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Abstract 

Background  Fuel moisture content is a key driver of fuel flammability and subsequent fire activity and behavior 
worldwide. Dead fuels passively exchange moisture with the atmosphere while live fuel moisture is confounded 
by a mixture of seasonal carbon and water cycle dynamics. Despite the significance of live fuel moisture content 
(LFMC) on wildland fire potential, attempts to model its variations seasonally and between species are often inconclu-
sive or unsuccessful.

Results  Here we present a mechanistic LFMC model that uses easily measured live fuel physiological and mor-
phological traits that are rooted in either plant ecophysiology or combustion science. These traits serve as proxies 
for important components of the seasonal water and carbon cycle or they capture inter-species plant morphology 
variations. The model decomposes LFMC based into leaf mass area (LMA), relative water content (RWC), surface-area-
to-volume ratio (SAV), and the volumetric saturated water holding capacity ( κ ). We test 10 simplifications or variations 
of the mechanistic model using combinations of fixed and time-varying inputs of the four variables. A simplified 
mechanistic model version that uses the time-varying RWC and LMA with foliage age class-specific SAV and κ medi-
ans accounted for most of the seasonal variation in Douglas fir LFMC across two growing seasons ( r2 = 0.91 , MAE = 
12.9%). Further, this same model applied to 11 Intermountain Western US conifers adequately captured the seasonal-
ity and inter-species differences in live fuel moisture dynamics across an entire growing season and foliage age classes 
( r2 = 0.89 , MAE = 12.5%).

Conclusions  This pyroecophysiology-based approach to live fuel moisture content modeling provides a more 
robust way to characterize seasonal variations in both fuel availability and water stress while building on decades 
of plant ecophysiology and combustion research. The model can be used to more appropriately represent live fuels 
in process-based models, it can be used to better parameterize multi-dimensional fire behavior models to represent 
the combined effects of biomass and moisture variations on live fuel flammability, and it can improve our ability 
to more accurately monitor live fuel variations with remote sensing. This new model harmonizes decades of disparate 
live fuel moisture research and lays a foundation for more fruitful live fuel dynamics explorations worldwide.
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Resumen 

Antecedentes  El contenido de humedad de los combustibles vegetales es un componente clave en la inflama-
bilidad y en la subsecuente actividad y comportamiento del fuego en todo el mundo. Los combustibles muertos 
intercambian humedad con la atmósfera de manera pasiva, mientras que en los combustibles vivos este intercam-
bio está entremezclado por la combinación entre la dinámica estacional del carbono y el ciclo del agua. A pesar del 
significado que tiene el contenido de humedad de los combustibles vivos (LFMC) en el potencial de los fuegos de 
vegetación, los intentos de modelar sus variaciones estacionales y entre especies son muchas veces inconcluyentes o 
poco exitosos.

Resultados  Presentamos aquí un modelo mecanístico de LFMC que usa características físicas y químicas fáciles de 
medir y que provienen tanto de la eco-fisiología vegetal como de la ciencia de la combustión. Estas características 
sirven como aproximaciones para componentes importantes del ciclo estacional del agua y del carbono o capturan 
variaciones morfológicas entre especies. El modelo descompone LFMC basado en la masa del área de las hojas (LMA), 
contenido de humedad relativo (RWC), la relación entre el área de la superficie de la hoja y su volumen (SAV), y la 
capacidad volumétrica de las hojas de contener el agua a saturación (k). Probamos 10 simplificaciones o variaciones 
del modelo mecanístico usando combinaciones de ingresos (inputs) variables en el tiempo de cuatro variables. Una 
versión del modelo mecanístico simple que usa las variables en el tiempo de RWC y LMA con las medianas de clases 
de follaje específicas SAV y k fueron las que mostraron la mayor variación en el LFMC en pino Oregón a lo largo de 
dos estaciones de crecimiento ( r2 = 0.91 , MAE=12.9%). Además, el mismo modelo aplicado a 11 coníferas del Oeste 
inter-montano de los Estado Unidos capturaron adecuadamente la estacionalidad y diferencias entre especies 
en la dinámica del LFMC a lo largo de una estación de crecimiento completa y entre las clases de edad del follaje 
( r2 = 0.89 , MAE=12.5%).

Conclusiones  Esta aproximación modelada del LFMC basada en la Piro-eco-fisiología provee de un modo más 
robusto para caracterizar las variaciones estacionales tanto en la disponibilidad del combustible como en el estrés 
hídrico, cimentadas en décadas de investigaciones sobre eco-fisiología de plantas y combustión. El modelo puede 
ser usado para representar más adecuadamente el LFMC en modelos basados en procesos, puede ser usado para 
parametrizar mejor modelos multi-dimensionales de comportamiento para representar los efectos combinados de 
la biomasa, y las variaciones en la inflamabilidad de los combustibles vivos y puede mejorar nuestra habilidad para 
monitorear mejor las variaciones en el LFMC mediante sensores remotos. Este nuevo modelo armoniza décadas de 
investigaciones dispares y sienta las bases para una exploración más fructífera de la dinámica de la humedad de los 
combustibles vivos en todo el mundo.

Background
Wildland fires are a common ecological disturbance that 
globally burn between 360 and 380 million hectares each 
year (Chuvieco et al. 2016). Some fires fill help maintain 
healthy ecosystems but other fires can heavily impact 
people, property, and infrastructure (Bowman et  al. 
2009). In an effort to promote a well-founded relation-
ship with fire, we must understand the physical process 
that dictate how they will ignite and spread across diverse 
landscapes. This information would enable us to make 
proactive decisions about how we co-exist with wildfires, 
how we most effectively manage fire-prone landscapes, 
and how we respond to wildfires when they ignite.

Wildfire activity is dominated by factors such as fuel 
amount, arrangement and physio-chemistry, terrain ori-
entation and steepness, and weather (Countryman 1972). 
Weather interacts to drive spatial and temporal varia-
tions in both fuel amount and conditions. These dynamic 
changes fuel condition largely dictate where and how 

wildfires burn. Fuel moisture content (FMC) is a com-
mon dynamic fuel condition metric that has long been 
shown to influence fire potential (Gisborne 1936; Byram 
1943; Fons 1950). FMC describes the amount of water in 
the fuel expressed as a ratio of its oven-dried mass and it 
can be used to characterize both living and dead vegeta-
tion. Live and dead FMC are commonly used as inputs to 
predictive models of wildland fire danger or fire behavior 
(Rothermel 1972; Perry 1998). These fire models are used 
for a variety of purposes such as mapping wildfire risk 
(Finney et al. 2011), monitoring current wildfire potential 
(Bradshaw et al. 1984; Stocks et al. 1989), or responding 
to wildfires (Jolly et  al. 2019). Ultimately, fuel moisture 
dynamics are integral to both our understanding of wild-
land fire behavior and the decision support tools we use 
to effectively manage wildfires.

Wildland fires commonly burn in mixtures of live and 
dead fuels. Dead fuel moisture dynamics and flammabil-
ity have been studied for decades (Fons 1950; Viney 1991). 
However, live fuel dynamics have received relatively less 
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exploration. Live fuel moisture content is confounded 
by the fact that both water content and dry matter vary 
simultaneously throughout the season (Ackley 1954; 
Kozlowski and Clausen 1965; Jolly et al. 2014). Efforts to 
model seasonal variation solely from water balance varia-
tions have been met with mixed success and these studies 
generally cannot explain all of the live fuel moisture con-
tent variations despite being trained on a limited group of 
species (Pellizzaro et al. 2007; Ruffault et al. 2018).

Recent live fuel dynamics research has focused on link-
ing live fuel moisture variations to plant physiological 
traits such as leaf water potential (Nolan et al. 2018) and 
also on decoupling the water and dry matter variations of 
the plant to better explain the seasonal LFMC dynamics 
(Jolly et al. 2014; Brown et al. 2022; Griebel et al. 2023). 
This emerging field of pyro-ecophysiology (Jolly and 
Johnson 2018; Resco de Dios 2020; Dickman et al. 2023) 
attempts to link critical components of the plant water, 
carbon, and nutrient cycles to better capture the pat-
terns and process of live fuels over space and time. Com-
mon physiological measurements of plant water stress 
such as leaf water potential (Nolan et al. 2018; Balaguer-
Romano et al. 2022) or relative water content (Jolly et al. 
2014; Ruffault et  al. 2023) show promise in capturing 
water content variations while metrics such as leaf den-
sity, specific leaf area, or its inverse, leaf mass area, can 
potentially control for dry matter variations that link to 
the carbon and nutrient dynamics (Jolly et al. 2016; Grie-
bel et al. 2023; Nolan et al. 2022). These studies are criti-
cal to advancing our understanding of live fuel dynamics 
but they are only exploring partial relationships between 
physiological metrics and LFMC.

Ultimately, a mechanistic model derived from live fuel 
physiological and morphological traits is needed (Ruf-
fault et al. 2018). Such a model is critical to advancing our 
understanding of live fuel flammability and their influ-
ence on wildland fire behavior in complex fuelbeds. It 
is needed to allow us to better understand variations in 
flammability across species and time and it is also critical 
to our ability to model and map those seasonal variations 
over time with both ground-based and satellite-based 
assets and to more appropriately incorporate live fuel 
characteristics into next-generation ecosystem process 
and fire behavior models (Dickman et al. 2023).

Here we introduce a novel, mechanistic live fuel mois-
ture content model that integrates established metrics 
from both ecophysiology and combustion science to pre-
dict LFMC variations across time and between species. We 
apply the model to a single species across multiple grow-
ing seasons to demonstrate its effectiveness in capturing 
LFMC intra-species, seasonal variations and we further 
extend the model to investigate LFMC variations across 11 
Intermountain Western US tree species. This simple model 

holds potential for global application, offering improved 
explanation, monitoring, mapping, and modeling of coni-
fer live fuel variations in diverse ecosystems.

Methods
Sample collection
We collected the current year ("new" foliage) and previous 
year’s growth ("old" foliage) from live Douglas-fir (Pseu-
dotsuga menzeseii) from the beginning of March to the 
end of October in 2021 and 2022 at the Blue Mountain 
National Recreation Area on the Lolo National Forest, 
approximately 5 miles southwest of Missoula, MT, USA. 
The sampling site was a large open mixed stand of mature 
Douglas-fir and ponderosa pine (Pinus ponderosa) on a 
gentle north aspect slope. Samples were collected weekly 
or twice weekly from green-up to needle hardening, late 
April to late June, and biweekly for the rest of the season. 
Eight branch tips from eight randomly selected trees were 
clipped each sampling date. From those, 12 new and 12 
old needles were randomly drawn for foliage measure-
ments, and the same number again for surface-area-to-
volume (SAV). Trees were randomly selected from one 
sampling date to another, so the measurements are meant 
to be representative of the stand at that location and not 
of an individual tree or trees within the stand. Intact ter-
minal shoots were collected from sunlit portions of ran-
domly selected mature trees within the stand, then stored 
in sealed bags in a cooler for transport to the laboratory. 
Samples were initially processed within 4 h of collection. 
In 2022, new and old foliage from ten additional conifer-
ous tree species was collected four times during the grow-
ing season from five sites in Western Montana and Idaho 
using the same protocol as above (Table 1).

Foliage physical and physiological characteristics
In the laboratory, 12 old needles and 12 new needles 
(after new foliage emergence) were randomly selected 
from the shoots and weighed to the nearest 0.01 mg. Vol-
ume was determined using a balance density kit (Ohaus 
density kit). Weighed needles were then taped flat to a 
white piece of paper that included a surface area meas-
urement reference and photographed. Photographs were 
processed using ImageJ software (Schneider et  al. 2012) 
to measure projected surface area. Needles were gently 
unpeeled from the paper, placed into vials of de-ionized 
water, and left to rehydrate overnight at 4 ◦ C. Rehydrated 
needles were weighed again to determine saturated mass, 
then dried in a 70 ◦ C oven for at least 72 h and reweighed 
to determine dry mass (Conrad et al. 2024). These meas-
urements yield the fresh mass, dry mass, and turgid 
(saturated) mass values that were used to calculated the 
relative water content (Weatherley 1950) and the live fuel 
moisture content (Jolly et al. 2014).
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An additional 12 old and new needles were subsampled 
to determine surface area to volume ratio (SAV). Nee-
dle volume was determined using the Ohaus density kit 
as before. Surface area was determined by dipping nee-
dles in 70  ◦ C paraffin (Paraplast, Leica Biosystems) and 
comparing the deposited wax mass to a regression made 
from wooden shapes of known surface area (Conrad et al. 
2024). A factor to convert projected to all-sided surface 
area was determined by comparing the wax-dipping and 
ImageJ measurements for each needle and were summa-
rized by species and foliage age class. These "projected 
to all sided ratio" factors can simplify future surface area 
determination for these species and they are commonly 
used in ecophysiology-based process models (White 
et al. 2000).

The mechanistic live fuel moisture model
Live fuel moisture content (LFMC) is defined as ratio of 
fuel particle’s water mass and oven-dried mass as follows:

We use the term particle to describe a single compo-
nent of the plant, such as needles or leaves, fine branches, 
coarse branches, or stems that are measured for a given 
species and foliage age class at a given time. LFMC can be 
quantified for any plant particle.

LFMC can also be calculated using volumetric quanti-
ties by normalizing the numerator and denominator by 
the particle volume. If we consider the LFMC as a simple 
ratio of the volumetric water mass (VWM) and volumet-
ric dry mass, which is equivalent to its density ( ρ ), the 
follow equation describes the LFMC:

(1)LFMC =
kgH20

kgDM
× 100

VWM can be further decomposed using relative water 
content (RWC) if an additional scalar value is developed 
that describes the water mass that the particle can hold 
at saturation relative to its volume. First, RWC can be 
calculated from particle fresh, dry, and turgid mass meas-
urements as follows (Weatherley 1950):

where the numerator represents the sample water mass 
and the denominator is the sample water mass at satura-
tion. RWC quantifies the hydration status of a plant and 
it is proportional to the amount of water a plant can hold. 
Thus, an RWC of 100% means the plant particle is fully 
saturated and a value of 0% would mean the plant is fully 
desiccated. In contrast, LFMC is unbounded and it com-
monly exceeds 100% when water mass exceeds dry mass.

Additionally, a new metric can be defined, which we 
will call kappa ( κ ), to describe the particle saturated 
water mass relative to its volume. κ can be calculated 
using measurements from the saturation step of RWC 
and normalized by the fresh particle volume as follows:

where Turgid Mass is the mass of the fuel particle in kil-
ograms after rehydration and Dry Mass is the the oven 
dry sample mass in kilograms and volume is the meas-
ured fresh sample volume ( m3 ). Kappa can then be used 
to scale the measured RWC to VMC as follows:

(2)

LFMC =
Volumetric Water Mass (VWM)

Density (ρ)
× 100

(3)RWC =
Fresh Mass − Dry Mass

Turgid Mass − Dry Mass
=

kgH2O

kgH2OSat
× 100

(4)
κ =

Saturated Water Mass

Volume
=

Turgid Mass − Dry Mass

Volume
=

kgH2OSat

m3

Table 1  Description of sampling sites across Montana and Idaho, USA, used in the study. Temperature and precipitation summaries 
are 30-year annual means from the PRISM dataset (PRISM Climate Group 2025) and soil characteristics are from the USDA NCRS web 
soil survey (NRCS 2025)

Site name Latitude (dec 
deg)

Longitude (dec 
deg)

Elevation m (ft) Species Mean Ann Prec 
mm (in)

Mean Ann 
Temp °C 
(°F)

Soil order Drainage class

Spring Gulch 46.7359 −114.5362 1162 (3812) PICO, PIEN 682.0 (26.9) 4.7 (40.5) Inceptisol Somewhat 
excessively 
drained

Blue Mountain 46.8298 −114.11812 1346 (4416) PIPO, PSME 445.5 (17.5) 6.8 (44.3) Inceptisol Somewhat 
excessively 
drained

Jerry Johnson 46.4739 −114.88439 939 (3081) ABGR, THPL 939.8 (37) 6.4 (43.5) Inceptisol Well drained

St Mary’s Peak 46.5003 −114.20339 2091 (6859) PIAL 989.1 (38.9) 4.0 (39.2) Inceptisol Excessively 
drained

White Pine 
Creek

47.7389 −115.67531 1024 (3360) PIMO, THPL 1106.9 (43.6) 5.5 (41.9) Inceptisol Well drained

TV Mountain #2 47.0026 −114.00282 1564 (5131) LAOC, ABLA 688.8 (27.1) 6.0 (42.8) Inceptisol Well drained
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where the volumetric water mass (VWM) is the prod-
uct of RWC (scaled to fraction from percent by dividing 
by 100) and κ.

Continuing, the volumetric dry mass, or particle den-
sity ( ρ ), can be described as the product of the leaf mass 
area (LMA) and the surface-area-to-volume ratio (SAV):

Finally, this yields a simple, mechanistic form of LFMC 
that can be calculated from the four easily measured 
plant particle traits described above. The model can char-
acterize variations in plant water stress, particle biomass, 
and morphology as follows:

These primary plant descriptive metrics were chosen to 
build off of a wealth of existing physiological and com-
bustion research. Previous work on other Intermountain 
West US conifers has shown that decoupling the sea-
sonal water and dry mass dynamics helps explain more 
of the variation in LFMC both seasonally and across 
needle age classes (Jolly et  al. 2014; Jolly and Johnson 
2018). Informed by previous research (Jolly et al. 2014), 
we chose the relative water content (RWC) to represent 
the seasonal water variations (Weatherley 1950) and 
we chose leaf mass area (LMA) to capture the seasonal 
carbon, or dry mass, variations based on other recent 
research (Nolan et  al. 2022; Brown et  al. 2022; Griebel 
et al. 2023). LMA is a common ecophysiological metric of 
plant biomass per unit area (Poorter et al. 2009) and it is 
sometimes replaced with its reciprocal, specific leaf area 
(SLA), in LFMC-related literature but the two quantities 
are equivalent. We included the surface-area-to-volume 
ratio (SAV) because it is a well-known particle combus-
tion trait that has been measured as a metric of wildland 
fuel flammability for decades (Brown 1970). κ is a novel 

(5)

(6)

(7)LFMC =

RWC
100

× κ

LMA× SAV
× 100

fuel metric but it should be related to the internal mor-
phology of a species and we would expect it to vary by 
species and foliage age class.

When combined, these four metrics of foliar physical 
and chemical properties yield the particle live fuel mois-
ture in percent of dry mass as an emergent property. Full 
model parameters,units and descriptions are summa-
rized in Table 2.

Exploratory data analysis
We first calculated the daily median values for LFMC, 
RWC, LMA, SAV, and κ for each sample period, species, 
and foilage age class (new or old) across the entire study 
period and we used those summarized daily values for 
all subsequent analysis and model variant explorations. 
Exploratory data analysis was performed in Python ver-
sion 3.12.5. We plotted distributions of LFMC and the 
four model input variables using violin plots created 
using the Seaborn Python package (0.13.2) (Waskom 
2021) and we explored seasonal variations in the inten-
sively sampled Douglas fir plots using time series plots.

Testing mechanistic live fuel moisture model 
simplifications
We evaluated ten mechanistic LFMC mode variants in 
order to choose a parsimonious model that captures sea-
sonal LFMC dynamics but that does not require every 
parameter to be estimated precisely. Based on previous 
work, we assumed that seasonal dry mass dynamics would 
be most important for conifers (Brown et al. 2022) and that 
relative water content would help explain additional varia-
bility (Jolly et al. 2014). For fixed parameters, we calculated 
the median value across all data, stratifying by species and 
foliage age class. The time-variant and fixed parameters of 
each model variant are listed in Table 3. For each of the ten 
mechanistic model variants, we substituted either time-
varying or fixed values into Eq. 7 as detailed in Table 3. The 
first four models tested have a single time varying input and 
the other three mechanistic model inputs are fixed. The last 
six models allow two variables to change with time while 
fixing the two other mechanistic model variables using 
species and foliage age class medians. This analysis was 

Table 2  Mechanistic live fuel moisture variable definition

Variable Abbreviation Description Units

Live fuel moisture content LFMC Percent of dry mass kgH2O
kgDM

× 100

Relative water content RWC​ Percent of saturated moisture kgH2O
kgH2OSat

× 100

Leaf mass area LMA Leaf mass per unit surface area kgDM

m2

Surface area to volume ratio SAV (SVR) All-sided surface area to volume ratio m2

m3

Kappa κ Volumetric saturated water mass kgH2OSat

m3
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performed for both the intensively sampled Douglas fir sea-
sonal time series and for the 11 Intermountain Western US 
conifers dataset.

Each model variant from Table 3 was compared to field-
measured LFMC using ordinary least squares regressions. 
Both the r2 of linear regression fit with an intercept of 0 (1:1 
line) and mean absolute error (MAE) for both the seasonal 
Douglas fir model and the pooled 11 inter-species Inter-
mountain conifer model were calculated in Python using 
the LinearRegression routine from the scikit learn package 
(SKLearn version 1.5.2) (Pedregosa et al. 2011).

Results
Projected to all‑sided surface area conversions
Results of conversion factors from projected to all-sided 
surface area are given in Table  4. Conversion factors 

ranged from a low of 2.0 to a high of 2.7 depending on 
species and foliage age class with except for Western 
larch. Larch surface area was difficult to characterize 
using the wax dipping method and yielded a conversion 
factor less than 2.0 (0.8) which is not physically possi-
ble. Therefore, we use a simple conversion of 2.0 for all 
larch surface areas. With the exception of larch, the range 
of conversion factors were similar to those reported for 
evergreen needleleaf forests with White et al. (2000) who 
reported a mean value of 2.6 with values 2.37 to 3.14 for 
similar species. These projected to all-sided surface area 
conversions are used to calculate all-sided leaf mass area 
and surface-area-to-volume ratios for all 11 tree species.

Fixed model parameters across 11 conifer species
Median mechanistic LFMC model parameters for Doug-
las fir and the remaining 10 species tested are presented 
in Table 5. These values are used in the Douglas fir high 
temporal frequency seasonal LFMC model evaluations 
and also in the model evaluations across the 11 Inter-
mountain Western US conifer species that were sampled.

Douglas fir exploratory data analysis
We collected 741 individual foliage samples from Douglas 
fir between 2021 and 2022 which yielded 62 daily median 
values for LFMC, RWC, LMA, SAV, and k for both new 
and old foliage by sample date. One artifact was noted in 
some of the RWC for old foliage of Douglas fir across all 
measurements where preliminary exploration showed 
that some of the samples effectively "over-rehydrated" 
yielding unrealistic RWC values (lower than 75%) (Arndt 
et al. 2015). This bimodality was also seen in new foliage 
but the two peaks were less distinct. We therefore filtered 
the dataset for RWC values within published valid ranges 

Table 3  Model simplification variants evaluated using both the 
seasonal Douglas fir and the 11 Intermountain West US conifer 
data

Model ID Time-variant 
parameters

Fixed parameters

Single time 
varying param‑
eter models

Model 1 LMA RWC, SAV, k

Model 2 RWC​ LMA, SAV, k

Model 3 SAV LMA, RWC, k

Model 4 k LMA, RWC, SAV

Two time vary‑
ing parameters 
models

Model 5 LMA,RWC​ SAV, k

Model 6 SAV, RWC​ LMA, k

Model 7 RWC, k LMA, SAV

Model 8 LMA, SAV RWC, k

Model 9 LMA, k RWC, SAV

Model 10 SAV, k LMA, RWC​

Table 4  Projected to all-sided surface area conversion factors for new and old foliage of 11 tree species

Factors were determined by comparing photogrammetric projected surface area to all-sided surface area measured using wax deposition for individual needles. Note: 
Western larch values are unrealistically low but the needles are typically very flat so we assume a value of 2.0 for that species

Species Common name Abbreviation Median conversion factor n

New Old (New, Old)

Abies grandis Grand fir ABIGRA​ 2.1 2.5 (32, 32)

Abies lasiocarpa Subalpine fir ABILAS 2.2 2.2 (48, 48)

Larix occidentalis Western larch LAROCC 0.8 (2.0) NA (43,NA )

Picea englemannii Englemann spruce PICENG 2.4 2.7 (48, 47)

Pinus albicaulis Whitebark pine PINALB 2.5 2.5 (47, 48)

Pinus contorta Lodgepole pine PINCON 2.2 2.4 (45, 47)

Pinus monticola Western white pine PINMON 2.0 2.0 (48, 45)

Pinus ponderosa Ponderosa pine PINPON 2.2 2.3 (23, 24)

Pseudotsuga menziesii Douglas-fir PSEMEN 2.3 2.3 (12, 12)

Thuja plicata Western redcedar THUPLI NA 2.3 ( NA,36)

Tsuga heterophylla Western hemlock TSUHET 2.0 2.2 (46, 48)
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( RWC ≥ 75% ). The distribution of live fuel moisture con-
tent for new and old foliage shows that old foliage LFMC 
is generally distributed around 100% but new foliage peak 
around 160% and was also right skewed (Fig. 1). Live fuel 
moisture content followed a seasonal pattern similar to 
that of other conifers where the new growth continu-
ally declined during the needle maturation period and 
the old foliage showed a pronounced season dip prior to 

new needle emergence (Fig.  1). This drop and recovery 
in LFMC of old foliage is consistent with the "spring dip" 
measured in other conifers (Jolly et al. 2016).

Distributions of relative water content (RWC), leaf 
mass area (LMA), surface-area-to-volume ratio (SAV), 
and maximum volumetric water holding capacity ( κ ) are 
shown in the left column of Fig. 2. LMA showed a distinct 
shift between new and old foliage where old foliage LMA 

Table 5  Median model parameters by species and foliage age class for 11 Intermountain Western US conifers

These values were used as fixed model parameters for all mechanistic model variants tested (see Table 3 for model variant descriptions)

 aNote: THUPLI was not separated into new and old and all foliage was lumped into the old category

Species code Foliage age LFMC (% dry wt) RWC (% sat) LMA (kg m−2) SAV (m−1) k (kg H2O m−3)

ABIGRA​ New 218.5 92.5 0.062 4234.2 653.71

Old 125.4 91.1 0.096 4191.0 699.0

ABILAS New 145.5 88.9 0.081 4269.4 595.3

Old 114.6 87.3 0.106 4013.8 536.4

LAROCC New 219.9 85.0 0.049 4899.6 687.5

PICENG New 158.6 89.2 0.091 3405.3 681.0

Old 108.7 89.3 0.131 3725.2 585.0

PINALB New 137.9 86.2 0.090 4193.7 678.0

Old 119.1 86.3 0.110 4021.7 677.2

PINCON New 188.4 83.6 0.082 4507.1 783.1

Old 110.3 79.5 0.098 4564.8 676.8

PINMON New 179.2 85.1 0.078 4339.8 684.7

Old 135.7 81.1 0.076 4323.3 721.4

PINPON New 161.2 82.0 0.088 4195.2 744.0

Old 120.0 78.6 0.114 3947.3 686.7

PSEMEN New 170.1 87.2 0.082 4298.6 662.0

Old 132.3 89.2 0.089 4499.7 671.4

THUPLI Olda 118.2 81.5 0.089 4101.2 575.4

TSUHET New 179.0 89.6 0.066 4678.7 618.6

Old 136.6 90.6 0.079 4730.2 580.7

Fig. 1  Swarm plots (left) of new and old Douglas fir foliage sampled at Blue Mountain in 2021 and 2022 and a time series plot of new and old 
foliage LFMC for 2022 (right) (N = 62)
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was consistently higher than new foliage LMA. SAV for 
new and old foliage were distributed roughly equally but 
new foliage SAV was right skewed. Max water holding 
capacity followed the inverse of LMA where new foliage 
had a higher water holding capacity than old foliage.

Seasonal variations of RWC, LMA, SAV, and k are 
shown in the right column of Fig. 2. There was a small 
seasonal cycle of RWC for old foliage and more pro-
nounced seasonal variability of RWC in new foliage. 
LMA followed an inverse trend of LFMC where old 
foliage LMA peaked during the period of the low-
est measured LFMC in old foliage and as LMA in new 
foliage increased over the season, new foliage LFMC 
decreased. SAV variations for old foliage were mostly 
constant over the season but new foliage SAV declined 
quickly after needle emergence. Finally, κ stayed rela-
tively constant for old foliage and declined until it was 
approximately equal to old foliage κ by the end of the 
growing season.

Performance of the Douglas fir mechanistic live fuel 
moisture model
A summary of the ordinary least squares, no intercept 
regressions between measured and modeled LFMC for 
each Douglas fir model variant is shown in Table  6. 
All of the top 3 models contained time-varying leaf 
mass area (LMA). The best fit model (model 8) used 
time-varying LMA and SAV and fixed values for RWC 
and k ( r2 = 0.95 ). The second best model (model 5) 
fit uses time-varying LMA and RWC and fixed values 
for k and SAV ( r2 = 0.91 ). Model 5 is also the most 
generalized version of the models tested because it 
includes a time-varying proxy for both water con-
tent and dry matter variations, while still controlling 
for potential species-variations using foliage age class 
medians values for κ and SAV. Notably, the third-best 
model (model 1) used only time-varying LMA to pre-
dict LFMC with fixed values for RWC, κ , and SAV 
( r2 = 0.90 ), highlighting the strong dependence of 
LFMC on changes in dry matter.

Fig. 2  Swarm plots (left column) and example time series plots (right column) of relative water content, leaf mass area, surface-area-to-volume 
ratio, and maximum water holding capacity for new and old Douglas fir foliage sampled at Blue Mountain in 2022 (N = 41)



Page 9 of 16Jolly et al. Fire Ecology           (2025) 21:19 	

A time series of measured and predicted Douglas fir 
LFMC for model 5 is shown in Fig.  3. Model 5 showed 
the best fit for the most generalized model version and 
it was strongly correlated with measured LFMC. Model 
5 sufficiently reproduced the seasonal trends in both 
new and old foliage and the mean absolute error was low 
(12.9% across all observations).

Eleven Intermountain US tree species exploratory data 
analysis
We measured 712 individual foliage samples across the 
11 species and four sample periods which yielded 78 
daily median values for LFMC, RWC, LMA, SAV, and k 
for both new and old foliage by sample date after filter-
ing for relative water content values above 75% as men-
tioned in the Douglas fir data prep description above. 
LFMC measured across species closely resembled the 
distributions for Douglas fir but central tendency for 
old foliage with slight higher at about 120%. New foli-
age moisture content values peaked slightly higher at 

about 150% and they were were heavily right skewed 
with maximum values near 500% (Fig.  4). LFMC val-
ues above 500% only occurred when we sampled very 
new foilage within 1 or 2 weeks of needle flushing, thus 
measurements this high are not common throughout 
the growing season.

Histograms of RWC, LMA, SAV, and κ across all 11 
tree species are shown in Fig.  5. Model input variables 
across all species were distributed similarly to Doug-
las fir. RWC values were slightly higher for new foliage. 
LMA was consistently higher for old foliage shifting from 
a peak of about 0.075 kg m−2 for new foliage to a peak 
of about 0.10 kg m−2 for old foliage after full foliar matu-
ration. SAV was similar across foliage age classes. Simi-
lar to Douglas fir, new foliage SAV was right skewed and 
showed a tail in the distribution above 6000 m−1 . Max 
volumetric water holding capacities ( κ ) were highest for 
new foliage and lowest for old foliage. Overall, sample 
distributions across the 11 Intermountain species were 
similar to those observed for Douglas fir.

Table 6  Ordinary least squares, no intercept regression comparisons of modeling and predicted LFMC for each model variant 
(Table 3) calculated using seasonal Douglas fir (Pseudotsuga menziesii) data

Shaded rows show the top 3 best model fits based on the highest r2 of the 1:1 line and the lowest MAE

Fig. 3  Model comparison for model variant 5 which models seasonal Douglas fir live fuel moisture content using time-varying RWC and LMA 
and fixed SAV and κ by foliage age class as mechanistic LFMC model inputs. The model adequately characterizes the disparate seasonal dynamics 
between new and old foliage as well as the period of the "spring dip" seen in the old foliage prior to new needle flushing (left panel) and it 
accounts for about 91% of the variation in live fuel moisture across the entire season regardless of foliage age class with a mean absolute error 
of 13% across the full range of LFMC values (right panel)
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Performance of the mechanistic live fuel moisture model 
across 11 Intermountain US tree species
A summary of the ordinary least squares, no intercept 
regression tests for each model variant calculated across 
all 11 conifer species is shown in Table 7. Consistent with 

the seasonal tests for Douglas fir, the best three mod-
els all included LMA (models 1, 5, and 8). Additionally, 
the most general model with the best fit for Douglas fir 
(model 5) was also the most general and best fit model 
across 11 Intermountain Western US conifers. This gen-
eralized model captured the between species variations 
of new and old LFMC using only time-varying LMA and 
RWC and species-specific, fixed parameters for SAV and 
k (Table 5). A plot of the measured and modeled LFMC 
values calculated across all 11 Intermountain US conifer 
species is shown in Fig. 6.

Discussion
This study presents a mechanistic model for conifer 
live fuel moisture content (LFMC) that moves beyond 
traditional correlative approaches with meteorological 
data. It unveils LFMC as an emergent property directly 
derived from established physiochemical parameters. 
This framework integrates current knowledge on the 
drivers of LFMC variation and lays the foundation for 

Fig. 4  Swarm plots of new and old live fuel moisture content for all 
11 conifers sample across the Intermountain Western US in 2022 (N = 
78)

Fig. 5  Pairplot of all measurements of LFMC, LMA, RWC, SAV, and κ across 11 conifers sample across the Intermountain Western US in 2022 (N = 
712). Variables descriptions and units are given in Table 2
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future research by bridging ecophysiology and combus-
tion science in the context of live fuel dynamics.

By incorporating established metrics like relative 
water content, leaf mass area, surface-area-to-volume 
ratios, and maximum water holding capacity, the model 
provides a robust and transparent framework. This 
framework not only integrates current knowledge on 
environmental drivers of LFMC variation; it also lays the 
foundation for future research by bridging ecophysiology 
and combustion science in the context of live fuel dynam-
ics. Ultimately, this novel model paves the way for a more 

comprehensive, pyroecophysiology-based exploration of 
the complex, interdisciplinary factors governing live fuel 
dynamics and flammability globally.

Leaf mass area
Leaf mass area, or its reciprocal specific leaf area (SLA), 
has been measured in plant physiology studies for dec-
ades. Consistently throughout this study, LMA was the 
best single predictor of LFMC variations across conifers. 
LMA alone account for about 90% of the LFMC varia-
tions both within and between species (Tables 6 and 7), 

Table 7  Statistical comparisons of modeling and predicted LFMC for each model variant (Table 3) calculated using seasonal data from 
11 Intermountain US conifer species

Shaded rows show the top 3 best model fits based on the highest r2 of the 1:1 line and the lowest MAE

Fig. 6  Performance of mechanistic live fuel moisture model variant 5 for 11 tree species across the Intermountain Western US. This model uses 
only time-varying LMA and RWC with fixed SAV and κ by species and foliage age class from Table 5. This model variant adequately captures LFMC 
variations across all species while remaining sufficiently general to promote potential testing and application across a range of plant functional 
types
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highlighting its dominance in the seasonality of LFMC. 
LMA variations have been shown to capture the complex 
dynamics of leaf economics and are strongly linked to leaf 
construction cost, leaf longevity, photosynthetic capacity, 
and suite of other plant traits (Reich et al. 1997). Other 
LFMC dynamics studies have also found that LMA is a 
strong predictor of LFMC variations (Nolan et  al. 2018, 
2022; Griebel et  al. 2023). Leveraging LMA/SLA allows 
us to better understand LFMC variations in the context 
of global distributions of plant leaf morphological traits 
and thus deepens our understanding of how LFMC might 
vary across plant functional types or biomes (Reich et al. 
1997) and it may also help us understand linkages to key 
ecological traits such as leaf lifespan, foliar nitrogen con-
tent, and net photosynthetic rates (Lambers and Poorter 
1992; Reich et al. 1997).

Additionally, LMA is a metric of fuel availability per 
unit crown volume and leaf area. As LMA increases, 
the amount of fuel per unit leaf area increases because 
canopy biomass (fuel) can be estimated from LMA if the 
Leaf Area Index (LAI) of the plant is known (Fang et al. 
2019). More work is needed to better characterize LMA 
differences across species or fuel types but our mechanis-
tic model is a first step towards linking important physio-
logical plant characteristics to factors that may influence 
the burning rate and/or fire behavior of a particular spe-
cies at a given point in space and time.

Relative water content
Relative water content is a very common and easy-to-
measure metric of physiological water stress in plants 
(Martinez-Vilalta et al. 2019) and it has been measured 
for over 70 years (Weatherley 1950). It can character-
itize, for example, total cell relative water content below 
75% severely inhibits photosynthesis and protein pro-
duction (Lawlor and Cornic 2002). RWC at the turgor 
loss point (TLP) is more consistent than the leaf water 
potential at TLP (Bartlett et  al. 2012), suggesting that 
studies exploring relationships between leaf water 
potential at turgor loss and live fuel moisture dynam-
ics may also benefit from using RWC (Pivovaroff et al. 
2019; Boving et  al. 2023; Nolan et  al. 2018). Finally, 
RWC is strongly related to leaf water potential which 
is know to influence a variety of physiological processes 
such as stomatal conduction. Ultimately, RWC captures 
periods of plant stress, thus making it an important 
component of a model meant to capture the response 
of live fuels to drought.

One challenge we found with RWC was an occa-
sional potential for the foliage samples to over-saturate, 
requiring us to filter the data over a "valid" range of val-
ues greater than 75%. This over-saturatation could be 

caused by the submersion method we used for rehydra-
tion. Arndt et al. (2015) found that the choice of rehy-
dration methods could affect the final measured RWC 
value and they suggested that standing the foliage base 
in water or floating them could result reduce the chance 
of over-saturation and the resulting uncharacteristically 
low RWC values we observed in some samples. Clausen 
and Kozlowski (1965) suggest some an effective, stand-
ing rehydration method for conifer that may reduce or 
eliminate oversaturation and subsequent unrealisitcally 
low RWC values. Future work should explore these 
standing rehydration techniques to help reduce poten-
tial error sources and provide robust seasonal measures 
of water stress.

Surface area to volume ratio
Leaf surface area to volume ratio (SAV or some-
times SVR in literature) is also an important leaf trait 
that varies based on the plants growing environment. 
Research has found that SAV can be characterized by 
the availability of light, water, nutrients, and carbon 
and thus SAV, similar to LMA, is an emergent property 
of a plants environment (Roderick et  al. 2000). Fur-
ther, SAV/SVR is also the reciprocal of "characteristic 
length" commonly used in combustion research to cal-
culate the Biot, Nusselt, and Reynolds numbers (Berg-
man et al. 2011). Biot numbers, for example, are often 
used to assess the validity of different types of solu-
tions to model transient heat transfer. SAV has been an 
important component of wildland fuel measurements 
for over 50 years (Brown 1970) and it used to charac-
terize fuels for wildland fire behavior models such the 
Rothermel fire spread model (Rothermel 1972) as well 
as CFD-based wildfire simulators such as FIRETEC 
(Linn et  al. 2002), the Wildland Urban Interface Fire 
Dynamics Simulator (WFDS) (Mell et  al. 2007), and 
newer models such as Quic-FIRE (Linn et al. 2020) and 
QES-Fire (Moody et al. 2022). Thus, SAV is a property 
that is closely linked to form and function of plants 
across environmental gradients as well as the thermal 
heat behavior, making it an ideal variable to capture in a 
mechanistic description of live fuel dynamics.

Implications for improved field sampling of live fuel 
moisture content
Historically, field measurements of live fuel moisture 
content have been used to infer potential seasonal shift 
in expected fire behavior (Dennison et  al. 2008). A tre-
mendous effort has been put forth to measure LFMC 
across many global species (Yebra et  al. 2019, 2024). 
Our work suggests that measuring LFMC alone may be 
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insuffient to characterize the resulting seasonal changes 
in live fuel water content and biomass and, subsequently, 
live fuel flammability. We observed that the overwhelm-
ing majority of LFMC variations could be explained by 
changes in foliar biomass and not changes in foliar water 
content. Additionally, the same LFMC value could be 
derived from different combinations of RWC and LMA. 
Therefore, it is important to consider the implications 
of the work presented here in the context of LFMC field 
sampling programs. Our protocols were designed to be 
relatively straightforward to perform in the laboratory. 
For conifers, if median SAV and κ values and a conver-
sion from projected to all-sided leaf area exist for a given 
species, then samplers would only weigh live fuel sam-
ples fresh, snap a digital planar image of the sample, and 
rehydrate the sample to obtain a turgid mass for RWC 
determination. When combined with oven drying of the 
sample, it would yield sufficient information to calculate 
both LMA and RWC. If SAV, κ , or the area scalar values 
are not available for a given species in the literature, they 
can be measured using a single set of foliar samples dur-
ing the middle of the growing season by following the 
methods presented above. Future work should explore 
ways to streamline this field sampling to provide metrics 
that more completely describe live fuel dynamics while 
not adding much additional work to field sampling efforts 
that are common across the world.

Scaling live fuel moisture content using remote sensing
There is considerable interest in leverage remote sens-
ing to map and scale live fuel moisture content across 
landscapes (Danson and Bowyer 2004; Yebra et  al. 
2019). These data are used to constrain landscape-scale 
fire behavior simulations to better assess real-time risk 
(García et al. 2020). A mechanistic model similar to the 
one presented here was described by Yebra et al. (2013) 
using metrics common to remote sensing such as equiv-
alent water thickness (EWT) and dry matter content 
(DMC). Hunt et  al. (1987) explored the use of infrared 
reflectance to measure the relative water content and 
proposed the development of a Leaf Water Content 
Index. Additionally, some work has been done to relate 
spectral reflectance to specific leaf area (Lymburner et al. 
2000). Recent work has focused on the decoupling of 
water mass and dry mass dynamics to improve predic-
tions of live fuel moisture content with remote sensing 
(Rao et al. 2020). A hybrid approach that explores addi-
tional scaling parameters such as SAV and κ may signifi-
cantly improve those remotely sensed estimates of LFMC 
and aligning physiological measurements such as LMA 
and RWC with remote sensing-based proxies like EWT 
and DMC stands to significantly improve our ability to 
map important live fuel variations across the planet. This 

would ultimately aid in more complete understanding of 
the factors to drive live fuel flammability across global 
ecosystems and it would allow better spatial and tempo-
ral monitoring of fuel dynamics that could link to real-
time estimates of wildfire risk.

Ecophysiologically‑based process modeling
An overarching objective of this study is to provide a 
framework for the decomposition of live fuel moisture 
content into variables that are physiologically-relevant 
and that can be modeled across species, space, and time. 
Terrestrial ecosystem models that merge ecosystem 
dynamics with landscape wildfire disturbances, such as 
FATES (Koven et  al. 2020), BIOME-BGC (White et  al. 
2000), or FIRE-BGC (Keane 1996), among many others, 
would benefit from the implementation of this mechanis-
tic live fuel moisture model. These models commonly use 
LMA or SLA to describe leaf form and they also model 
seasonal variations in leaf water potential ( ψl ) which 
can be used to estimate RWC using a pressure-volume 
curve. This would allow LFMC to be modeled histori-
cally and forecast using future climate scenarios. To do 
that, we must consider each of the model variables in the 
context of their driving processes. A conceptual figure of 
these variations is shown in Fig. 7. The RWC is primarily 
controlled by changes in the leaf water content and these 
changes are a balance of water uptake from the soil and 
water lost through transpiration. LMA variations are ulti-
mately controlled by the uptake of carbon and conversion 
to non-structural carbohydrates through photosynthe-
sis and the allocation/translocation of these resources 
throughout the plant. Ultimately, a model that captures 
the dynamics of non-structural carbohydrate (NSC) 
pools, the development of new foliage and the allocation 
of key elements, such as nitrogen could be coupled with 
a leaf water balance model to suitably model LFMC over 
space and time and across species. This type of LFMC 
modeling improvement could facilitate more accu-
rate predictions of vegetation response to climate and 
disturbance.

Fire behavior modeling
Each mechanistic model input is an important compo-
nents to fire behavior models. A recent synthesis has sug-
gested that a mechanistic approach to live fuel dynamics 
characterization can improve our ability to model fire 
behavior and fire effects (Dickman et  al. 2023). Most 
fire behavior models used fuel moisture content as an 
direct input, along with fuel geometry descriptors such 
as surface area to volume ratio, particle density and fuel 
amount, or loading (Linn et  al. 2002; Mell et  al. 2007; 
Rothermel 1972). The mechanistic model can provide 
key fire behavior model inputs while also keep the input 
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parameters in balance. Ultimately, the SAV, LMA, and 
computed LFMC from the mechanistic model can be 
used as direct inputs to fire behavior models. Also, other 
characteristics can be derived, such as particle density, 
with is simple the product of LMA and SAV and seasonal 
density variations have been used to explore the impact 
of canopy fuel variations on potential fire behavior (Jolly 
et  al. 2016). LMA can be used directly with plant char-
acteristics such as Leaf Area Index (LAI) to compute the 
canopy fuel load. As mentioned above, canopy foliar bio-
mass can be computed as the product of LAI and LMA 
when LAI is corrected for foliar orientation or fractional 
cover (Bahrami et al. 2022). Ultimately, this mechanistic 
live fuel moisture model can ensure that fire behavior 
model inputs are balanced and that they represent the 
combined physio-chemical characteristics of live plants 
at any given time during their lifecycle.

Conclusion
Here we have presented a novel, pyroecophysiology-
based model of live fuel moisture content. The model 
blends plant ecophysiology and combustion traits to 
adequately characterize seasonal and inter-species varia-
tions in moisture content across a wide cross section of 
Intermountian Western US conifers. Ultimately, this new 
model harmonizes decades of disparate live fuel moisture 
research and lays a foundation for more fruitful live fuel 
dynamics explorations worldwide.
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