de otras 
variables ambientales y operaciones de combate de incendios no ha sido extensivamente explorada. El incendio de 
Bootleg de 2021 en el centro de Oregón, proveyó de una oportunidad para evaluar la efectividad de raleo mecánico 
(Tx), la quema prescripta bajo dosel (Rx) y la combinación de ambos tratamientos (TxRx) en las cercanías de la 
Preserva de Sycan Marshe, donde datos de LIDAR previos al fuego estaban disponibles.

Resultados Determinamos la severidad un año después del incendio de Bootleg, teniendo en cuenta los factores 
ambientales conducentes más importantes, los tratamientos de los combustibles, y las operaciones de combate. 
Modelamos la influencia de los factores conductores de la severidad del fuego usando el modelo de Bosques al Azar, 
y examinamos los efectos medios predichos (escala global) y su variabilidad espacial explícita a través de las obser-
vaciones (escala local), usando el análisis de las “explicaciones aditivas de Shapley” (SHapley Additive exPlanations, o 
SHAP). Dentro de las unidades tratadas con quemas prescriptas bajo dosel (Px), el porcentaje de área quemada a baja 
severidad fue del 80%. En contraste, las unidades tratadas con solo raleo (Tx) y bosques no tratados fueron domina-
dos por áreas quemadas a severidad moderada (45%) y alta (42%), respectivamente. Todos los tipos de tratamientos 
en las cuales las actividades de supresión ocurrieron durante el incendio de Bootleg, mostraron una disminución 
marginal en la severidad pronosticada. Bajo condiciones climáticas consistentemente severas, nuestros resultados 
subestimaron el rol central de las características de los combustibles, incluyendo los tratamientos del combustible, y 
como la variación local influencia la severidad. El determinante más importante de la severidad del fuego fueron las 
quemas prescriptas bajo dosel, seguido por otros factores conducentes que representaron la estructura y acumula-
ción del combustible.

Conclusions Nuestro estudio subraya que las características de los combustibles y las quemas prescriptas bajo dosel 
impactan desproporcionadamente en la severidad del fuego, siendo las quemas prescriptas bajo dosel (Rx) el tratami-
ento más efectivo y económico. Mediante la creación de un marco conceptual que explique la severidad del fuego, 
tanto a escala local como global, ganamos información con percepciones y matices sobre los factores conducentes 
de la severidad del fuego que pueden informar y mejorar las prácticas de manejo del fuego y de los combustibles 
a través de diversos paisajes con diferentes propietarios.

Introduction
In historically fuel-limited dry forest ecosystems of 
western North America, continuous accumulation of 
biomass resulting from fire suppression and the exclu-
sion of Indigenous fire combined with a rapidly warm-
ing climate has led to uncharacteristically large and 
severe wildfires (Allen et al. 2002; Van Mantgem et al. 
2013; Halofsky et  al. 2020; Hanan et  al. 2021; Parks 
et al. 2023) and departures from historical fire regimes 
(Wallace Covington 2000; Fry and Stephens 2006; 
Haugo et  al. 2019; Hagmann et  al. 2021). In ecosys-
tems dominated by ponderosa pine (Pinus ponderosa) 
and dry mixed-conifer forests, resilient stand condi-
tions were historically characterized by low levels of 
surface and ladder fuels, low density and competition, 
and included old (> 150 years), large, drought-tolerant 
trees (Arno et  al. 1995; Hagmann et  al. 2019; North 
et al. 2022). These pre-settlement forest structures were 
common across dry western forests and maintained by 
low-intensity fires, which burned frequently in highly 
flammable understories characterized by fine fuels 
including herbaceous species and pine needles (Agee 
1993).

In these dry fire-prone forests, managed wildfire—the 
strategic use of naturally-ignited fires to achieve res-
toration objectives (Collins and Stephens 2007)—has 
the potential to reestablish and maintain resilient stand 
conditions through a negative feedback mechanism. For 
example, several studies evaluating the influence of 40 
years of managed wildfires in the Illilouette Creek Basin 
(California) have found an increase in forest structure 
and landscape heterogeneity and potential improvement 
of resilience to disturbances (Collins et al. 2016; Boisramé 
et al. 2017a, b), providing reference conditions to inform 
restoration programs and ecological research (Chamber-
lain et  al. 2023). Additionally, a study conducted in the 
Bob Marshall Wilderness (Montana, USA) found that 
two lightning-ignited fires occurring 7 years apart shifted 
the stand structure back to open, mixed-conifer forests 
dominated by large ponderosa pines (Larson et al. 2013), 
which can reduce burn severity by limiting the accumu-
lation of ladder fuels and decreasing canopy continuity 
(Hakkenberg et  al. 2024). While earlier studies suggest 
that the effect of past fires on subsequent burn severity 
weakens over time (Parks et al. 2014b) and under extreme 
fire weather (Parks et  al. 2015), recent findings indicate 
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that even decades-old wildfires can continue to moder-
ate burn severity under such conditions (Tortorelli et al. 
2024). These differing perspectives underscore the com-
plexity of fire-vegetation interactions and suggest that 
the effectiveness of past fires in mitigating burn severity 
depends on multiple factors, including fire history, eco-
system characteristics, and climatic conditions (Prichard 
et al. 2017).

In addition to managed wildfire, where current for-
est structure and fuel accumulations are substantially 
departed from historical conditions, fuel reduction treat-
ments are employed to restore historical fire regimes, 
support forest resilience by mitigating fire behavior (Agee 
and Skinner 2005), and potentially reduce fire suppres-
sion efforts and costs (Agee et al. 2000; Moghaddas and 
Craggs 2007; Urza et al. 2023). The effectiveness of site-
level treatments has been extensively studied (Fulé et al. 
2012; Kalies and Yocom Kent  2016; Davis et  al. 2024) 
and assessed in the context of varying topographic, cli-
matic, weather, and fuel conditions (Prichard et al. 2020; 
Cansler et al. 2022). While broadcast burning, a type of 
prescribed fire, alone may be effective at mitigating burn 
severity by reducing ladder and surface fuels (Vaillant 
et al. 2009), prior thinning may be necessary in high-den-
sity stands to restore resilient horizontal forest structure, 
and prevent or at least reduce crown fire risk (Agee and 
Skinner 2005; Urza et al. 2023). Past studies have gener-
ally found that fuel treatments that combined thinning 
followed by broadcast burning were more effective than 
either thinning alone or broadcast burning alone (Hudak 
et  al. 2011; Prichard and Kennedy 2014; Prichard et  al. 
2020, 2021; Cansler et al. 2022).

Despite extensive literature documenting the miti-
gating effects of fuel treatments on burn severity, 
understanding their role amid other burn severity 
drivers remains a complex challenge. This difficulty 
largely stems from limited pre-fire fuel data, variabil-
ity in weather conditions during wildfires, and a lack 
of studies similar to Brodie et al. (2023), which used an 
experimental design to separate treatment effects from 
confounding factors such as fire weather, topography, 
and pre-existing fuel conditions. Additionally, there 
is a knowledge gap regarding the interaction between 
firefighting operations and fuel treatments in influ-
encing burn severity—though Harris et al. (2021) pro-
vided an initial investigation—and a need for improved 
methodologies to better account for spatially explicit 
variability in burn severity drivers. In a recent study, 
Chamberlain et  al. (2024) developed and applied a 
remote sensing-based analytical framework to assess 
the effectiveness of fuel treatments in moderating 
burn severity across the Bootleg Fire footprint. This 
and other studies (Kane et al. 2015a; Parks et al. 2018; 

Povak et  al. 2020; Prichard et  al. 2020; Cansler et  al. 
2022) have widely investigated drivers of burn severity 
at the fire scale using ensemble machine learning (ML) 
models. However, a few studies to date have examined 
how the localized relative importance of burn sever-
ity drivers, including fire suppression, varies spatially 
across a landscape. For example, Povak et  al. (2020) 
highlighted the value of spatially explicit approaches 
by assessing localized variations in burn severity pre-
dictors, yet their methods did not directly account for 
interactions among variables.

Although our study area covered only a section of the 
Bootleg Fire as constrained by the availability of pre-fire 
LiDAR data, it provided a valuable opportunity to exam-
ine how fuel treatments and other environmental pre-
dictors influenced burn severity under consistent severe 
fire weather conditions. This area encompassed a diverse 
fuel treatment history—including broadcast burning 
(Rx), mechanical thinning (Tx), and their combination 
(TxRx)—within a complex landscape characterized by 
undulating landforms and a mosaic of dry forest (treated 
and untreated), riparian, and wetland ecosystems. The 
size of the study area and the unusually detailed infor-
mation on fuel and fire management provided by The 
Nature Conservancy (TNC) allowed us to provide a 
detailed investigation of patterns of burn severity and 
their drivers.

Through this study, we aimed to quantify the effective-
ness of fuel treatments on burn severity while address-
ing research gaps related to their influence among other 
burn severity drivers. To achieve this, we applied SHap-
ley Additive exPlanations (SHAP; Lundberg & Lee 2017; 
Molnar 2023) analysis, an interpretable machine learn-
ing (ML) technique used to explain black-box models 
such as Random Forest (RF; Breiman, Leo 2001). Unlike 
more commonly used approaches to interpret ML mod-
els (Kane et al. 2015a; Parks et al. 2018; Povak et al. 2020; 
Prichard et al. 2020; Cansler et al. 2022), SHAP provides 
both a global interpretation of mean predictor effects and 
a spatially explicit assessment of local variability, captur-
ing and quantifying complex interactions among vari-
ables. By integrating SHAP analysis with an RF model, 
our study builds upon previous research by providing 
a nuanced understanding of how fuel treatments and 
environmental variables influence burn severity patterns 
across the landscape.

Our objectives were to:

(1) Assess the distribution and variability of burn 
severity across different fuel treatments and 
untreated forests.

(2) Evaluate the influence of fuel treatments, firefight-
ing operations, and the most important environ-
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mental drivers on burn severity at both global and 
local scales, while accounting for their interactions.

Methods
This study employed a multi-step approach to evaluate 
the influence of fuel treatments, environmental variables, 
and firefighting operations on burn severity. We begin 
by describing the study area, including its fire history, 
climate, vegetation, and fuel treatment history. We then 
outline the burn severity assessment, detailing the selec-
tion and computation of the relativized burn ratio (RBR) 
and the rationale for using Sentinel-2 data. Next, we 
describe the management data, including fuel treatment 
classifications and firefighting operations. We follow 
this with descriptions of LiDAR-derived forest structure 
and topographic metrics, weather and climate data, and 
vegetation-related variables, which were incorporated 
into the analysis. Finally, we detail the data extraction and 
compilation process, including predictor selection, pre-
processing steps, and the dataset used for RF modeling 
and SHAP analysis.

Study area
Our 1800-ha study area is located in the Fremont-Win-
ema National Forest, South-Central Oregon, USA. It 
matches the extent of the LiDAR data collected 3 years 
prior to the Bootleg Fire, covering only a portion of the 
much larger wildfire (Fig. 1). The Bootleg Fire was ignited 
by lightning on July 6, 2021. It burned a total of 167,445 
ha over 41 days in the Fremont-Winema National For-
est, in south-central Oregon. The wildfire impacted the 
ancestral homeland of the Klamath Tribes, causing eco-
logical and cultural damage, as well as loss of natural 
resources. The Bootleg Fire was the third-largest fire in 
Oregon’s history since 1900, and it exhibited extreme 
fire behavior, resulting in extensive high severity effects 
(Chamberlain et al. 2024).

Across our study area, elevation ranges between ~ 1500 
and ~ 1680 m. Climate is characterized by cold, snowy 
winters, and hot, dry summers (Agee 1993). Based on 
1991–2020 climate normals (Wang et  al. 2023), mean 
annual precipitation and precipitation as snow were 531 
and 115 mm, respectively, and mean annual tempera-
ture was 7 °C, ranging from 26 °C in summer and − 6 °C 
in winter. The forest is dominated by ponderosa and 
lodgepole pine (P. ponderosa and P. contorta). Understory 
vegetation includes bitterbrush (Purshia tridentata), 
Ceanothus spp., manzanita (Arctostaphylos spp.), kinni-
kinick (Arctostaphylos uva-ursi), quaking aspen (Popu-
lus tremuloides), and willow (Salix spp.). Historically, the 
Fremont-Winema NF was predominantly composed of 
large and old ponderosa pines, and the fire regime was 

characterized by frequent, low-intensity fires (Agee 2003; 
Hagmann et al. 2013).

Over the 16 years prior to the Bootleg Fire, the study 
area was co-managed through a collaborative partnership 
between The Nature Conservancy (TNC), The Klamath 
Tribes (TKT), and the USDA Forest Service (USFS). The 
goals driving fuel treatments included the restoration of 
historical forest composition by recreating spatial com-
plexity, a frequent and low-intensity fire regime, forest 
functions to support wildlife, and understory vegeta-
tion critical for tribes. Additionally, one of the goals was 
to create a safe environment for fire training programs 
(Bienz et  al. 2020). Restoration goals were facilitated 
through climate adapted prescriptions with reference 
to historic reconstructions plots (Churchill et  al. 2013) 
stratified by climate water deficit.

In our study area, fire and fuels managers implemented 
41 treatment units. Treatment types included mechani-
cal thinning followed by pile burning (Tx, 7% of total 
area), broadcast burning (Rx, 32% of total area), and 
thinning followed by broadcast burning (TxRx, 51% of 
total area). The untreated forests were considered as a 
single untreated unit (10% of the total area). Thinning 
treatments were conducted between 2012 and 2017, 
except for one unit treated in 2005. Treatments involv-
ing broadcast burning were conducted between 2017 
and 2021, except for one unit treated in 2008. In most 
Tx units, thinning was employed to restore wildlife habi-
tat, and resilient forest structure and composition using 
individuals, clumps, and openings (ICO, Churchill et al. 
2016) prescriptions. Trees were harvested using a disc 
saw, followed by whole-tree yarding to transport the 
entirety of each tree to the landings. There, delimbing 
occurred, resulting in the accumulation of slash piles. 
These piles were subsequently burned as a preparatory 
step before broadcast burning. The entire harvesting 
process took place from December to March to protect 
soils by working on frozen ground with snow. In some 
areas, Rx was applied on its own to reduce overstory tree 
density through thermal thinning (i.e., stem and crown 
scorching). In Rx and TxRx units, based on information 
provided by TNC and as shown in the 2020 National 
Agricultural Imagery Program (NAIP, 0.6 m) mosaic 
(Fig.  3), burn severity resulting from broadcast burning 
was heterogeneous, reflecting variable fuel conditions, 
and ignition patterns. Local managers estimated that 
average tree mortality after broadcast burning was less 
than 5% across the treated area. Some areas less than 2 
ha had more than 5% tree mortality (Fig. 2; C. Bienz, The 
Nature Conservancy, Oregon, USA, pers. comm.).

Data derived from MODIS active fire maps (Giglio 
et  al. 2009) indicated that the Bootleg Fire burned 
through our study area from July 13th to July 21 st, 
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Fig. 1 Map showing the study area footprint, fuel treatments, and firefighting operations. Each individual polygon represents a unit, except for the 
untreated area, which is characterized by multiple polygons all labeled as unit 43. Embedded overview maps include extent indicators (red 
rectangle and dot) to show the location of the study area (near Sycan Marsh, south-central Oregon, US) at different scales
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progressing with the prevailing wind direction from 
southwest to northeast. During days of burning, fire 
weather was characterized by low fuel moisture and 
relative humidity, and high temperature and energy 
release component (ERC) (Table  1). Based on these 
metrics, our entire study area burned mostly under 

similarly severe fire weather conditions, except for wind 
speed. Maximum wind speed exceeded 32 km/h on sev-
eral days but reached 64 km/h on July 18th for a short 
period of time. On that day, local managers observed 
extreme fire behavior, including a fire-tornado which 
uprooted several trees (Fig. 2D).

Fig. 2 Photos of fuel treatments before the 2021 Bootleg Fire and fire tornado effects after the wildfire. A Post thinning (Tx) fuel conditions and soil 
disturbance. B Post broadcast burning (Rx) with < 5% mortality. C Tree uprooted by a wildfire tornado. D Post broadcast burning with > 5% mortality. 
E High severity burns in forested riparian area (northeast corner of TxRx unit 20; Coyote Creek; April 25th, 2024). Photos were taken at three different 
locations within our study area (near Sycan Marsh, south-central Oregon, US). Photo credit: Craig Bienz (TNC; A, B, D); Alina Cansler (C); Astrid Sanna 
(E)

Table 1 Incident Action Plans fire weather data provided by TNC during the 2021 Bootleg Fire, representing our study area near 
Sycan Marsh, Oregon. 100-h FM = 100-h fuel moisture. 1000-h FM = 1000-h fuel moisture. Min. RH = minimum relative humidity. Max. 
temp = maximum temperature. ERC = energy release component. Maximum wind speed exceeded 32 km/h on several days

July 2021 (day) 100-h FM (%) 1000-h FM (%) Min. RH (%) Max. temp (°C) ERC (BTU/ft2)

13  < 8 < 9 14.5 33.2 66.0

14  < 8  < 9 14.0 34.3 65.0

15  < 8  < 9 12.0 32.2 68.0

17  < 7  < 9 12.0 32.2 67.0

19  < 7  < 9 13.0 30.6 64.0

20  < 7  < 9 13.0 31.1 64.0

21  < 7  < 9 13.0 31.1 74.0
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Burn severity data
Burn severity is defined as a “scaled index gauging the 
magnitude of ecological change caused by fire” (Key 
and Benson 2006). The composite burn index (CBI) is 
a common ground measurement of burn severity that 
aggregates post-fire effects (Key and Benson 2006) and 
is used to validate satellite-derived burn severity obser-
vations (e.g., Prichard et al. 2020).

Following methods described in Howe et  al. (2022) 
and Parks et  al. (2021), we calculated the relativized 
burn ratio (RBR; Parks et  al. 2014a) across the entire 
fire perimeter using Google Earth Engine (Gorelick 
et al. 2017), and then clipped it to the study area extent. 
We selected RBR over other indices for two reasons: (1) 
Parks et al. (2014a) demonstrated that RBR better rep-
resents CBI measurements; (2) based on a comparison 
against burn severity distributions of the delta normal-
ized burn ratio (dNBR), relativized dNBR (RdNBR), and 
delta normalized difference vegetation index (dNDVI) 
by fuel treatment type, RBR had fewer outliers and best 
discriminated fuel treatment classes.

The index was computed using 1-year pre- and 
post-fire mean composite imagery collected during 
the growing season (June 1–September 30) to cap-
ture survivorship potential and delayed mortality (Key 
and Benson 2006) in response to the Bootleg Fire. CBI 
observations from 2022 were not available in our study 
area, hence we used Parks et  al. (2021, Table  7) RBR 
thresholds corresponding to CBI classes to interpret 
burn severity. Our 2020 mean composite imagery used 
to calculate RBR did not account for the possible effect 
of the pre-Bootleg Rx treatment conducted over unit 
8, in 2021. However, given its small size (~ 2% of the 
total study area), the very low burn severity observed 
in 2022 (Fig. S5)—indicating a small reflectance change 
between 2020 and 2022—and the similar forest struc-
ture observed through a visual assessment of NAIP 
2020 and 2022 (Figure S1), we decided to retain unit 8 
in our analysis.

We calculated RBR employing Sentinel-2 Level 2 A 
surface reflectance data. The Near Infrared (NIR) and 
the Shortwave Infrared (SWIR 2) bands necessary to 
calculate RBR have a native resolution of 10 and 20 
m respectively; to exploit the finest scale available, 
we created our burn severity raster at a pseudo 10-m 
resolution (Howe et al. 2022). Additionally, we further 
assessed burn severity by visually inspecting pre- and 
post-fire imagery extracted from the NAIP collection. 
We downloaded 2020 and 2022 multispectral (red, 
green, blue, NIR bands) NAIP imagery at 0.6 m resolu-
tion using GEE (Fig. 3B).

Management data
To assess the influence of different fuel treatment types 
on burn severity, we created a single fuel-treatment vec-
tor layer by combining data provided by TNC with data 
extracted from the Interagency Fuel Treatment Decision 
Support System (IFTDSS 2021) database. We considered 
the combined untreated areas as a single control unit 
after verifying that the forest types matched those found 
in treated units based on the 2020 LANDFIRE (Ryan 
and Opperman 2013) Existing Vegetation Type dataset 
(EVT; https:// landfi re. gov/ evt. php). The final fuel treat-
ment vector layer included Tx, Rx, TxRx, and untreated 
classes.

Additionally, to evaluate the effect of fire suppression 
on burn severity, we collected firefighting operations data 
by requesting the local fire program manager (K. Sauer-
brey, The Nature Conservancy, Oregon, USA), who was 
on the scene during the wildfire, to fill out a survey devel-
oped by Washington DNR (Anna Barros and Gretchen 
Engbring, Washington, USA, pers. comm.). The survey 
documented whether treatment units were utilized by 
firefighters for wildfire suppression and, if so, the specific 
methods employed—direct attack, burnout operations, 
or both. For the purpose of our analysis, we simplified 
those data into a single binary variable, representing the 
presence or absence of fire suppression by treatment unit.

LiDAR-derived forest structure and topographic metrics
To investigate the influence of pre-Bootleg forest struc-
ture on burn severity, we obtained 2018 pre-fire LiDAR 
data from USFS and 2021 post-fire LiDAR from the open 
source USGS server (USGS LiDAR 2021). Mean first 
returns per square meter were 11 and 15 respectively. 
We used FUSION/LDV LIDAR Analysis and Visualiza-
tion software version 4.51 (McGaughey 2020) to calculate 
forest and topographic metrics at 30-m and 15-m resolu-
tion, respectively (Table 2; Table S1). Pre-fire LiDAR were 
collected before some of the broadcast burning treat-
ments were conducted. For this reason, forest metrics 
were computed using exclusively first returns with a 2-m 
cutoff, limiting the inclusion of understory vegetation 
while accounting for the presence of taller saplings.

Weather data
To evaluate the effect of wind and other weather vari-
ables on burn severity, we calculated wind metrics using 
wind data computed with WindNinja software ver-
sion 3.8 (Forthofer 2007) and extracted other daily fire 
weather variables from the University of Idaho Gridded 
Surface Meteorological (GRIDMET; Abatzoglou 2013) 
dataset available in GEE (Table S1). Hourly-interpolated, 
topography-driven wind vectors were calculated for each 

https://landfire.gov/evt.php
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Fig. 3 A Raster of continuous relativized burn ratio (RBR) at 10-m resolution, including only pixels representing canopy cover > 10%, 
and representing 1-year post-fire burn severity following the 2021 Bootleg Fire near Sycan Marsh (south-central Oregon, US). B Map including 2020 
NAIP imagery at 0.6-m resolution. The background map shows streams and wetlands cover. C Evaporative stress index (ESI). D Topographic position 
index (TPI-4km). E Canopy cover (above 2 m)
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fire day, following directions detailed in WindNinja’s 
tutorial 3 (https:// weath er. firel ab. org/ windn inja/ tutor 
ials/). Using the Point Initialization option, we selected 
weather stations within a 10,000-m buffer around the 
study area. We used wind speed, and wind direction 
vectors produced at 90-m point spacing, to derive daily 
maximum wind speed, and related ordinal eastwestness 
(sine transformed radians) and northsouthness (cosine 
transformed radians) direction layers (Table 2; Table S1). 
Infrared imagery-derived heat perimeters were obtained 
from the 2021 National Infrared Operations (NIROPS; 
USDA 2021) dataset for most days throughout the entire 
wildfire progression.

Daily wind and GRIDMET layers were intersected with 
NIROPS perimeters to create 10-m raster layers captur-
ing weather variability based on daily wildfire progres-
sion. Additionally, we obtained Incident Action Plans fire 
weather data from TNC. This dataset, which was pro-
vided as a summary table (Table 1), was used to interpret 
our results, since it offered critical information to under-
stand fire weather conditions observed on the ground.

Climate data
To account for the effect of climate on burn severity, 
we used 30-year climate normals whenever possible, 

as they provide a stable and representative baseline for 
long-term climate patterns, reducing the influence of 
short-term climate variability. Climate layers, including 
1981–2010 actual evapotranspiration (AET) and 1981–
2010 climatic water deficit (CWD) grids were produced 
following methods described in Appendix B of Cansler 
et  al. (2022). We used the ClimateNA software (Wang 
et  al. 2016) to compute more recent climatic normals 
(1991–2020), including Hargreaves climatic moisture 
deficit (CMD; representing the difference between ref-
erence evapotranspiration and monthly precipitations), 
mean annual precipitation, May–September precipita-
tion, and precipitation as snow (Table 2; Table S1).

Additionally, we included snow cover metrics such 
as snow cover frequency (SCF) and snow disappear-
ance day (SDD), to account for the influence of soil 
moisture and vegetation growth on burn severity. SCF 
measures snow cover persistence as the proportion of 
days with snow cover over a given water year (October 
2020–September 2021). On the other hand, SDD rep-
resents the last day of snow cover during a water year. 
We produced snow cover metrics using MODIS/Terra 
Snow Cover Daily L3 Global 500-m SIN Grid (Version 
6) dataset, and by running the GEE script provided by 
Crumley et al. (2020).

Table 2 Subset of predictors included in the final Random Forest model representing data covering the study area near Sycan Marsh, 
Oregon. All topographic variables were calculated applying 15-, 45-, 135-, and 270-m windows, except for topographic position index 
which was calculated applying 200-, 500-, 1000-, 2000-, and 4000-m windows

Predictors Resolution (m) Unit Source/software

Management

 Broadcast burning 10 Unitless TNC; IFTDSS

 Mechanical thinning 10 Unitless TNC; IFTDSS

 Firefighting 10 Unitless Survey

Forest structure

 Canopy cover 30 % FUSION

 Canopy rumple 30 Unitless FUSION

Topography

 Topographic position index 15 Unitless FUSION

 Aspect 15 Degrees AZ FUSION

 Slope 15 Degrees FUSION

 Solar radiation index 15 Unitless FUSION

Weather

 Maximum temperature 4000 Kelvin Abatzoglou 2013; NIROPS

 Northsouthness maximum wind speed 90 Cosine transformed radians WindNinja

Vegetation

 Evaporative stress index 70 Unitless Fisher 2018

Climate

 Actual Evapotranspiration 1981–2010 90 mm Cansler et al. 2022 (Appendix B)

 Snow cover frequency 500 %  Crumley et al. 2020

 Distance to streams and wetlands 10 m ODSL; ODFW

https://weather.firelab.org/windninja/tutorials/
https://weather.firelab.org/windninja/tutorials/
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Vegetation data
To evaluate the possible effect of different vegetation types 
on burn severity, we downloaded the Fire Resistance Score 
(FRS; Stevens et al. 2020) and the 2020 LANDFIRE EVT 
using LF Map Viewer (www. landfi re. gov/ viewer/). FRS 
is a summary of functional traits of fire-adapted conifer 
tree communities used to quantify the resistance of forest 
communities to tree-killing fire. Existing vegetation type 
(EVT) represents associations of plant community types 
that are commonly found within landscapes featuring 
similar substrates, ecological processes, and/or environ-
mental gradients. Given the dominance of the ponderosa 
pine forest, woodland, and savanna forest type (57%), 
and the relative low cover of all other vegetation classes 
(< 5% each), the EVT layer was re-coded as a binary vari-
able representing dominant (value = 1) and non-dominant 
(value = 0) vegetation, respectively (Table S1).

To evaluate vegetation stress right before the Bootleg 
Fire, we used the Level-4 evaporative stress index (ESI; 
Fisher 2018), which is calculated using the Priestley-
Taylor Jet Propulsion Laboratory (PT_JPL) algorithm 
and was obtained by following tutorials published on 
the ECOSTRESS homepage (https:// ecost ress. jpl. nasa. 
gov). ESI, among other ECOSTRESS-derived metrics, 
is calculated using the thermal infrared brightness tem-
perature of plants collected from the space station. ESI 
is a drought index ranging from 0 to 1 (0 = water stress, 
1 = no water stress) calculated as the ratio of evapotran-
spiration (i.e., water used by plants; ET) over potential 
evapotranspiration (i.e., maximum rate of atmospheric 
demand; PET). Both ET and PET are ECOSTRESS-
derived metrics. The ESI layer used in this analysis was 
derived from data collected on July 10, 2021, just 3 days 
before the Bootleg Fire approached our study area, 
according to NIROPS (Table 2; Table S1).

Distance to streams and wetlands data
To capture the possible effect of riparian and wetland 
ecosystems on burn severity within our study area, 
we created a distance-to-streams-and-wetlands layer. 
We sourced wetlands data from the Oregon Depart-
ment of State Lands Statewide Wetlands Inventory 
(ODSL 2021), and whole stream routes from the Ore-
gon Department of Fish and Wildlife data clearing-
house (ODFW 2021). After merging and rasterizing 
the geospatial datasets, we calculated the distance for 
each pixel using the R function distance from the raster 
package (version 3.6–20) (Table 2; Table S1).

Extracting and compiling data
All layers used in this analysis were either vector shape-
files or rasters. To build a comprehensive and coherent 

dataset, vector shapefiles were rasterized matching the 
extent and projection of the RBR raster. The statisti-
cal methods employed in this study were limited to 
numeric variables—whether binary, discrete, or con-
tinuous. For this reason, we recoded variables repre-
senting multiple classes into binary variables. EVT 
classes were simplified to dominant (1) and non-dom-
inant (0) vegetation types. The fuel treatment layer, 
originally representing four classes (i.e., Tx, Rx, TxRx, 
and untreated), was recoded into two binary varia-
bles: Tx and Rx. These variables indicate the presence 
(1) or absence (0) of these treatments. This reduction 
was necessary to limit the dimensionality of our data 
frame, decrease data sparsity (i.e., increase the pro-
portion of non-zero observations), and enhance model 
interpretability.

We created our dataframe using gridded sampling 
(Povak et al. 2020; Chamberlain et al. 2024) and extracted 
rasterized values at 90-m intervals from our pool of pre-
dictors. We chose a 90-m spacing to ensure a sufficiently 
large sample size for Random Forest modeling while min-
imizing spatial autocorrelation. We retained only entries 
with canopy cover > 10% (derived from pre-fire LiDAR) 
based on the Forest Inventory and Analysis (FIA) pro-
gram definition of forest (https:// apps. fs. usda. gov/ fiadb 
static- api/ static/ html/ RPA_ forest_ filter. html). We then 
validated this threshold through visual assessment of the 
2020 NAIP imagery covering our study area.

We reduced our pool of predictors by (1) retaining only 
variables that had a Spearman correlation coefficient < 0.6 
and that were more highly correlated with RBR; (2) 
recursively eliminating features (i.e., backwards selec-
tion) with Random Forest, optimizing for a higher vari-
ance explained. Recursive feature elimination (RFE) was 
conducted using the function rfe from the caret package 
(version 6.0–94; Kuhn 2008). While this process removed 
mechanical thinning, we retained this variable given our 
interest in understanding the local effect of fuel treat-
ments on burn severity. The final data frame included 17 
predictors (Table 2) and 1846 observations.

Analysis
Objective 1: evaluating burn severity by treatment type
To evaluate the influence of fuel treatments on burn 
severity and capture its variability within each treatment 
class, we created violin plots showing the distribution of 
burn severity by fuel treatment type (untreated, Tx, Rx, 
TxRx), and by individual units, respectively. CBI thresh-
olds derived specifically for RBR were used to quantify 
the percentage of area burned at low (≤ 135), moderate 
(136–300), and high (≥ 301) severity for each treatment 
class (Parks et al. 2021).

http://www.landfire.gov/viewer/
https://ecostress.jpl.nasa.gov
https://ecostress.jpl.nasa.gov
https://apps.fs.usda.gov/fiadbstatic-api/static/html/RPA_forest_filter.html
https://apps.fs.usda.gov/fiadbstatic-api/static/html/RPA_forest_filter.html
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Objective 2: random forests and SHAP analysis
We fit a Random Forest regression (RF; Breiman, Leo 
2001)  model with an explanatory focus and applied 
SHapley Additive exPlanations (SHAP; Lundberg & Lee 
2017; Molnar 2023) analysis to uncover both the mean 
predictor effects (global impact) and the spatially explicit 
local variability (local effect) of predictors influencing 
burn severity. Our model utilized the complete dataset of 
1846 observations, prioritizing a comprehensive under-
standing of burn severity variations within our study area 
over predictive accuracy on new, unseen data.

We ran the entire analysis using R programming 
language (RStudio Team 2020). Functions from the 
tidymodels framework (version 1.1.0) were used to build 
our modeling workflow and the ranger package (ver-
sion 0.15.1; Wright and Ziegler 2017) was used to train 
the RF model. Hyperparameter tuning was systemati-
cally evaluated through tenfold cross-validation to deter-
mine how different numbers of features considered for 
splitting at each node (mtry) and the minimum number 
of observations required to form a new node in a tree 
(min_n) performed, based on the pseudo-R2 metric. The 
best parameters (mtry = 4, min_n = 5) were then used to 
train the final RF model. Subsequently, we employed the 
DALEXtra package (version 2.3.0; Maksymiuk et al. 2021) 
to evaluate the model performance, and extract predicted 
values and residuals. Given that the contagious effect of 
fire spread is inherently a spatial process, we assessed 
the possible presence of spatial autocorrelation (SA) in 
the residuals to verify that our model did not violate the 
assumption of independence. To assess SA, we produced 
and interpreted a Moran’s I plot with a lag distance of 90 
m (representing the sampling distance) by using the cor-
relogram function in the elsa package (version 1–1.28; 
Naimi et al. 2019).

SHAP analysis is a statistical approach based on Shap-
ley values, a method from the coalitional game theory 
employed to explain black-box models such as RF (Lun-
dberg et al. 2019). While a coalition in a game represents 
a group of players, a coalition in a black-box model repre-
sents a group of features (i.e., predictors). After evaluat-
ing the contribution of each feature value to a predicted 
value across all possible coalitions, the average contribu-
tion of a feature value (i.e., Shapley value) is calculated. 
Additionally, it provides a means to explicitly quantify 
and visualize the local interaction effect between pairs of 
predictors. Thus, while accounting for all possible inter-
actions, SHAP analysis allowed us to examine (1) the 
local importance of each predictor value at the scale of 
a 90-m pixel; and (2) the global importance of each pre-
dictor at the scale of the study area with respect to burn 
severity.

In our case, SHAP values represent the local impor-
tance of each feature value for the burn severity predic-
tion of a specific data point. Specifically, they quantify the 
contribution of each feature value to the deviation from 
the mean prediction. Therefore, for a specific prediction, 
the sum of the contributions of all feature values equals 
the deviation. Finally, SHAP global importance is calcu-
lated by taking the mean of the absolute SHAP values for 
each feature (e.g., Rx) across all the data points (i.e., 1846 
observations), which quantifies the overall impact of each 
feature on the model’s predictions.

SHAP values can be positive or negative, indicat-
ing whether the effect of the feature value increases or 
decreases the predicted outcome, respectively. In the 
context of this study, a negative SHAP value would sug-
gest that the feature value was associated with a decrease 
in the burn severity prediction, while a positive SHAP 
value would suggest an increase. The magnitude of SHAP 
values reflects the strength of the effect of each feature 
on the prediction, with larger absolute values indicating a 
greater influence. We conducted SHAP analysis using the 
treeshap package (0.2.5; Yang 2022), and created a SHAP 
maps for each predictor at 90-m resolution (sampling 
distance). Finally, we used SHAP maps and dependence 
plots to examine the spatial patterns of the local effect of 
each predictor.

Results
We found that the influence of fuel reduction on burn 
severity varied by treatment prescription. Within units 
treated with broadcast burning, the percentage of area 
burned at low severity was over 80%. In contrast, units 
treated with thinning-only and untreated forests were 
dominated by area burned at moderate (45%) and high 
(42%) severity, respectively (Fig. 4A and B).

Our RF model achieved an  R2 of 0.94 and a root mean 
square error (RMSE) of 31.8 for predicting RBR. The 
model fit revealed a mostly linear relationship between 
observed and predicted RBR values (Fig. S2). Residuals 
spatial autocorrelation exhibited a Moran’s I value that 
ranged between 0.1 and 0.0, indicating spatial independ-
ence in the residuals (Figure S2). Global variable impor-
tance values revealed that top predictors of RBR included 
Rx, ESI, 4000-m window topographic position index 
(TPI-4 km), and canopy cover, in descending order of 
importance, while firefighting and Tx were ranked third-
to-last and last, respectively (Fig. 4C).

The local influence of each predictor’s value on pre-
dicted burn severity varied across our study area (Fig. 7). 
Rx SHAP values ranged between − 29 and 150. Observa-
tions indicating the implementation of Rx (Rx = 1) cor-
responded to lower predicted burn severity (negative 
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SHAP values), while areas not treated with Rx (Rx = 0) 
corresponded to higher predicted burn severity (posi-
tive SHAP values) (Figs.  5A; 7A). Tx SHAP values 
ranged between − 6 and 6. The distributions of obser-
vations representing the presence of Tx (Tx = 1) and its 
absence (Tx = 0) revealed an unclear effect on predicted 
burn severity. Some areas treated exclusively with Tx 
were associated with marginally higher predicted burn 
severity, and some that were untreated (Tx = 0, Rx = 0) 
exhibited lower predicted burn severity. Firefighting 
SHAP values ranged between − 13 and 13 (Figs. 5F; 7F). 
Firefighting efforts that were conducted in units treated 
with Rx were associated with a marginal decrease in pre-
dicted burn severity. Where Rx was absent, firefighting 
operations were linked to both a marginal increase and 
decrease in predicted RBR. Areas where firefighters did 
not intervene (Firefighting = 0) exhibited mostly higher 
predicted burn severity (Figs. 5E; 7E). However, the mag-
nitude of the influence of this variable remained consist-
ently low compared to top predictors.

ESI SHAP values ranged between − 68 and 97, show-
ing a positive increasing trend in RBR with increasing 
ESI values ranging between 0.4 and 0.7. Areas experi-
encing lower water stress were associated with higher 
predicted RBR (Figs.  5B; 7B). TPI-4km SHAP values 
ranged between − 54 and 152, showing a steep negative 
slope between − 4000 and 0 TPI-4km. The trend then 
plateaued over the 0–8000 TPI-4km range. Valleys, rep-
resented by more negative TPI-4km values, were posi-
tively correlated with increasing predicted RBR, while 
those representing hills and ridges (more positive TPI-
4km) were associated with lower burn severity (Figs. 5C; 
7C). Additionally, based on exploratory analysis, we 
observed a strong negative correlation (Spearman = 
− 0.80) between TPI-4km and CMD (Figure S3) aver-
aged over 30 years (1991–2020). Because TPI-4km was 
more highly correlated with RBR than CMD, CMD was 
excluded from the pool of predictors but retained for 
interpretation.

Canopy-cover SHAP values ranged between − 39 
and 102, showing a positive, mostly linear relation-
ship with observed canopy cover. Pixels featuring > 40% 
canopy cover were associated with increasing burn 

severity (Figs.  5D; 7D). Finally, the SHAP interaction 
values between canopy cover and Rx—ranging approxi-
mately from − 30 to 40—indicate that the relationship 
between canopy cover and burn severity (RBR) was 
strongly influenced by the presence or absence of broad-
cast burning. In untreated areas (Rx = 0), higher canopy 
cover was associated with increasingly positive SHAP 
interaction values. Conversely, in areas where Rx was 
applied (Rx = 1), SHAP interaction values remained rela-
tively stable and close to zero across all canopy cover lev-
els (Fig. 6).

Discussion
Influence of fuel treatments on wildfire predicted burn 
severity
We observed a substantial difference in percentages 
of area burned at low, moderate, and high severity 
between units that were treated with broadcast burning 
and those that were not (Fig. 4B), suggesting that likely 
fire behavior and consequent burn severity varied in 
response to fuel structure and accumulation (Agee and 
Skinner 2005; Vaillant et  al. 2006; Ritchie et  al. 2007; 
Safford et al. 2009, 2012).

Based on SHAP analysis, the presence or absence of 
broadcast burning (Rx) and mechanical thinning (Tx) 
were the most and least important determinants of wild-
fire burn severity, respectively (Fig. 4C). The comparable 
high percentages of area burned at low severity within Rx 
and TxRx (Tx followed by Rx) units, suggest that broad-
cast burning alone can be as effective as combined thin-
ning and burning treatments in mitigating burn severity. 
This approach has both economic and ecological impli-
cations for forest managers. Specifically, where condi-
tions exist to allow Rx on its own and where commercial 
thinning cannot offset treatment costs, Rx can be a more 
cost-effective method for reducing burn severity than 
TxRx (Bienz et  al. 2019; Holland et  al. 2022). Tx treat-
ments may also have higher environmental impacts than 
Rx, including risks of soil disturbance and compaction 
and injuries to live trees (Picchio et al. 2020). Over time, 
repeated application of Rx can act as a thinning agent by 
killing small trees, creating more canopy openings, and 
increasing canopy base height. However, reintroducing 

Fig. 4 Graphs showing 1-year post-fire burn severity analysis following the 2021 Bootleg Fire near Sycan Marsh (south-central Oregon, US). A 
Relativized burn ratio (RBR) distributions by treatment type. Solid and dotted horizontal lines represent low (≤ 135) and moderate (136–300) 
burn severity thresholds, respectively. B Percentages of area burned across different severity classes by treatment type (thinning = Tx; broadcast 
burning = Rx, Tx followed by Rx = TxRx). C SHapley Additive exPlanations (SHAP) importance plots presenting the global impact (left) and the local 
effect (right) of each predictor on burn severity in decreasing order of importance. Left plot: x-axis shows the mean of the absolute SHAP values. 
Right plot: x-axis shows negative and positive SHAP values to indicate a decrease and an increase in predicted burn severity, respectively (relative 
to the predicted mean). The magnitude of SHAP values reflects the strength of the local effect of each feature value on the prediction, with larger 
absolute values indicating a greater influence

(See figure on next page.)
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fire through controlled burning (without thinning) in 
fire-excluded forests may pose substantial risks, includ-
ing higher, undesired tree mortality due to high severity 

burns caused by abundant pre-fire fuel accumulation 
(Miller and Urban 2000), and recruitment of surface 
fuels through post-fire tree mortality (Agee 2003). 

Fig. 4 (See legend on previous page.)
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Nevertheless, within our study area, on sites where time 
since Rx was < 5 years, the extent of high severity burns 
caused by this prescription was substantially smaller 
compared to that observed in Tx units and untreated for-
ests affected by the Bootleg Fire.

Our findings on the effectiveness of fuel treatments 
largely corroborate results from prior research. Stud-
ies have shown that fuel treatments including broadcast 
burning were more effective at mitigating burn severity 
than thin only treatments (Prichard and Kennedy 2014; 
Yocom Kent et  al. 2015; Prichard et  al. 2020; Cansler 
et al. 2022; Chamberlain et al. 2024), and that effective-
ness declined as treatment age increased (Finney et  al. 
2005; Hudak et  al. 2011). Moreover, in three reviews, it 
was found that thinning followed by broadcast burning 
was consistently the most effective treatment, and that, 
in comparison, Rx and Tx alone were either less effective 

(Fulé et al. 2012; Davis et al. 2024) or led to mixed results 
(Kalies and Yocom Kent 2016).

Differences in burn severity between units treated with 
broadcast burning and those that were not can likely 
be attributed to surface fuel reduction in Rx treatments 
compared to potential increases in surface fuels through 
Tx treatments (Vaillant et  al. 2006; Knapp et  al. 2017). 
Broadcast burning disrupts both vertical and horizon-
tal fuel continuity by consuming surface fuels (Agee and 
Skinner 2005; Reinhardt et al. 2008), thus limiting crown 
scorch and tree mortality even under extreme weather 
conditions (Prichard and Kennedy 2014; Yocom Kent 
et  al. 2015; Povak et  al. 2020; Prichard et  al. 2020; Bro-
die et al. 2023). In contrast, extensive crown scorch, and 
torching can be caused by increased surface fuels from 
logging slash, fuel aridity, and wind speed resulting from 
thinning (Agee and Skinner 2005; Whitehead 2008; Ma 

Fig. 5 Dependence plots showing 1-year post-fire burn severity analysis following the 2021 Bootleg Fire near Sycan Marsh (south-central Oregon, 
US). Each plot shows important predictor values (x-axes) against SHapley Additive exPlanations (SHAP) values (y-axes). On the y-axis, negative SHAP 
values indicate a decrease in the predicted burn severity, while positive SHAP values indicate an increase (relative to the predicted mean). The 
magnitude of SHAP values reflects the strength of the local effect of each feature value on the prediction, with larger absolute values indicating 
a greater influence. Predictors are presented in order of decreasing importance, from A to F. A Broadcast burning (Rx) is colored by thinning (Tx) 
values (0 = absent, 1 = present), and untreated observations are represented by Rx = 0 and Tx = 0. E Firefighting and F Tx are colored by Rx values 
(0 = absent, 1 = present). Firefighting operations were conducted only in treated units, thus firefighting = 1 and Rx = 0 indicate Tx observations 
subjected to fire suppression, while firefighting = 0 and Rx = 0 indicate either Tx or untreated observations where fire was not suppressed. In plot F, 
untreated observations are represented by Tx = 0 and Rx = 0
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et al. 2010; Kane 2021) and exacerbated by hot summer 
temperatures.

Although we could not conduct pre-Bootleg fuel sur-
veys in our retrospective study, consultations with the 
local manager (C. Bienz, The Nature Conservancy, Ore-
gon, USA, pers. comm.) indicated that Rx and TxRx units 
had lower fuel loads compared to untreated forests and 
Tx units. Therefore, we interpreted the occurrence of 
broadcast burning as a proxy for pre-fire fuel accumula-
tion in the lower strata, leveraging the recent timing of 
this prescription (< 5 years, except for one unit treated in 
2008). Although less effective than treatments including 

Rx, thinning units had somewhat lower RBR than 
untreated units (i.e., mean Tx RBR = 208; mean untreated 
RBR = 244), possibly due to lower fuel loads and the influ-
ence of firefighting operations. Likely, untreated forests 
were more susceptible to crown fire than thinned units 
due to differences in forest structure. Specifically, based 
on exploratory analysis, LiDAR-derived metrics revealed 
lower mean canopy height, canopy base height, horizon-
tal and vertical canopy complexity, and higher canopy 
cover where forests were untreated (Figure S4).

Despite the broad trends indicating the effectiveness of 
treatments, we observed local variability in burn severity 
across both treated and untreated forests. For instance, 
we observed patches of low burn severity in untreated, 
freshwater forested wetlands near units 13 and 1 (Fig. 1), 
where moist soil provided a refuge for encroaching trees 
against the spread of fire. Although fire severity was 
generally lower in Rx and TxRx units, we also observed 
patches of high severity burns within units treated with 
broadcast burning. This was particularly evident in 
areas featuring one or a combination of the following 
conditions:

(1) Controlled burns were not applied consistently, 
especially near the Coyote Creek riparian zones 
(Fig. 1, unit 20) where fuel was not treated to avoid 
potential negative impacts on the riparian system 
(Stone et  al. 2010), and soil was drier due to hot 
summer temperatures (C. Bienz, The Nature Con-
servancy, Oregon, USA, pers. comm.);

(2) Canopy cover was continuous and exceeded 40%;
(3) Rx alone was conducted 13 years prior to the Boot-

leg Fire.

For instance, the TNC fire manager informed us that 
post-thinning fuel found in the northeast corner and 
other areas within TxRx unit 20 was not treated with 
broadcast burning; rather, it was piled and burned (K. 
Sauerbrey, The Nature Conservancy, Oregon, USA, pers. 
comm.). The presence of residual slash coupled with 
drier fuel conditions, high canopy cover (> 40%), and the 
advance of high intensity fire from the adjacent untreated 
unit, likely contributed to the high severity noted in that 
area (RBR > 450). Moreover, unit 20 was characterized 
by a riparian zone dominated by fire-sensitive species 

Fig. 6 Dependence plot showing the interaction between canopy 
cover and broadcast burning (Rx) in relation to 1-year post-fire 
burn severity following the 2021 Bootleg Fire near Sycan Marsh 
(south-central Oregon, US). The plot displays canopy cover values 
(x-axis) against SHapley Additive exPlanations (SHAP) interaction 
values (y-axis), colored by Rx values (0 = absent; 1 = present)

(See figure on next page.)
Fig. 7 Maps showing the 1-year post-fire burn severity analysis for the 2021 Bootleg Fire near Sycan Marsh (south-central Oregon, US). Each 
map represents rasterized (90 m) SHapley Additive exPlanations (SHAP) values for A broadcast burning (Rx), B evaporative stress index (ESI), C 
topographic position index (TPI-4km), D canopy cover, E firefighting, and F thinning (Tx), which are displayed in order of descending importance. 
Each raster matches the extent of the study area and is overlaid by the fuel treatments layer (black lines). Negative SHAP values indicate a decrease 
in the predicted burn severity, while positive SHAP values indicate an increase (relative to the predicted mean). The magnitude of SHAP values 
reflects the strength of the local effect of each feature value on the prediction, with larger absolute values indicating a greater influence
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Fig. 7 (See legend on previous page.)
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including willows and lodgepole pines, which burned at 
high severity (Fig. 2E). We also observed patches of high 
and moderate burn severity in Rx unit 11, where broad-
cast burning was conducted 13 years prior to the Boot-
leg Fire. This unit experienced a mountain pine beetle 
(Dendroctonus ponderosae Hopkin; Bentz 2008) outbreak 
in 2008, affecting both lodgepole and ponderosa pines. 
Due to the low timber prices, that year TNC opted to use 
broadcast burning as a method to reduce stand density, 
thereby decreasing the vulnerability of the remaining 
pines to drought stress and further insect attacks. When 
the wildfire burned into unit 11, it likely encountered 
young trees sensitive to fire, as well as snags and surface 
fuels from the death of trees following the insect out-
break and broadcast burning, resulting in moderate and 
high severity burns (Agee 2003; Schoennagel et al. 2012). 
These findings underscore limitations related to cat-
egorically labeling fuel treatments, suggesting that more 
detailed studies accounting for within-treatment fuel 
structure and accumulation, possibly leveraging available 
airborne or terrestrial LiDAR data (Andersen et al. 2005; 
Loudermilk et  al. 2009; Lin et  al. 2024), could enhance 
our understanding of fire behavior and effects.

Influence of fire suppression on wildfire predicted burn 
severity
Treated units facilitated burnout and direct attack opera-
tions, providing safer zones for firefighters during the 
Bootleg Fire (K. Sauerbrey, The Nature Conservancy, 
Oregon, USA, pers. comm.; Harbert et  al. 2007). As 
shown in other case studies (e.g., Murphy et  al. 2007; 
Rogers et  al. 2008), the rate of fire spread decreased in 
most of the treated units. According to the TNC fire 
manager, reduced fire intensity and flame length were 
observed as the fire burned into units treated with broad-
cast burning (K. Sauerbrey, The Nature Conservancy, 
Oregon, USA, pers. comm.). Rx units were particularly 
suitable for firefighting operations, having been previ-
ously used for fire training programs in collaboration 
with The Klamath Tribes.

Where fire suppression occurred, our model predicted 
variable effects in Tx units (Fig. 5E) and a relatively small 
decrease in burn severity in units treated with Rx. Nota-
bly, units 15 and 44 were the only Tx units used in fire-
fighting operations. In unit 15, despite direct attacks 
holding the Bootleg Fire for over 24 h, the fire eventu-
ally gained momentum to the west burning through 
untreated forests and then crossed the fire lines as a 
crown fire, leading to a mix of burn severities (Fig. 5E). 
Conversely, although the model did not capture a signifi-
cant effect, in unit 44 direct attack and burnout opera-
tions successfully suppressed the wildfire, resulting in low 
burn severity. While results suggested that firefighting 

operations contributed to lowering burn severity in Rx 
units, the decrease was marginal. Overall, we observed 
predominantly low burn severity within these units, 
regardless of whether firefighting activities occurred. This 
finding contrasts with the work by Harris et  al. (2021), 
who found a substantial influence of fire suppression in 
units previously treated with prescribed fires.

Influence of top environmental drivers on wildfire 
predicted burn severity
In our study area, the most important environmen-
tal drivers of burn severity included evaporative stress 
index (ESI), 4-km window topographic position index 
(TPI-4km), and LiDAR-derived canopy cover, all of 
which varied locally across our study area. Unlike more 
commonly used vegetation indices such as NDVI (Parks 
et al. 2018; Povak et al. 2020; Lee et al. 2024), which rep-
resents spectral greenness and saturates in dense vegeta-
tion (Huang et  al. 2021), ESI is an indirect measure of 
plant water use (Fisher 2018). This makes it less sensitive 
to canopy closure and more effective at capturing rela-
tive variations in fuel structure. Specifically, areas with 
green, denser, and more continuous vegetation cover 
were characterized by ESI values > 0.5; whereas areas 
with green, sparser vegetation cover were characterized 
by ESI values < 0.5 (Fig.  3C). These fuel patterns—cou-
pled with ESI’s inability to differentiate vegetation from 
soil and the generally higher temperatures of soil com-
pared to live vegetation—suggest that lower ESI values 
(indicating higher water stress) may have been dispro-
portionately influenced by soil temperatures, limiting 
ESI’s ability to capture water stress as intended. None-
theless, the positive relationship between increasing ESI 
values and burn severity indicated that densely forested 
areas—characterized by higher evapotranspiration and 
therefore greater site productivity and biomass accu-
mulation (Stephenson 1998; Aguilos et al. 2021)—expe-
rienced more severe burns. These results aligns with 
previous research indicating that greater and more con-
tinuous vegetation cover can lead to higher burn severity 
(Agee and Skinner 2005; Vaillant et al. 2006; Ritchie et al. 
2007; Safford et al. 2009, 2012).

Considering the relatively small study area, the sub-
stantial impact of TPI-4km was initially unexpected. 
Coarse scale TPIs (2000-m window or greater) typically 
reflect broader landscape conditions (Dillon et  al. 2011; 
Kane et  al. 2015a; Harris and Taylor 2017), capturing 
variation in fuel distribution and bioclimatic factors (e.g., 
AET) at larger spatial scales (Dillon et al. 2011; Kane et al. 
2015b). Some studies have also indicated that TPI impor-
tance was less substantial when the effect of explicit (e.g., 
canopy cover) or implicit (e.g. fuel treatments) fuel-
related variables were included in their analyses (Birch 
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et al. 2015; Parks et al. 2018; Povak et al. 2020; Prichard 
et al. 2020). In our study area, we posit that rather than 
representing an explicit effect of topography on burn 
severity, coarse-scale TPI served as a broad surrogate for 
other factors. Specifically, it reflected both the variation 
in fuel structure and accumulation driven by fuel treat-
ments (Figure S3A) and the variation in climatic moisture 
deficit influenced by undulating landforms (Hargreaves 
and Allen 2003; Wang et al. 2016).

TPI values representing flatter terrains and valleys cor-
responded mostly to untreated forests and Tx units, all 
of which experienced moderate to high severity burns. 
Additionally, the strong negative correlation observed 
between TPI-4km and 1991–2020 CMD normal (Figure 
S3C) corroborates the potential influence of topographic 
position on microclimate (Ma et  al. 2010). The occur-
rence of higher CMD coupled with negative TPI-4km 
values indicated the existence of persistent drier condi-
tions in valleys and on flatter terrain, where accumulation 
of live and dead fuel was higher. These findings suggest 
that the 4-km window TPI likely captured human-driven 
modifications to fuel distribution and the influence of 
topography on fuel moisture availability (Fig. 7C).

Finally, similarly to Birch et  al. (2015), we found that 
canopy cover was the most important direct measure-
ment of forest structure influencing burn severity. Spe-
cifically, canopy cover over 40% (Fig. 5D) was associated 
with increasing predicted burn severity (Rodman et  al. 
2023) but only where broadcast burning was absent 
(Fig.  6). This suggests that burn severity was driven by 
surface fuels (Kalies and Yocom Kent  2016; Davis et  al. 
2024) and that Rx buffered against the effects of increas-
ing canopy cover.

Conclusions
Understanding the complex relationships that drive burn 
severity is critical for informing future land management 
programs. Our findings indicate that fuel accumulation, 
structure, and continuity played a central role in influenc-
ing burn severity. Broadcast burning served as a proxy for 
surface fuel loads, and its presence weakened the influ-
ence of canopy cover on burn severity. ESI captured 
fuel continuity, with denser, more connected vegetation 
showing higher values, while TPI reflected differences 
in fuel structure, fuel accumulation, and moisture avail-
ability, distinguishing areas with different treatment 
histories.

Among these factors, broadcast burning had the 
strongest influence on burn severity, revealing that 
moderate- and high-severity burns disproportion-
ately affected sites without Rx. Units treated with Rx 
and TxRx had comparable percentages of area burned 
at low severity, suggesting that where forest structure 

conditions allow, managers can use broadcast burning 
alone to mitigate burn severity while reducing costs 
and soil disturbance.

By addressing burn severity from both global (study 
area) and local (individual prediction) perspectives, 
we identified relationships that would have been over-
looked or misinterpreted in an exclusively global anal-
ysis. Additionally, integrating the expertise of local 
managers with scientific analysis enhanced the accu-
racy of burn severity assessment and improved our 
interpretation of the results. This study provides a 
reproducible framework for explaining burn severity 
at both global and local scales. It also offers valuable 
insights to guide and improve fire and fuel management 
practices across multi-ownership landscapes.
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