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Abstract 

Background  Record fire years in recent decades have challenged post-fire forest recovery in the western United 
States and beyond. To improve management responses, it is critical that we understand the conditions under which 
management can mitigate severe wildfire impacts, and when it cannot. Here, we evaluated the influence of top-down 
and bottom-up fire severity forcings on 17 wildfires occurring during two consecutive record-setting years in the east-
ern Cascade Mountains of Washington State. Despite much of the area having been burned after an extended period 
of fire exclusion, nearly one-third of the forested area burned at low severity.

Results  Using random forest modeling and Shapley local importance measures, we found that weather and fuels 
were both dominant drivers of fire severity, and past fuel treatments were successful at reducing severity—even 
during extreme fire progression days. First-entry fires were more typically driven by top-down climate and weather 
variables, while for reburns (i.e., overlapping fire footprints within the period of record), severity was largely mitigated 
by reduced fuels and a positive influence of topography (e.g., burning downslope). Likewise, reburns overall exhibited 
lower fire severity than first entry fires, suggesting strong negative feedbacks associated with past fire footprints. The 
normalized difference moisture index (NDMI)—an indicator of live fuel loading and moisture levels—was a lead-
ing predictor of fire severity for both first-entry fires and reburns. NDMI values < 0 (i.e., low biomass) were associated 
with reduced fire severity, while values > 0.25 (i.e., high biomass) were associated with increased severity. Forest 
management was effective across a variety of conditions, especially under low to moderate wind speeds (< 17 m·s−1), 
and where canopy base heights were ≥ 1.3 m.

Conclusions  Our findings support previous work demonstrating strong top-down weather and climate controls 
on fire severity along with bottom-up spatial controls of fuels and topography on patterns of fire severity. Local 
importance measures refined our understanding of the conditions under which bottom-up factors successfully 
mitigated fire severity. Our results indicate a clear role for fuels and fire management—including wildland fire use—to 
restore characteristic composition and structure to the landscape and to moderate fire severity.

Keywords  Wildfire severity, Fire weather, Reburn, Fuel reduction treatment, Machine learning, Shapley local 
importance

Resumen 

Antecedentes  Los registros con records de años con incendios en décadas recientes en EEUU, han desafiado la 
recuperación de los bosques en el oeste de los EEUU y también en otros lugares. Para mejorar las respuestas de 

*Correspondence:
Nicholas A. Povak
nicholas.povak@usda.gov
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-025-00368-1&domain=pdf
http://orcid.org/0000-0003-1220-7095


Page 2 of 23Povak et al. Fire Ecology           (2025) 21:27 

manejo, es crítico que entendamos las condiciones en las cuales el manejo puede mitigar los impactos de fuegos 
severos y cuando no. Evaluamos en este trabajo la influencia de las estrategias de información (bottom up y top down) 
como forzantes de la severidad del fuego en 17 incendios ocurridos en dos temporadas sucesivas en la región de las 
Montañas Cascadas en el estado de Oregon. A pesar de que la mayor parte del área fue quemada luego de un largo 
período de exclusión del fuego, en casi un tercio del área quemada, el fuego quemó a baja severidad.

Resultados  Usando el Modelado de Bosques al Azar (Random Forest Modeling) y medidas de Shapley de importancia 
local, encontramos que el tiempo meteorológico y los combustibles fueron las dos fuerzas conductoras dominantes 
de la severidad del fuego, y que los tratamientos de combustibles realizados en el pasado fueron exitosos en la reduc-
ción de la severidad – aún en días de progresión de comportamiento extremo del fuego -. Las primeras entradas del 
fuego fueron conducidas por variables climáticas y meteorológicas del tipo top-down, mientras que para las quemas 
recurrentes (i.e. el solapado de incendios en el período de registro), la severidad fue largamente mitigada por la 
reducción del combustible y la influencia positiva de la topografía (la quema cuesta abajo). De la misma manera, las 
quemas recurrentes exhibieron en general una severidad más baja que los fuegos que ocurrieron por vez primera, 
sugiriendo una fuerte retroalimentación negativa asociada con las huellas de fuegos anteriores. Los valores del Índice 
de Diferencia de Humedad Normalizada (NDMI), -un indicador de la carga de combustible vivo y niveles de hume-
dad- fue un predictor primordial de la severidad del fuego tanto para los incendios primigenios como las requemas. 
Los valores de NDMI <0 (i.e., baja biomasa) estuvieron asociados a una baja severidad del fuego, mientras que valores 
>0.25 (i.e., alta biomasa) estuvieron asociados a una alta severidad. El manejo forestal fue efectivo a través de una 
variedad de condiciones, en especial bajo vientos suaves a moderados (<17 m·s-1), y cuando la base del dosel estuvo 
a ≥1.3 m.

Conclusiones  Nuestros resultados confirman trabajos previos que demuestran que las variables climáticas y mete-
orológicas (top down) ejercen un control sobre la severidad del fuego junto con las variables espaciales de control 
(bottom up) como son los combustibles y la topografía, en los patrones de severidad. La importancia de las medidas 
locales refinan nuestro entendimiento sobre las condiciones bajo las cuales los factores bottom up pueden mitigar 
exitosamente la severidad del fuego. Nuestros resultados indican un rol muy claro de los combustibles y el manejo 
del fuego –incluyendo el uso del fuego – para restaurar la composición y estructuras características de los paisajes y 
moderar la severidad de los incendios.

Introduction
Recent studies throughout interior western North Amer-
ica (wNA) have documented rising incidence, severity, 
and size of wildfires. Increased fire activity is strongly 
associated with longer and more severe wildfire seasons 
(Westerling et  al. 2016, Abatzoglou and Williams 2016; 
Parks and Abatzoglou 2020). Across much of wNA, 
regional studies consistently find a strong positive rela-
tionship between forest fire severity, climatic water deficit 
(CWD), and extreme fire weather (Cansler and McKen-
zie 2014; Parks and Abatzoglou 2020; Ellis et  al. 2022). 
Research suggests that these factors  will likely continue 
to be dominant drivers of wildfire regimes in the region, 
as modeled estimates of annual area burned and area 
burned at high severity are projected to increase through 
mid- to late-century (cf. Abatzoglou and Williams 2016, 
Taylor et al. 2016, Roos et al. 2022, Swetnam et al 2016, 
Turco et al. 2023).

Future projections of wildfire spread and severity 
often assume that bottom-up spatial controls provided 
by local patterns of topography, soils, and fuels will have 
minimal influence on wildfire patterns in the future 
(Abatzoglou et  al. 2021; McKenzie and Littell 2017; 

Stavros et al. 2014). However, some theoretical models 
of large system-level dynamics, such as self-organized 
criticality (Malamud and Turcotte 1999; Malamud et al. 
2005) and highly optimized tolerance (Moritz et  al. 
2005) suggest these feedbacks are universal proper-
ties of complex systems and provide a mechanism by 
which resilience in frequently disturbed systems can 
be imparted. In natural systems, bottom-up factors 
provided by changes in vegetation and fuel patterns, 
variation in topo-edaphic conditions and landscape 
context, and past disturbances have shown the capacity 
to reduce fire spread and severity across environments 
(Povak et al. 2018, 2020a; Stevens-Rumann et al. 2016; 
Prichard et al. 2020). Internal feedbacks stemming from 
ongoing disturbances and their shifting spatial patterns 
imprint lagged ecological memories (sensu Peterson 
2002) onto systems that can influence subsequent fire 
behavior for periods ranging from 5 to 30 years (Povak 
et al 2023; Parks et al. 2015; Davis et al. 2024). As such, 
these studies indicate that internal system controls are 
a dominant regulating feature, providing constraints on 
top-down climate controls, and imparting resilience on 
fire-prone systems.
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Still other studies from wildfire and landscape ecol-
ogy literature emphasize that spatial patterns within 
and among wildfire events are driven by the interac-
tions between both large-scale contributing (top-down) 
and local-scale constraining (bottom-up) factors (Parks 
et al. 2012, 2014a; Cansler et al. 2022; Harris and Taylor 
2017; Margolis et  al. 2025). The strength of these bot-
tom-up controls varies depending on the type, number, 
and arrangement of local controls, as well as the broad-
scale environmental conditions within which the system 
is situated (Moritz et al. 2011). Across broad landscapes 
these interactions determine the capacity for a system 
to self-regulate and maintain conditions over space and 
time (Moritz et  al. 2011; Parks et  al. 2015, 2016). For 
example, as wildfires burn more area within wNA for-
ested landscapes, the ecological memory associated with 
past fires, whether in dry, moist, or cold forests, will have 
an increasing impact on the extent and severity of future 
fires (Peterson 2002; Parks et  al. 2014a; Johnstone et  al. 
2016). The additive role of bottom-up factors provided 
by patterns in topography (Povak et al. 2018), vegetation 
composition and structure provide further spatial and 
temporal controls on burned area and fire severity (Birch 
et  al. 2015; Hessburg et  al. 2015, 2019; Parisien et  al. 
2011; Parks et  al. 2012). Combined, local controls on 
fire spread and severity can build over space and time to 
affect landscape resilience properties at larger scales (Wu 
and Loucks 1995).

Knowledge of effective bottom-up spatial controls on 
fire severity can help inform best forest and fuel man-
agement practices. In dry pine and mixed-conifer for-
ests, pre-fire fuel reduction thinning and/or prescribed 
burning treatments are designed to mitigate future fire 
behavior through surface and ladder fuel reduction (Agee 
and Skinner 2005; McIver et al. 2012; Brodie et al. 2024). 
However, questions remain as to whether these treat-
ments are effective when confronted with increasingly 
extreme fire weather (Urza et al. 2023). Knowledge of the 
conditions where treatments or past wildfires can miti-
gate future fire severity can inform expectations of treat-
ments to provide positive ecological and social benefits.

Empirical modeling of fire severity patterns and their 
bottom‑up drivers
Machine learning has been used in recent years to evalu-
ate drivers of fire spread and severity (Kane et  al. 2015; 
Zald and Dunn 2018; Povak et  al. 2020a). Models are 
often trained on individual large fires, and measures 
of global variable importance, and modeled response 
functions are reported. Such models generally capture 
influences of broad climatic gradients, variability in for-
est types and fuel conditions, and other top-down influ-
ences as they contribute the greatest reductions in model 

error. However, fine- to meso-scale bottom-up factors are 
often overlooked as their contribution to reducing model 
error can be minimal. Hence, these contributions are 
generally minimized because fire-treatment interactions 
occur over a small area and often within fire-excluded 
landscapes (Prichard et al. 2020), and their influence on 
severity varies over the period of a fire (Povak et al. 2018, 
2020a).

More recently, methods that employ machine learn-
ing offer expanded insight into driving variables that can 
best explain the fire severity response and corresponding 
variable importance. For example, machine learning can 
reveal the spatial variability of the dominant drivers of 
fire severity and how specific fire environments can influ-
ence burn severity outcomes using post hoc analysis tools 
such as local variable importance measures—collectively 
referred to as explainable AI techniques (Prichard et  al. 
2020; Povak et al. 2020a). This is particularly relevant for 
evaluating fuel reduction and time-since-treatment influ-
ences where treatment area is a minor feature of burned 
landscapes (Kolden et al. 2019). Thus, application of these 
methods can aid in quantifying the relative importance of 
top-down and bottom-up drivers to fire severity and pro-
vide insight as to the conditions under which bottom-up 
factors play a significant role in mitigating fire severity.

Study objectives
The Inland Pacific Northwest has experienced many 
large, regional wildfire events in recent decades (West-
erling et  al. 2016). North-central Washington alone has 
been transformed by large wildfire events with > 40% of 
the region burning in the last 20 years (Cova et al. 2022). 
Prior to the record-setting 2014 and 2015 wildfire sea-
sons, forests that historically received frequent, often 
restorative fires, were mostly left unburned for nearly 
a century or longer (Hessburg and Agee 2003; Hess-
burg et al. 2005). As fires return to the region, some are 
reburning in areas for a second or third time, allowing for 
evaluations of fire-fire interactions and their role in land-
scape dynamics. For example, in a recent study, Cansler 
et  al. (2022) evaluated trends in fire severity within 
reburns from 2001 to 2019 and random forest (RF) mod-
eling and found compelling evidence that fire sever-
ity was lower in reburned areas than in first-entry fires. 
However, reburns within post-fire logging and planting 
units showed slightly higher severity when surface fuels 
were left untreated by prescribed burning.

In the present work, we describe the characteristics of 
the 2014–2015 regional fire years within north-central 
Washington in terms of wildfire size, severity, and spa-
tial patterns. We then used RF modeling to evaluate the 
main drivers of fire severity patterns and their variability 
across broad- and meso- spatial and temporal scales. We 
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used Shapley local importance methods to evaluate how 
the strength of top-down drivers in a predictive modeling 
framework can mask potential finer scale controls on fire 
severity. These methods allowed for closer inspection of 
the circumstances where bottom-up controls reduced 
fire severity and characterized the conditions where they 
are most influential. Finally, we provide insights for land 
managers concerning fuel treatment effectiveness and 
cross-scale strategies for re-establishing landscape resil-
ience to wildfire.

Methods
Study area
We examined 17 large wildfires that burned in north-
central Washington during 2014 and 2015 (Fig.  1). 
Regional climate is continental with warm to hot, dry 
summers, and cold winters with most precipitation fall-
ing as snow. Vegetation in the lowest elevations is shrub 
steppe, historically dominated by bunchgrasses, bit-
terbrush (Purshia tridentata), and sagebrush (Artemi-
sia spp.) but increasingly invaded by nonnative grasses 
including cheatgrass (Bromas tectorum) and bulbous 
bluegrass (Poa bulbosa). Outside of riparian areas, lower 

and mid montane elevation zones support dry, mixed-
conifer forests of ponderosa pine (Pinus ponderosa) and 
Douglas-fir (Pseudotsuga menziesii). Upper montane and 
subalpine forests are codominated by lodgepole pine (P. 
contorta), Engelmann spruce (Picea engelmannii) and 
subalpine fir (Abies lasiocarpa). Moist riparian areas and 
floodplains support mixed assemblages of aspen (Popu-
lus tremuloides), black cottonwood (P. trichocarpa), 
maples (Acer spp.), and willows (Salix spp.) often inter-
mixed with conifers after long periods of fire exclusion. 
Topography is highly dissected with steep elevation and 
aspect gradients. South-facing aspects and ridges tend to 
be dominated by open-canopy seasonally dry forests, and 
denser, often closed canopy forests are found on north-
erly aspects and in valley bottoms.

The 2014 and 2015 wildfire seasons were influenced by 
a multi-year regional drought (Marlier et  al 2017; Engel 
et  al. 2019). The 2014 summer wildfire season was pre-
ceded by a warm and wet autumn period followed by low 
winter snowfall, early spring snowmelt, and rapid runoff. 
A subsequent early summer heat wave was followed by a 
mid-July lightning storm, which ignited several small fires 
in the Methow Valley, Washington. A major wind event 

Fig. 1  Study area showing the extent and severity (forested areas only) of 17 wildfires that burned during the summers of 2014 and 2015 
in north-central Washington State, USA. Fire severity was quantified using the relative burn ratio with unburned, low, moderate, and high severity 
classification cutoffs following Parks et al. (2014b)
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followed with sustained winds over 48 km h−1 caused 
fires to erupt into events that burned over 64,000 ha in 
a single burn period on July 17 th, 2014. Over the next 
2 days, the 2014 Carlton Complex Fires grew to 102,000 
ha. A rainfall event of > 5 cm on July 23rd dampened fire 
behavior and contributed to containment.

With continuing regional drought conditions, the 2015 
wildfire season closely resembled that of 2014. By early 
July 2015, live and dead fuel moistures of low elevation 
forests and shrub steppe lands were low, and fuels were 
receptive to burning. A series of large wildfires ignited by 
dry lightning and humans quickly spread under hot, dry, 
and windy conditions, burning a total of 289,211 ha from 
July to September 2015 (Table 1).

Burn severity analysis
To quantify burn severity within 17 study area wild-
fires, we used the Landsat-based Relativized Burn Ratio 
(RBR). Compared to other related indices, RBR showed 
a slightly higher correspondence with field measures of 
burn severity within our study area (Parks et  al. 2014b; 
Prichard et  al. 2020). We calculated RBR using Landsat 
imagery via Google Earth Engine, following Parks et  al. 
(2018a). The Parks et  al. (2018a) method creates 30-m 
mean composite images from a set of pre- and post-fire 
scenes to provide a more complete assessment of burn 

severity than an a priori selection of individual pairs 
of pre- and post-fire scenes. To span the date range of 
fires, we selected LANDSAT 8 Tier 1 datasets, which are 
adjusted for cloud, shadow, water, and snow interference. 
We calculated RBR using dNBR with the offset described 
in Parks et al. (2014b).

Descriptive statistics
We characterized the size and severity patterns of the 
2014–2015 wildfires using several summary statistics. 
To do so, we first separated forest and non-forest areas 
in our analysis because the ecological effects of fires of a 
given severity differ from those of grassland and shrub-
land types. We calculated the stand-replacing decay coef-
ficient (SDC) metric following methods of Collins et  al. 
(2017) and Stevens et al. (2017) for all high-severity for-
est patches as an indicator of the scale of potential eco-
logical impacts across forested landscapes. Smaller SDC 
values indicate that larger patches of high severity are 
most influential, and larger SDC values indicate greater 
influence of smaller patches. For each fire, we calculated 
SDC metrics for all high-severity patches and for forested 
high-severity patches. We then compared our results to 
those of Stevens et  al. (2017) for a set of 477 fires that 
burned between 1984 and 2015 in semi-arid forests of 
California.

Table 1  Summary statistics of major wildfires in north central Washington during the 2014 and 2015 wildfire seasons, including total 
burned area, percentage of forested area, and percentage of forest area burned at high (H), moderate (M), low (L) and unburned/very 
low (U) severity

Wildfire name Total area (ha) Forested area (%) Percentage of forested area 
burned by severity class (%)

2014 Wildfires

  Carlton Complex 96,468 33 H 44, M 34, L 18, U 3%

  Devil’s Elbow Complex 7796 72 H 12, M 43, L 38, U 7%

2015 Wildfires

  21 Mile Grade 654 59 H 13, M 70, L 17, U 0

  Chelan Complex 36,114 35 H 26, M 36, L 26, U 11

  First Creek 2024 53 H 49, M 34, L 16, U 1

  Graves Mountain 2823 93 H 10, M 30, L 47, U 14

  Lime Belt 48,663 48 H 10, M 41, L 41, U 8

  Little Bridge Creek 1193 87 H 44, M 37, L 16, U 3

  Lone Mountain 1 607 84 H 31, M 45, L 19, U 5

  Newby Lake 764 84 H 62, M 26, L 9, U 3

  North Star 83,834 83 H 10, M 36, L 47, U 7

  Renner 4756 89 H 4, M 37, L 53, U 6

  Stickpin 18,740 96 H 45, M 32, L 19, U 5

  Tunk Block 61,501 31 H 21, M 42, L 30, U 6

  Twisp River 3837 34 H 27, M 38, L 35, U 1

  Upper Falls 2448 91 H 64, M 27, L 9, U 1

  Wolverine 21,253 84 H 46, M 38, L 12, U 3
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Random forest modeling
We developed RF models to compare drivers of fire 
severity across fires and between first-entry fires and 
reburns. First-entry fires were those that burned in long 
unburned areas (burned prior to 1960), and reburns 
included areas that burned two or more times (initial 
burn ≥ 1960). Final models were run using the R pack-
age ranger v0.12.1 (Wright and Ziegler 2017). Model out-
puts included global model predictions and errors, linear 
and non-linear relationships among predictors and the 
response variable, variable importance, and spatial maps 
of local predictor variable importance.

We defined forested cells as those 30-m cells with 
> 10% tree cover based on the LANDFIRE 30-m Existing 
Vegetation Cover map (LANDFIRE 2014). In using this 
broad definition of forestland, we included a range of for-
ested vegetation types from low-elevation pine savannas 
to high elevation conifer forest.

To limit effects of spatially autocorrelated data on the 
predictions, we selected a subset of pixels on a 270-m 
grid (Povak et  al. 2020a). We excluded cells that fell 
within a 100-m interior buffer of fire perimeters to reduce 
edge effects as fire severity in these cells are likely driven 
largely by firefighting efforts, which are not the focus of 
the current effort. All analyses were conducted with the 
statistical software R package (R Core Team 2023).

A total of 80 candidate predictor variables were evalu-
ated across six predictor groups, including (1) climate, (2) 
day-of-burn fire weather, (3) topography, (4) forest man-
agement and fire history, (5) live and dead fuels, and (6) 
spatial autocorrelation variables. We performed variable 
reduction to balance model complexity with parsimony. 
We first partitioned each predictor variable into a predic-
tor group. Within each predictor group, variables were 
removed where pair-wise correlations exceeded 0.75, 
using the Caret package findCorrelation function (Kuhn 
2020). We then removed individual variables from each 
predictor group that had low variable importance in ini-
tial RF model runs. Final predictor variables are shown in 
Table 2.

Random forest modeling—predictor variables
Climate variables
Thirty-year (1981–2010) climate normals (90-m resolu-
tion) for actual evapotranspiration (AET) and climatic 
water deficit (Deficit) were obtained from a previous 
study by Cansler et al. (2022) in this area. Data were cal-
culated using the Priestley-Taylor equation (Priestley 
and Taylor 1972), following methods of Dobrowski et al. 
(2013). Full details on data development can be found in 
Cansler et al. (2022).

Day‑of‑burn fire weather variables
Day of burn weather variables were assigned by fire 
progression interval. Daily maximum temperature and 
maximum relative humidity values were obtained from 
gridMET (Abatzoglou 2013) at 4-km resolution for each 
burn day. Although minimum relative humidity has been 
used as a significant predictor of fire severity in previous 
studies (e.g., Prichard et al. 2020), we used maximum rel-
ative humidity because it had higher variable importance 
in preliminary RF modeling. We acquired wind variables, 
including wind gust speed and direction of maximum 
gust, from Remote Automatic Weather Stations (RAWS), 
for each burn day. The most appropriate RAWS station 
was assigned to each fire based on proximity; if a fire 
contained multiple RAWS stations, we assigned a sta-
tion based upon RF modeling of RBR using RAWS sta-
tion windspeed and direction. For each progression day, 
we assigned the mean gust speed and direction as meas-
ured at the respective RAWS station to cells that burned 
on that progression day. Because these variables were 
assigned by progression interval, they were not applicable 
to individual fire progression RF models.

Topographic variables
Topographic variables, including slope gradient and 
topographic position index (TPI), were derived from a 
10-m DEM. We calculated TPI at fine (100-m), moder-
ate (600-m), and coarse scales (1200-m) using a method 
introduced by Weiss (2001), which compares the eleva-
tion of each DEM pixel with the mean elevation within 
the defined neighborhood of each pixel. Valley positions 
were classified as negative TPI (− 2 to 0), and ridge posi-
tions as positive values (0 to 2).

Management and fire history variables
We obtained records from the US Forest Service For-
est Activities (FACTS) database for past harvests and 
prescribed burns from 1995 to present. When compar-
ing treatment polygons with pre-wildfire orthorecti-
fied imagery (NAIP images from pre- 2014) in a GIS, 
we determined that many treatment polygons required 
geospatial re-alignment due to digitization and projec-
tion errors. For fires occurring on the Methow Valley 
and Tonasket Ranger Districts, we validated the FACTS 
treatment layer with local harvest and burning records. 
We then obtained additional treatment layers from the 
Washington State Department of Natural Resources, 
Washington Department of Fish and Wildlife, and the 
Colville Indian Reservation. Each layer was compared 
with pre-burn NAIP imagery before compiling a master 
file geodatabase, which in many cases required re-digi-
tizing treatment polygons. Treatment records were then 
condensed into 8 classes: clearcut (CC), clearcut and 
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broadcast burned (CC_BB), pile burned (PB), thinned, 
pile burned, and masticated (Thin_Pile_Mast), thinned 
only (Thin), thinned and pile burned (Thin_PB), thinned 
and underburned (Thin_UB), and underburned only 
(UB).

We characterized past wildfires using three vari-
ables: time since the last wildfire (years), the maximum 
RdNBR of all previous wildfires, and distance (m) from 
pixel to edge of past wildfire (1984–2015) within a 
2-km buffer. To be used, past wildfires had to be a mini-
mum of 400 ha (MTBS minimum size threshold) and 

have occurred between 1984 and 2015. Burn severity and 
fire perimeter data were acquired from the MTBS data-
base (Eidenshink et al. 2007; www.​mtbs.​gov).

For the distance to previous fire perimeter variable, 
a negative distance was recorded in cases where a pixel 
burned within the boundaries of a recent burn. If a 
burned pixel fell outside of a recent burn, it was recorded 
as a positive distance.

Table 2  Final variables used in the random forest models of all the 2014 and 2015 wildfires

a Only for the reburn models
b Only for first-entry fire model

Dataset Variable name Description

Climate

  - 30-year climatic water deficit normal Deficit 1980–2010 (mm) Cansler et al. (2022)

Fire weather

  - Maximum daily temperature MaxTemp Maximum daily temperature (°C)
gridMET. Abatzoglou et al. (2013)

  - Maximum relative humidity MaxRH Maximum relative humidity (%)
gridMET. Abatzoglou et al. (2013)

  - Maximum gust speed MaxGust Maximum wind gust (m s−1)
Nearest RAWS station was used to summarize hourly data over the progression interval

  - Maximum gust direction MaxGustDir Wind direction of maximum gust speed, transformed to linear variable between 0 and 2. 
Beers et al. (1966)
Nearest RAWS station was used to summarize hourly data over the progression interval

Topography

  - Slope Slope Slope gradient (%)

  - TPI_Ridge_1200 Ridge Ridge-like classification of TPI at 1200-m neighborhood. 100 (ridge) to 0 (not ridge)

  - TPI_Valley_1200 Valley Valley-like classification of TPI at 1200-m neighborhood. 100 (valley) to 0 (not valley)

Management and fire history

  - Distance to past firea DistFire_20 yr Distance from past fire edge (m) of wildfires within past 20 years

  - Time since wildfirea TSWildfire Time since last wildfire (year)

  - Treatment typeb Treat Clearcut (CC), clearcut and broadcast burn (CC_BB), shelterwood and underburn (SW_UB), 
thin-only harvest (Thin), Thin and mastication or thin and piled (ThinPileMast), thin 
and prescribed under burn (ThinUB), thin and pile burn (ThinPB), landscape burn (UB), 
no treatment (none)

  - Past prescribed burnb RxBurn Presence/absence of historical prescribed burn

  - Max Past Severitya RdNBR Maximum past RdNBR severity class

  - Time since prescribed burnb TSRx Time since last prescribed burn (year)

  - Time since harvestb TSH Time since last harvest (year)

  - Time since treatmentb TSTreat Time since last treatment including harvests and prescribed burns (year)

Live and dead fuels

  - Canopy base height CBH Canopy base height (m, LANDFIRE 2014)

  - 100-h fuel moisture FM100 100-h dead wood (%)

  - Cover Type CovType Reclassification based on Existing Vegetation Type (LANDFIRE 2014) including: dry mixed 
conifer, riparian forest or woodland, moist mixed conifer, Douglas-fir, subalpine forest, 
lodgepole pine, Engelmann spruce- subalpine forest, ponderosa pine

  - Normalized Difference Moisture Index NDMI Calculated as (NIR – SWIR)/(NIR + SWIR) used as an index of live fuel amount and moisture. 
Composites of one year pre-fire imagery from GEE. Parks et al. (2018a)

  - Normalized Difference Vegetation 
Index of non-forest

NDVI_NF_750 Mean NDVI of all non-forested cells within 750-m moving window around forested cells. 
Composites of 1 year pre-fire imagery from GEE. Parks et al. (2018a)

http://www.mtbs.gov


Page 8 of 23Povak et al. Fire Ecology           (2025) 21:27 

Live and dead vegetation variables
We used LANDFIRE for live and dead vegetation and 
fuel predictor variables. For 2014 wildfires, we used 2012 
layers because the 2014 dataset potentially represented 
post-fire vegetation conditions. For 2015 wildfires, we 
used the 2014 layers to represent the most current fuel 
and topography layers. Canopy base height (CBH), 100-h 
fuels (from the 40 Scott and Burgan (2005) Fire Behav-
ior Fuel Models, FBFMs), and cover type (Existing Veg-
etation Type) were derived from LANDFIRE layers 
(www.​landf​ire.​gov). We then reclassified the LANDFIRE 
Existing Vegetation Type layer (EVT) from the original 
640 vegetation types into eight broad cover type classes 
that represent major forest types within the study area 
(Table 2). Of these forest types, dry mixed conifer, moist 
mixed conifer, Douglas-fir, and ponderosa pine types are 
considered fire tolerant compared to cold forest types 
with species that have few adaptations to survive fire 
(subalpine forest, lodgepole pine, Engelmann spruce-
subalpine forest, and riparian forest or woodland).

We also characterized live fuels 1 year prior to the 2014 
and 2015 wildfire seasons directly from LANDSAT- 8 
imagery. To do so, we calculated the Normalized Differ-
ence Moisture Index (NDMI) and Normalized Difference 
Vegetation Index (NDVI) in nonforest pixels within a 
750-m moving window (NDVI_NF_750) using LAND-
SAT imagery obtained via Google Earth Engine, follow-
ing the methods of Parks et al. (2018a). NDMI measures 
moisture content of vegetation and is used as a proxy for 
live fuels with high values representing high biomass and/
or high moisture content in leaves and low values repre-
senting low biomass and/or low moisture content (Wang 
et  al. 2013; Antognelli 2018; Costa-Saura et  al. 2021). 
NDVI_NF_750 represented the mean NDVI of all non-
forested cells, within a 750-m moving window. Although 
we focused on burn severity of forested areas, nonfor-
ested areas play an important role in facilitating nearby 
fire spread (Povak et al. 2023; Hessburg et al. 2016, 2019), 
which were represented by this variable.

Spatial autocorrelation variables
We applied a 270-m spacing among sampled raster cells 
to reduce the impact of spatial autocorrelation on model 
results. Variability of fire severity at scales larger than the 
270-m neighborhood still existed and could be explained 
through the inclusion of spatial autocorrelation variables 
within the RF models. Following Povak et al. (2020a), we 
used principal components of neighborhood matrices 
(PCNM) analysis, a special case of spatial eigenvector 
maps (Borcard and Legendre 2002), to evaluate spatial 
autocorrelation and its scale. PCNM applies principal 
coordinates analysis to a matrix of neighboring points, 
producing eigenvectors that maximize Moran’s index of 

autocorrelation. High-order vectors represent local-scale 
spatial autocorrelation, while low-order vectors represent 
larger-scale spatial autocorrelation (Borcard and Leg-
endre 2002). Similar methods were successfully adopted 
by Pascolini-Campbell et al. (2022).

We used truncated distance matrices with a threshold 
distance of 10,000 m to calculate lower-ordered (1–10) 
PCNM vectors and included the first six eigenvectors 
as predictors. PCNM eigenvectors were calculated in R 
using the vegan (Oksanen et al. 2018) and RSpectra pack-
ages (Qiu and Mei 2022). See Povak et  al. (2020a) for a 
full discussion of PCNM predictors.

Random forest modeling—Shapley local importance
Local predictor variable importance methods are often 
applied to better understand why a model made a certain 
prediction at a particular location. The Shapley meth-
odology, a variable importance method, is widely used 
in machine learning applications. It provides an assess-
ment of the average marginal contribution of any given 
predictor on the modeled response when compared with 
the average prediction (Lundberg and Lee 2017; Molnar 
2020; Sutera et al. 2021). Shapley methods are based on 
game theory, where each predictor is likened to a “player” 
in a game and the goal is to fairly distribute the “payout” 
among the players. The payout in our application was the 
difference between a cell’s predicted fire severity and the 
average predicted fire severity across all cells. Shapley 
methods apply a permutation approach to account for 
combinations of predictor variables such that one may 
isolate the contribution of a single predictor at a given 
location.

Shapley values were estimated using the R treeshap 
package v0.0.1 (Komisarczyk et al. 2021), which employs 
an algorithm optimized for tree-based machine learn-
ing applications to reduce computational time (Lund-
berg et al. 2018). This was done separately for the global 
first-entry fire model and the global reburn model. Each 
of these models used all 270-m spaced sample points 
across all fires and progression days, and Shapley values 
were calculated for each predictor variable included in 
the models (Table  2). We further simplified outputs by 
aggregating across predictor variable groups rather than 
presenting results for individual predictors. This was 
done by taking the Shapley value with the highest mag-
nitude, positive or negative, within each predictor group, 
and mapping these values by predictor group, across each 
fire. As defined earlier, predictor groups included climate, 
fire weather, topography, fuels/vegetation, and manage-
ment history (first-entry fires) or fire history (reburns).

Finally, we identified approximate rulesets associated 
with the dominant drivers of fire severity patterns using 
the Shapley local importance outputs to answer two 

http://www.landfire.gov
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questions: (1) under what set of conditions were top-
down drivers dominant and (2) under what conditions 
did bottom-up drivers exhibit significant spatial con-
trol? To do so, we first classified each raster cell into one 
of five classes representing the predictor variable group 
with the highest absolute Shapley value. Classes were as 
follows: (1) climate, (2) fire weather, (3) vegetation/fuels, 
(4) topography, and (5) management (first entry mod-
els) or fire history (reburn model). Shapley classes were 
used as the response variable in a classification tree along 
with the set of predictor variables used in the original RF 
modeling (rpart v4.1.23, Therneau and Atkinson 2023). 
Several considerations were made when parameterizing 
these models: response variable class imbalances, model 
complexity, Shapley class representation, and model 
accuracy (see Table S1). Class imbalances were addressed 
using class weights to increase the influence of lesser rep-
resented classes. Several weighting schemes were tested, 
and resultant trees generally varied in the order of predic-
tor variable importance and model accuracy. For exam-
ple, increasing the weights of lesser represented classes 
generally increased the importance of predictor vari-
ables associated with that class but at the cost of reducing 
model accuracy. By means of this approach, we devel-
oped three models for (1) first-entry fire, (2) reburns, and 
(3) first-entry fires with recent fuel treatments.

Results
2014–2015 North‑Central Washington (NCW) wildfire 
patterns
During the 2014 and 2015 fire seasons, 17 major wild-
fires burned a total of 393,475 ha across ncWA (Table 1). 
Forests comprised approximately half of all burned area, 
which varied between 31 and 96% among individual 
fires. The 2014 Carlton Complex burned the largest area 
(96,469 ha), but less than a third of that area (31,833 ha) 
was forested. In contrast, the 2015 North Star fire was the 
second largest fire (83,834 ha), and over 80% of the area 
burned was mid-montane to high elevation conifer for-
est. Most fires burned as a first-entry fire, with no record 
of past burning since 1960. Reburns accounted for only 
8.4% of the forested area burned, and reburns occurred 
within 8–14 years of the most recent fire.

Among the forested areas that burned, the distribution 
of fire severity was relatively even among severity classes 
(high: 24.3%, moderate: 36.8%, low: 32.8%, unburned: 
6.0%, Table  1). High-severity patch sizes were gener-
ally large (> 100 ha), with ~ 70% of the area that burned 
at high-severity occurring in patches > 100 ha (Fig.  2). 
Accordingly, stand-replacing decay coefficient (SDC) val-
ues were generally low (i.e., ≤ − 5.0), indicating that large 
high-severity patches were prevalent across most fires 
(Fig. S1). No clear relationship was found among SDC 

and percent forested area or fire size. Hence, while high-
severity burned area was not always dominant within fire 
perimeters, it generally occurred in large patches.

Across all 17 fires, fuel treatments were implemented 
on only 9% of the 211,975 ha combined forested area 
within 20 years prior to the 2014 and 2015 wildfire 
events. The most common fuel treatments included for-
est underburning (7816 ha), thinning only (4381 ha), 
thinning followed by underburning (2823 ha), clearcut-
ting only (1247 ha), clearcutting followed by broadcast 
burning (1138 ha), pile burning (1120 ha), thinning with 
subsequent pile burning (500 ha), and thinning followed 
by piling and mastication (400 ha).

Global drivers of fire severity—first‑entry fires
The global RF model for first-entry fires (sample size 
= 24,969) had an R2

OOB of 0.554. Across the study area, 
there was consistency among drivers of fire severity. Top-
down climate and fire weather drivers exhibited the high-
est predictor variable importance values in the global 
models (Fig. 3, column 1), and there was a strong nega-
tive relationship between climatic water deficit (CWD) 
and fire severity, reflecting that high-severity fire often 
occurred in cold and moist, higher elevation, mixed-
conifer forests. This result was also found within individ-
ual RF models for four of the five largest fires (Carlton, 
Lime Belt, North Star, Stickpin, Fig.  3, columns 2-5). 
Conversely in the Tunk Block fire, fire severity was high-
est in dry, low elevation, ponderosa pine-Douglas-fir for-
ests (Fig. 3, column 6). Variables associated with extreme 
fire weather, including MaxTemp, MaxGustSpd, and 
MaxGustDir, were associated with increased fire severity 
in the global model and in most individual fire models.

Bottom-up drivers of first-entry fires exhibited weaker 
relationships than top-down climate and fire weather 
variables in the global models. Severity was greater in 
valley bottom and steeply dissected mountain valley pix-
els (TPI_Valley_1200 m), and on steeper slopes (Slope). 
Severity was also higher with increasing live fuel loads 
(NDMI) and where nonforest vegetation surrounding 
a burned pixel was prevalent (NDVI NF 750). Dead fuel 
moisture (100-h FM) and canopy base height (CBH) were 
also important drivers, with high fuel moistures and high 
CBH negatively correlated with burn severity. Cover type 
was strongly related to burn severity; fire-tolerant types 
were less severely burned, while fire-intolerant types 
were more severely burned.

Global drivers of fire severity—reburns
The global RF reburn model had a R2

OOB = 0.497 , which 
was slightly lower than the global first-entry fire model. 
When compared with first-entry fire RF models, vegeta-
tion and fuels had higher variable importance in reburn 
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Fig. 2  Histogram distributions of classified forest fire severity in (A) categories of unburned/low, low, moderate, and high fire severity, (B) forested 
area (hectares) of high severity in small (< 100 ha) and large (> 100 ha) patch sizes across 17 study area fires
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RF models while fire weather and fuel moisture had lower 
variable importance (Fig. 4).

Local drivers of fire severity
Mapped Shapley importance values, representing the 
unique influence of predictor variables at the cell level, 
revealed a diversity of local drivers of fire severity and 
illustrated the place-based conditions that contribute to 
fire severity patterns (see Figs.  5, 6, and 7 for examples 
from the Lime Belt, Stickpin and North Star fires, respec-
tively). Patches of high-severity fire were largely driven 
by top-down climate and fire weather variables, but 
elsewhere, a combination of topography, fuels, fire his-
tory, and management history exerted local controls on 
fire severity. For example, fire severity was significantly 
higher on steep slopes, in valley bottoms, and within 
steeply dissected mountain valleys across most fire areas, 
but lower on more gently sloped terrains. Moreover, low 

fuel moisture (represented by 100-h fuel moistures), 
abundant live fuel (NDMI), and low canopy base heights 
(CBH) were often associated with presence of high-
severity fire patches and high spatial autocorrelation of 
high fire severity area. Mapped Shapley values for three 
additional fires are included in the Supplementary mate-
rials (Fig. S2, 2014 Carlton complex; Fig. S3, 2015 Chelan 
complex; and Fig. S4, 2015 Wolverine fire).

In the Lime Belt fire (Fig. 5), fuels were more dominant 
than fire weather in the largest high-severity fire patch 
located in the southwestern corner of the fire. Similarly, 
within the Stickpin Fire (Fig.  6), which burned mostly 
within mid- to high-elevation forests, a combination of 
climate, fire weather, topography, fuels, and vegetation 
contributed to the largest high-severity fire patch, which 
comprised much of the fire footprint. Fire weather was 
the dominant variable within the center of the North Star 
fire, representing an early, wind-driven, fast-moving fire 

Fig. 3  Heat map showing the relative strength of predictors of the relative burn ratio (RBR) for first-entry burned pixels after a long period of fire 
exclusion. Refer to Table 2 for variable definitions. Blue cells indicate a negative relationship between the variable and fire severity, while red cells 
indicate a positive relationship. Categorical variables are represented in a gray shading as they have no inherent sign
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progression (Fig.  7). However, a combination of fuels, 
topography, past fires, and past management influenced 
patterns of fire severity elsewhere.

Shapley local importance values also demonstrated 
how past fires and fuel management exerted strong local 
controls on fire severity. Past treatment areas within all 
three fires (Lime Belt, Stickpin, and North Star) rep-
resented a small fraction of the total area burned, but 
cells within treated areas were generally associated with 
lower fire severity. For example, a pronounced difference 
between high and low severity fire is notable within a 
past fire within the Stickpin fire (Fig. 6).

Classification tree analysis using the Shapley impor-
tance values provided insight into the conditions 
under which local spatial controls on fire severity were 
strongest for first-entry fires (Fig.  8), reburns (Fig.  9), 
and treated areas (Fig. S5). As a reminder, the response 

variable for these models was a categorical variable rep-
resenting the predictor variable group with the largest 
absolute Shapley value, and predictor variables were 
those from the original RF models.

For first-entry fires, climate was the main determi-
nant of fire severity, where cooler, moister sites (Defi-
cit < 157 mm) were associated with higher severity fire 
(Fig.  8). For drier sites in low and mid-montane envi-
ronments, a combination of fuels, topography, and 
wind variables determined severity. The highest sever-
ity burns occurred on steep (≥ 24%) slopes or where 
wind gusts were ≥ 16 m·s−1. The lowest severity within 
first-entry patches occurred where live fuel loads were 
low (NDMI < 0.039) and on shallow slopes with low 
wind gust speeds (< 10 m·s−1; Fig.  8). Interestingly, 
under moderate windspeeds (10–16 m·s−1), areas that 
were managed tended to have lower severities.

Fig. 4  Heat map showing the relative strength of predictors of the relative burn ratio (RBR) for reburned pixels that had a recent prescribed 
or wildland fire prior to the 2014 and 2015 wildfires. Variable definitions are provided in Table 2. Categorical variables are represented in a gray 
shading as they have no inherent sign. Columns differ between Figs. 3 and 4 because of fewer reburn pixel counts and significant results
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For reburns, the first division of the classification tree 
was driven by distance to previous fire edge, where cells 
well within the interior of a past fire (> 699 m1 from the 
previous fire edge) generally had lower subsequent fire 
severity (Fig. 9). Within fire interiors, areas with low live 
fuel load (NDMI < − 0.01) showed lower severity burn 
patches. Closer to the previous fire boundary, cells on 
shallow slopes (< 7%) or with low live fuel loads (NDMI < 
− 0.015) also had lower severities. Higher severities were 
associated with high live fuel loads, lower relative humid-
ity during the progression, and where the previous fire 
occurred > 3 years prior to the burn.

Management effects on fire severity
Treatment effects varied in magnitude and direc-
tion (positive or negative sign) among treatment types 
(Fig.  10). Prescribed fires,  including prescribed under-
burns and mechanical thinning followed by prescribed 
underburns, were among the most abundant treatments 

and had lower subsequent fire severity in 80 and 92% of 
treated cells, respectively. Thinning treatments that did 
not include understory burning had mixed effects on 
subsequent fire severity. Thinning alone reduced sever-
ity only half of the time, and reductions in severity were 
generally minor. Clearcutting with and without broadcast 
burning was mostly associated with higher severity (87 
and 70% of treated cells, respectively), and the magnitude 
of the effect was often large.

Classification tree results taken from Shapley impor-
tance values for treated first-entry cells suggested that 
canopy base heights (CBH) ≥ 1.3 m led to the largest 
reductions in fire severity (Fig. S5). Elevated CBHs are 
often associated with fire-tolerant species that naturally 
undergo lower branch pruning, and/or as a consequence 
of prior low and moderate-severity fire disturbances. 
Where CBHs were closer to the ground, severities were 
generally higher, particularly under windy conditions 
(gust speeds ≥ 17 m·s−1) and on steep slopes (≥ 21%). 
However, even under high winds and low CBHs, areas 
with lower live fuel loads resulted in lower fire severities.

Fig. 5  Spatial distribution of local importance values for the 2015 Lime Belt fire, WA State, for the predictor variables groups: climate deficit, 
weather, spatial autocorrelation, topography, live and dead fuels, fire history, and management. Classified fire severity based on RBR is presented 
in the left-most panel; light grey pixels represent either non-forest that was not included in this analysis or areas that do not apply for a given 
predictor group (e.g., fire history variables were only relevant within past fire footprints)

1  Distances reported as negative numbers indicate a given cell was within 
the past fire footprint, whereas positive numbers indicate the cell was out-
side a past fire footprint. The more negative the distance, the further the cell 
was from the edge of the past fire.
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Discussion
With the increasing prevalence of wildfires across wNA, 
forest and fire managers seek to leverage the positive 
influences of wildfires, cultural and prescribed burning, 
and mechanical fuel treatments on forest resilience and 
the return of active fire regimes (Hessburg et  al. 2021; 
Parks et al. 2016; Stephens et al. 2012; van Wagtendonk 
2007). Managed wildfires are increasingly recognized for 
their potential to help meet landscape-scale restoration 
goals (Prichard et al. 2021; Bean and Evans 2023; North 
et al. 2024). To do so, managers must balance the capac-
ity for wildfires to achieve restoration goals while mini-
mizing, to a practical extent, adverse effects to highly 
valued resources and socially- and/or ecologically valued 
conditions, including impacts on neighboring communi-
ties (Ager et al. 2017; Timberlake et al. 2020; Davis et al. 
2022). Improved understanding of the conditions where 
beneficial effects of burning can be achieved will increase 
opportunities to allow wildfires to burn at low- or mod-
erate-severities outside of the wildland-urban interface 
(North et al. 2024).

By studying large regional fire years, we were able to 
characterize resulting fire severity patterns and identify 

conditions where bottom-up controls can mitigate fire 
severity, even across areas where top-down forcings are 
primary. The main findings from our study were:

(1)	 Most forested area burned after a long period of fire 
exclusion (first-entry fires), and large burn patches 
were primarily driven by top-down climate and fire 
weather. In these situations, fuel contagion was high 
and did not mitigate the spread of high-intensity 
fire.

(2)	 Reburned areas experienced lower fire severity than 
those burned by first-entry fires.

(3)	 Where patches of high-severity fire occurred, they 
were large (> 100 ha) and played an outsized role 
with consequences for forest recovery (Coop et al. 
2020).

(4)	 Bottom-up factors moderated fire severity, particu-
larly in reburns, but also where forest cover was 
open, fuels were limited, slopes were shallow, and 
wind speeds were moderate.

(5)	 Across 17 large wildfires, ~ 40% of the forested area 
burned at no or low severity, showing that even 
“severe” wildfire seasons can contribute to resilient 
landscape conditions.

Fig. 6  Spatial distribution of local importance values for the 2015 Stickpin fire, WA State, for the predictor variables groups: climate deficit, weather, 
spatial autocorrelation, topography, live and dead fuels, fire history, and management. Classified fire severity is presented in the left-most panel; 
light grey pixels represent either non-forest that was not included in this analysis or areas that do not apply for a given predictor group (e.g., fire 
history variables were only relevant within past fire footprints)
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(6)	 Management effectively reduced fire severity, par-
ticularly after combined thinning and underburn 
treatments, and where canopy base heights were 
elevated above 1.3 m.

Spatial patterns of fire severity
Our study shows a substantial opportunity for wildfires 
to contribute towards landscape restoration objectives, 
despite the occurrence of large high-severity fire patches. 
Current wildfires are treating more area within the west-
ern USA than forest restoration treatments (North et al. 
2015, 2024; Hessburg et  al. 2021). Used strategically, 
managed wildfire, or resource benefit fires, can acceler-
ate the return of active fire regimes and their beneficial 
effects (North et  al. 2021, 2024; Bean and Evans 2023; 
Greenler et  al. 2023). In this context, improved under-
standing of reburn dynamics and their drivers can be 
important to determining the future role that wildfires 
and management can play in invoking positive changes 
on the landscape (Parks et  al. 2015; Povak et  al. 2023; 
Hessburg et al. 2021).

Where high-severity fire occurred, patches were large 
and generally associated with future challenges to for-
est recovery, carbon storage, and re-establishment of 

forest-dependent wildlife habitat (Stephens et  al. 2016; 
Stevens-Rumann and Morgan 2019; Jones et  al. 2021; 
Lyons et  al. 2023). Historically, these patches were rela-
tively rare on the landscape but are an increasingly com-
mon feature of twenty-first century fires (Hagmann 
et  al. 2021). For example, in the 2020 Creek Fire, Cova 
et al. (2023) found that some high-severity patches were 
> 20,000 ha in size. Safford et  al. (2022) found that the 
occurrence of these largest patches in California were 
driven by interactions among extreme fire weather, high 
densities of fire-excluded mature trees, and high surface 
fuel loads stemming from combined drought and bark 
beetle mortality. Similar patterns were found in the 2021 
Dixie Fire (Taylor et al. 2022), and the authors reported 
that severity was moderated by past low- and moderate-
severity fires and mechanical treatments, despite plume-
dominated fire spread.

We were unable to directly validate plume-dominated 
fire spread in our study, but wind gust speeds ≥ 16 m·s−1 
(~ 36 mph, 58 kph) were associated with severe fire. For 
first-entry fires, this effect was apparent only for mod-
erate to high fuel loads (NDMI > 0), suggesting that the 
effect of wind in promoting high-severity fire was limited 
by fuel availability. Maps of local importance showed that 

Fig. 7  Spatial distribution of Shapley local importance values for the 2015 North Star fire, WA State, for the predictor variables groups: climate 
deficit, weather, spatial autocorrelation, topography, live and dead fuels, fire history, and management. Classified fire severity is presented in the left 
panel; light grey pixels represent either non-forest that was not included in this analysis or areas that do not apply for a given predictor group (e.g., 
fire history variables were only relevant within past fire footprints)
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large, high-severity burn patches also corresponded with 
spatial autocorrelation variables, suggesting that pat-
terns of high-severity were best explained by proximity to 
other high-severity cells.

Reburns vs. first‑entry fires
With much of the western USA currently in a fire deficit 
(Parks et al. 2015, Haugo et al. 2019) wildfires are return-
ing to the landscape in areas that have exceeded their 
historical return intervals by many decades (Safford and 
Van De Water 2014). While first-entry fires are generally 
interpreted as a lack of resilience to fire in these land-
scapes, evidence suggests that even with the recent influx 
of area burned in recent decades, annual burned area is 
still much lower than historical levels (Donato et al. 2023; 
Halofsky et  al. 2024). This suggests that as burned area 
increases across wNA landscapes, first-entry wildfires 
will be a dominant feature in the near term.

Others have found similarly that first-entry fires can 
impart resilience to these landscapes where they burn 
with a mixture of severities. For example, Kane et  al. 
(2019) found that first-entry burns within the footprint 
of two fires in the Sierras exhibited post-fire structural 
characteristics similar to contemporary reference sites 
that had experienced multiple fires, suggesting a result-
ant increase in resilience. However, Churchill et al. (2022) 
describe wildfire as a “blunt tool” for improving ecologi-
cal conditions in fire-excluded landscapes. The authors 
found that low- and moderate-severity fires pushed post-
fire landscapes within historical (HRV) and future (FRV) 
ranges of variability, but large patches of high severity 
tended to homogenize the landscape and move them out-
side of desired ranges. Their findings highlight the capac-
ity for wildfires to achieve restoration goals, potentially 
across large landscapes, but, where fire has remained out 
of the system for decades or longer, the resultant build 

Fig. 8  Classification tree model for first-entry fires, characterizing conditions associated with the local influence (Shapley value) of predictor 
variable groups on fire severity. Predictor variables were assigned to one of five predictor variable groups: climate, vegetation and fuels (Veg/
fuels), fire weather, topography, and management history. The variable group with the Shapley value of highest absolute magnitude was assigned 
to each raster cell. Proportions displayed in each box represent the modeled probability of each Shapley variable class in the order defined 
above. The percentage values within each box indicate percentage of observations in the node. Positive Shapley values in the violin plot indicate 
that a given variable was associated with an increase in fire severity, while negative values indicate a reduction in severity. For example, burned cells 
that experienced climatic water deficit (CMD ≥ 157 mm) and low live fuel levels (NDMI < 0.039) were strongly associated with vegetation and fuels 
variables, which in general led to lower fire severity (i.e., mean Shapley values < 0). Units for each predictor variable can be found in Table 1
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up and contagion of fuels may supersede other potential 
controls on fire spread and severity leading to negative 
outcomes.

In this study, we found marked differences between 
the severity and environmental drivers of first-entry 
fires and reburns. First-entry fires were strongly driven 
by top-down factors, including temperature, wind gust 
speed, and relative humidity. Where landscape fuel loads 
and connectivity were high, first-entry fires generally 
supported contagious spread of crown fires. However, 
these variables were much less important in reburned 
areas, demonstrating that heterogenous patterns of for-
est density and surface fuel conditions can buffer the 
effects of local or synoptic weather conditions (see 
Taylor et  al. 2016, Swetnam et  al. 2016, and Roos et  al. 
2022). For example, wind speeds across our 17 wildfires 
were generally higher in reburned patches compared to 

first-entry fire patches, yet fire severity was lower. Povak 
et al. (2020a) found comparable results when evaluating 
drivers of severity across the 2013 Rim Fire in Yosemite 
National Park. There, plume-driven spread was damp-
ened once the fire reached the Park, which had experi-
enced recent wildfires and much prescribed burning. 
Taken together, the strength of bottom-up controls 
within reburned patches can reduce the importance of 
other key variables associated with severe fire behavior 
and are outside the control of suppression crews (e.g., 
fire weather), and this effect can operate across multiple 
scales.

Within reburned areas, the strongest spatial controls 
were provided by large recently reburned patches (< 
3 years’ time since fire). Within our study area, Cansler 
et  al. (2022) also found that prior fires moderated sub-
sequent fire severity for up to 16 years, and that the 

Fig. 9  Classification tree model for reburns, characterizing environmental conditions associated with the local influence (Shapley value) of predictor 
variable groups on increasing or decreasing fire severity. Predictor variables were assigned to one five predictor variable groups: climate, vegetation 
and fuels, fire weather, topography, and fire history. The variable group with the Shapley value of highest absolute magnitude was assigned to each 
cell. Proportions displayed in each box represent the modeled probability of each Shapley variable class in the order defined above. The percentage 
values within each box indicate percentage of observations in the node. Positive Shapley values in the violin plot indicate that a given variable 
was associated with an increase in fire severity, while negative values indicate a reduction in severity. For example, reburned cells that were far 
from the edge of a previously burned patch, and that had low live fuel loads (NDMI < − 0.01) were strongly associated with vegetation and fuels 
variables, and generally experienced lower fire severity (i.e., mean Shapley values < 0). Units for each predictor variable can be found in Table 1
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probability of future high-severity fire was negatively cor-
related with the severity of a prior fire. Similarly, Prich-
ard et al. (2020) found that past wildfires and prescribed 
burns mitigated fire severity even within extreme fire 
weather progression days in the 2014 Carlton Complex 
fire. However, the strength of feedbacks provided by prior 
burns varies greatly across regions and over time (Taylor 
et al. 2022; Lydersen et al. 2014; Povak et al. 2020a; Parks 
et al. 2014a; Harvey et al. 2016; Prichard et al. 2020; Davis 
et  al. 2024). Examples of positive feedbacks (i.e., high 
severity begets subsequent high severity) were prevalent 
in large burns in the central Sierra Nevada Mountains in 
California due to either the re-accumulation of surface 
fuel loads or the dominance of shrublands in the post-fire 
landscape (Povak et  al. 2020a; Taylor et  al. 2022; Davis 
et  al. 2024). However, some burned areas constrained 
fire spread where previous burns were more recent (< 
10 year), and where fire weather was moderate (Collins 
et al. 2009). Harvey et al. (2016) also reported a negative 
feedback to severe fire among recent burns in low- and 
mid-elevation forests of the US Northern Rocky Moun-
tains, but as intervals increased between fires (> 10–12 
year), a positive feedback emerged. Similar results have 
been reported elsewhere around the western US (Buma 
et al. 2020).

Parks et al. (2018b) used NDMI as a surrogate for live 
fuel loads and found that along with NDVI and EVT, 
fuels were the main determinant of high-severity fire 
across most regions in the western USA. In our study, 
whether a first-entry fire or a reburn, the level and con-
nectivity of fuels provided consistent spatial control on 
fire severity. We used NDMI as a measure of both vegeta-
tion moisture stress and live fuel abundance (McDonald 
et al. 1998). Our results corroborate those of Parks et al. 
(2018b), and we further illustrate the primacy of fuel 
load spatial controls on fire severity for the eastern Cas-
cade Mountain region. NDMI was significantly lower in 
reburns (mean: 0.093 ± 0.16), compared with first-entry 
fires (mean: 0.239 ± 0.13) and severity was consistently 
lower for areas where NDMI was < 0.

Local importance of predictor variables
RF models of fire severity can accommodate complex 
relations among covariates. However, past research 
shows that reliance on global variable importance can 
obscure the influence of fine- to meso-scale bottom-
up controls on fires (Povak et  al. 2020a; Prichard et  al. 
2021; Moritz et al. 2011). This is particularly true where 
bottom-up controls exist with low representation on 
the landscape. The local Shapley importance measures 

Fig. 10  Violin plots representing the relative change in fire severity, as depicted by the relative burn ratio by fuel treatment type, ordered L to R 
by increased treatment severity from intensive clearcut treatments to thinned and underburned treatments. Violin plots were developed separately 
for cells that exhibited increases in fire severity related to treatments (red plots) and those that exhibited reductions in fire severity (blue plots). Cell 
counts that contributed to higher or lower severity are presented at the top and bottom of each plot. Acronyms are: BB—broadcast burn, and PB—
pile burn
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derived from the global first-entry and reburn models 
were effective at showing the influence of each predictor 
variable on fire severity at fine spatial scales.

Classification tree analysis provided insight into the 
conditions that were associated with fire-severity pat-
terns, which were illustrated by the local importance 
maps. In first-entry fires in mid- and high-elevation 
mixed-conifer forests (i.e., low moisture deficit), fires 
tended to burn at high-severity due to their species com-
position (owing to thin-barked tree species and relative 
lack of fire resistance), high canopy density conditions, 
and multi-layered canopies. However, in dry and moist 
mixed-conifer environments, the Shapley local impor-
tance results suggested that strong bottom-up controls 
were provided by topography, fuel loads, and their con-
nectivity. Among the biophysical controls, only the high-
est wind gust speeds (> 15 m·s−1) and steepest slopes (> 
25%) were consistently associated with higher fire sever-
ity. These results suggest a key role for fuels driving sever-
ity patterns, particularly in mid- to low-elevation conifer 
forests.

Reburns are an essential component of returning the 
active role of fire to these landscapes (Povak et al. 2023); 
however, the interval between fires is a main determi-
nant of ecological outcomes. Some short-interval fires 
can cause undesired transitions to alternative states or 
compositions depending on the post-fire fuel and vege-
tation successional trajectory (Harvey et al. 2016; Hayes 
and Buma 2021; Povak et  al. 2023). Prolonged periods 
between fires often allow for the accumulation of sur-
face and canopy fuels as the impress of prior fires wanes 
on the landscape. In our study, high fuel loads (NDMI 
≥ 0.26) in reburns were associated with some of the high-
est subsequent fire severities. Interestingly, the median 
time-since-fire for these cells was 14 years, which corre-
sponds well with the longevity of past reburns found by 
Cansler et al. (2022) and Davis et al. (2024). Their results 
and ours show that biomass accumulation over this 
period steadily increases, as does the rising likelihood of 
high-severity fire, and suggest a “shelf life” for treatments 
in this region. Similarly in our study, when only treated 
areas were analyzed, those treated < 10 years prior to 
the fire exhibited relatively low fire severity compared to 
areas experiencing a greater lag since treatment (Fig. S5).

Along with frequency, the size of reburn patches was 
also a strong determinant of fire severity. Distance to 
reburn edge was the strongest predictor of fire severity in 
our study; larger reburn patches contributed more bot-
tom-up spatial control than smaller patches, indicating 
that treatments with large interior core area were more 
effective at mitigating fire severity. However, a balance is 
needed between the size of most wildfire and treatment 
patches and their severity (Harvey et al. 2023; Steel et al. 

2022). Large high severity patches may prolong conifer 
forest recovery due to the protracted distances conifer 
seeds must travel to naturally regenerate (Littlefield 2019; 
Haffey et al. 2018; Povak et al. 2020b; Davis et al. 2023).

Topography can act as a direct influence on the spread 
and severity of wildfires (e.g., convective heating on steep 
slopes, Povak et al. 2018), and an indirect influence (e.g., 
variability in vegetation types and fuel loads on north vs 
south aspects, Parks et  al. 2018b). Slope steepness was 
the only topographic variable selected in classification 
trees of fire severity drivers. Other studies have found 
strong controls provided by topography, but as Parks 
et  al. (2018b) discuss, many of those studies did not 
directly incorporate fuel variables, and therefore topogra-
phy may have acted as a proxy for the spatial variability in 
fuel loads across topographic gradients.

Management implications
The strong dependence of fire severity on the amount 
and contagion of fuels suggests that evidence-based fuel 
treatments and wildland fire management can play an 
important role in reducing the spread and severity of 
future wildfires. These findings are also supported by a 
growing body of literature on repeat fires and vegetation 
dynamics (Prichard et al. 2017; Parks et al. 2018b; Povak 
et al. 2023; Urza et al. 2023). In our work, we found that 
forest thinning followed by underburning reduced fire 
severity even during extreme progression days. Within 
treatment areas, the lowest severities occurred where 
live fuels were less abundant and moisture stress was low, 
and where canopy base heights (CBH) were ≥ 1.3 m. This 
suggests that fire severity was not only influenced by the 
quantity of live fuels, but also by their horizontal and ver-
tical distribution.

Our results corroborate the findings of Cansler et  al. 
(2022), who found that forest fuel treatments that 
included prescribed burning were most effective at miti-
gating future fire severity relative to thinning alone. In 
addition, we found that clearcutting generally led to 
higher subsequent fire severity. These results suggest 
that slash concentrations were inadequately reduced by 
broadcast burning after harvests. Where clearcut treat-
ments with or without broadcast burning were located 
within large, high-severity burn progressions, they were 
less effective at reducing fire severity. For example, within 
the 2015 Lime Belt fire, a large network of past manage-
ment treatments was located within a patch of high-
severity fire (Fig. 5, SW portion).

Conclusions
We used machine learning with local variable impor-
tance measures to identify the influence of top-down 
and bottom-up drivers of fire severity for 17 large 
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fires that burned across two consecutive region-wide 
fire years in the eastern Cascade Mountains and Oka-
nogan Highlands of Washington State. Our results 
provide strong evidence to counter two emerging nar-
ratives regarding wildfire in wNA. First, although top-
down effects were important, climatic gradients and 
fire weather were not always the primary influence on 
wildfire behavior. Models that incorporated the local 
importance of predictor variables identified condi-
tions under which bottom-up factors were influential in 
regulating fire severity. Results showed that fuels were 
a central factor driving fire severity patterns—a result 
that can be obscured by looking solely at global statis-
tics of variable importance. While severe wind speeds 
and fire weather conditions increased severity, actual 
fire severity was dependent on bottom-up factors that 
influenced available fuels for burning. Second, our 
study provides empirical support for the efficacy of eco-
logical forest management for restoring resilience and 
building climate-adapted forested landscapes in the 
interior Pacific Northwest. Treatments were most effec-
tive where they reduced the amount, distribution, and 
connectivity of surface and canopy fuels. In particular, 
those that included mechanical thinning followed by 
prescribed burning appeared to be most effective, even 
under extreme fire progression days. As with other 
studies (see Kalies and Kent 2016, Prichard et al. 2021, 
and McKinney et al. 2022 for reviews), we showed that 
fuel reduction treatments were effective at mitigating 
fire spread and severity, and our results support their 
broader use to meet fire and forest management goals.
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