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Abstract

Background Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by system-
atically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape

in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises sub-
stantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed
fire escapes is to explore patterns in the historical prescribed fire records. This study investigates the spatiotemporal
patterns of escaped prescribed fires in California from 1991 to 2020, offering insights for resource managers in devel-
oping effective forest management and fuel treatment strategies.

Results The results reveal that the months close to the beginning and end of the wildfire season, namely May, June,
September, and November, have the highest frequency of escaped fires. Under similar environmental conditions,
areas with more records of prescribed fire implementation tend to experience fewer escapes. The findings revealed
the vegetation types most susceptible to escaped prescribed fires. Areas with tree cover ranging from 20 to 60%
exhibited the highest incidence of escapes compared to shrubs and grasslands. Among all the environmental condi-
tions analyzed, wind speed stands out as the predominant factor that affects the risk of prescribed fire escaping.

Conclusions These findings mark an initial step in identifying high-risk areas and periods for prescribed fire escapes.
Understanding these patterns and the challenges of quantifying escape rates can inform more effective landscape
management practices.

Keywords Escaped prescribed fires, Fuel treatment, Wildfire

Resumen

Antecedentes Las quemas prescriptas juegan un rol critico en la reduccién de la intensidad y severidad de futuros incen-
dios, haciéndolo mediante el consumo amplio y sistematico de la vegetacion (biomasa) acumulada. Mientras que la proba-
bilidad de escapes de quemas prescriptas en rodales y otros tipos de vegetacion es muy baja, sus consecuentes impactos,
particularmente cuando derivan en grandes incendios, causan una gran preocupacion. La mejor manera de entender este
intercambio entre la reduccion del riesgo de incendio y el escape de quemas prescriptas es mediante la exploracion de

los patrones en los registros histéricos de quemas prescriptas. Este estudio investigd los patrones espacio-temporales de
escapes de fuegos de quemas prescriptas en California desde 1991y 2020, ofreciendo indicios a los manejadores de recur-
sos para que puedan desarrollar un manejo efectivo de los bosques y estrategias de tratamientos para la vegetacion.
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Resultados Los resultados revelan que los meses cercanos al comienzo o a la finalizacién de la estacion de fuegos,
en este caso mayo, junio, setiembre y noviembre, tienen la mayor frecuencia de escapes de fuegos. Bajo las mismas
condiciones ambientales, dreas con mayores registros de implementacion de quemas prescriptas, tienden a tener
menos escapes de fuegos. Los resultados revelan los tipos de vegetacion mas susceptibles al escape de quemas.
Areas cuya cobertura forestal variaba entre 20% a 60% exhibieron la mayor incidencia de escapes de fuegos compara-
das con arbustales o pastizales. Entre las condiciones ambientales analizadas, la velocidad del viento aparece como el
factor predominante que afecta el riesgo de escape de una quema prescripta.

Conclusiones FEstos hallazgos marcan un paso inicial en la identificacion de areas de alto riesgo y periodos de escape
del fuego en quemas prescriptas. El entendimiento de estos patrones y los desafios que implican la cuantificacion de
las tasas de escape pueden orientarnos sobre como implementar practicas de manejo mas efectivas.

Introduction

The number of annual wildfires, the total burned area,
and property damage have reached unprecedented lev-
els in the past decades, reflecting a new wildfire regime
(Dennison et al. 2014; Li and Banerjee 2021; Shuman
et al. 2022). The change is caused by a combination of
climate change, fuel accumulation, and forest densifica-
tion due to fire exclusion, forest management practices,
and insufficient fuel treatments that adequately replace
the role frequent fire once had (Miller et al. 2020). Veg-
etation management is one of the primary mitigation
measures that aim to proactively prepare the landscape
for the inevitability of wildfires (Jazebi et al. 2019). Veg-
etation management can include a wide variety of activi-
ties, such as constructing fuel breaks, prescribing fires,
and mechanical thinning (Prichard et al. 2020; Baijnath-
Rodino et al. 2023; Banerjee et al. 2020; Banerjee 2020).
Although mechanical thinning can be effective on its
own if applied properly, prescribed (Rx) fire-alone or in
conjunction with a mechanical treatment-is widely con-
sidered a relatively fast and highly effective treatment for
reducing the severity of wildfires (Prichard et al. 2021;
Ryan et al. 2013).

From an ecological standpoint, periodic low-intensity
prescribed burning in fire-adapted forested landscapes
(such as western coniferous forests) can reduce and
maintain low amounts of surface and ladder fuels in for-
ests (Keane 2008). They are frequently used in meadows,
grasslands, and coniferous forests (Dyer 2002; Brad-
stock et al. 2006; Ryan et al. 2013; Engber et al. 2011),
when conditions of weather and fuel moisture create safe
burn conditions (Dether and Black 2006). These periods
are called burn windows. Because they can occur infre-
quently and for a short duration during the course of a
year, predicting their occurrence and being ready to con-
duct burns is pivotal in advancing the use of prescribed
fire (Baijnath-Rodino et al. 2022; Striplin et al. 2020; Chi-
odi et al. 2019). Besides its effectiveness in reducing wild-
fire severity, prescribed burning also has the advantages
of low economic cost and promoting fire-adapted flora

(Finney et al. 2007; Faivre et al. 2016; Ryan et al. 2013).
However, given the extensive backlog of untreated for-
ests, it will take decades of fuel treatments carried out at
faster rates and on larger spatial scales to have impacts
at the ecosystem level (North et al. 2012; Kolden 2019).
In 2020, the US Forest Service and the State of California
announced a joint state-federal initiative to increase the
annual scale of fuel vegetation treatment to one million
acres (404,686 hectares) by 2025. This initiative involves
expanding the use of prescribed fires as a key strategy
and will be implemented by California state agencies
such as CAL FIRE and other state entities, in partnership
with the US Forest Service (Hazelhurst 2020).

Despite the necessity of prescribed fires to reduce
the risk of wildfires in the western United States
(Kolden 2019), their use has been limited in both speed
and scale, due to several policy and operational barri-
ers (Schultz et al. 2019; Ryan et al. 2013). A perceived
obvious risk is the potential for escape, where ignitions
occur outside the designated burn area during pre-
scribed fires, becoming too large or difficult for on-site
equipment and personnel to manage, thus necessitat-
ing external resources for suppression. Prescribed fire
escapes are generally considered rare events; according
to the 2022 National Prescribed Fire Program Review
by the Forest Service Chief, the estimated escape rate is
approximately 0.16% among the 4500 prescribed fires
conducted annually across the United States by the For-
est Service (USFS 2022a). However, even a small num-
ber of escapes possess the potential to escalate into large
wildfires, posing significant threats to nearby communi-
ties and properties (Kobziar et al. 2015; Quinn-Davidson
and Varner 2011). Escapes can lead to the suspension of
prescribed fire programs across the country, increasing
the backlog of needed treatments and increasing the dif-
ficulty of approving future burn plans (York et al. 2020).
The Calf Canyon prescribed fire, for example, was con-
ducted in January 2022 and subsequently reignited and
escaped in April 2022. The Las Dispensas prescribed fire
conducted on April 6, 2022, escaped and became the
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Hermits Peak wildfire and joined the Calf Canyon wild-
fire on April 22, resulting in one of the largest wildfires
in New Mexico’s recorded history. The suppression of the
340,000-acre (137,600 hectares) Hermits Peak Fire cost
approximately 100 million USD (USES 2020). Almost
simultaneously, another prescribed fire about 300 km
south of the Hermits Peak Fire crossed the control line
and escaped as the Overflow Fire. Despite being rapidly
brought under control, approximately 1900 acres (769
hectares) were burned in total (NewMexicoFireInforma-
tion 2022). The US Forest Service then issued a “90-day
prescribed fire review” on 22 May 2022, suspending all
prescribed fire activities (USES 2022b) pending further
scrutiny. Escaped prescribed fires that result in moratori-
ums in their broad-scale application have the potential to
defeat their intention-to reduce wildfire severity and eco-
system restoration, among others. Thus, understanding
the historical trends in escaped prescribed fires is crucial
for quantifying risks of escape events as well as strategi-
cally implementing future prescribed burns (Waldrop
and Goodrick 2012).

Accurate quantification of the frequency and rates
of prescribed fire escapes is restricted by limitations in
monitoring data quality, particularly concerning pre-
scribed fires that occur on private land, such as crop fires.
Although the major large-scale escape events from pre-
scribed fires on private land would be documented as
wildfires in databases such as the Fire Perimeter database
released by the California Department of Forestry and
Fire Protection (CAL FIRE) (FRAP 2018), there is an evi-
dent gap in systematic recording for prescribed fires that
do not escape on private land. This deficiency can lead
to an overestimation of escape rates. In addition, while
detailed reports on individual escape events provide val-
uable insight into local prescribed burn practices, their
broader applicability is limited. There is an urgent need
for a continuous and systematic analysis of temporal
and spatial patterns as well as subsequent trends in pre-
scribed fire escapes. However, existing statistics heavily
rely on questionnaires and interviews (Miller et al. 2020;
Weir et al. 2019), proving insufficient to establish a com-
prehensive quantitative understanding of the true extent
of prescribed fire escapes.

To overcome the limitations of existing data we propose
to conduct a meta-analysis encompassing diverse data-
sets and methodologies. By synthesizing data from mul-
tiple sources, including official fire datasets, government
reports, and social sensing data, we aim to aggregate
and analyze a comprehensive dataset that spans tempo-
ral and spatial scales. Leveraging a meta-analytic frame-
work will allow for a better understanding of prescribed
fire escape risks, providing valuable insights for resource
managers and policymakers to enhance fire management
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strategies and mitigate potential impacts. The exploration
of the indicators for potential escape events from pre-
scribed fires will have significant importance to resource
managers across different jurisdictions. To highlight the
need for improved data and to provide new methods to
quantify prescribed fire escape risk, we ask the following
questions about prescribed fires using currently available
data: (1) Are there seasonal or monthly trends of escaped
prescribed fires in California? (2) What are the spatial
characteristics of escaped prescribed fires? (3) Given that
the ignition and spread of wildfires are collectively influ-
enced by three influential dimensions-weather, topogra-
phy, and fuel-which environmental factors are associated
with prescribed fire escapes? This study has the potential
to serve as a model for similar assessments, emphasizing
the critical role of enhanced data quality and novel meth-
odologies in understanding and mitigating prescribed
fire escape risks.

Material and methods
Data
Escaped prescribed fires
The collection of prescribed fire data involved informa-
tion from two databases: the California Department
of Forestry and Fire Protection (CAL FIRE), including
records dating back to the early 1900s, and the Moni-
toring Trends in Burn Severity (MTBS) dataset, includ-
ing records from 1984 onward. Considering recent
advancements in data recording integrity and systematic
approaches, we selected the data spanning the preceding
three decades, specifically from 1991 to 2020. All of these
data sets provide comprehensive details, including the
location of the fire, the ignition date, and the final burned
areas. However, these databases mainly recorded fires
that were planned and conducted by government or fire
management agencies, with incomplete records of small
prescribed fires conducted on private lands. After elimi-
nating duplicate records, the total number of prescribed
fire records in California from 1991 to 2020 was 4679.
Escaped prescribed fire records that do exist in Cali-
fornia are mainly available from CAL FIRE. CAL FIRE
has two programs that keep track of prescribed fire
escapes: Fire and Resource Assessment Program (FRAP)
(FRAP 2018) and California Incident Data and Statis-
tics Program (CALSTATS). The Fire Perimeter project
of FRAP collects fire perimeter data from the Bureau
of Land Management (BLM), CAL FIRE, National Park
Service (NPS), and USFS and builds an ESRI ArcGIS
file geodatabase. The fire history dates back to 1954 and
includes 19 distinct wildfire causes, each classified by a
specific code ranging from 1 to 19. Among these, cause
code 18 denotes “escaped prescribed fires” CALSTATS
collects fire records throughout the state of California
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using the National Fire Incident Reporting System
(NFIRS) (CALSTATS 2021). Records can be obtained
in the format of spreadsheets by submitting a request,
which includes information on the types, causes, and
locations of fires. We requested the fire records with
NFIRS Incident Type codes 140—143, which means wild-
land fires, and 561, which means unauthorized burning.
Then, the escaped prescribed fires were filtered by NFIRS
Code 75, that is, agricultural or land management burns,
including prescribed burns. As the primary focus of this
study is to explore patterns related to escaped prescribed
fires, records of prescribed fires carried out on agricul-
tural lands were retained, considering the potential risk
of their escape leading to large fires in wildland areas.
During the time period of 1991 to 2020, there were 74
escaped prescribed fire records in the FRAP database
and 239 records in the CALSTATS database, including 3
recorded escapes that are duplicates. Analyses conducted
on the dataset excluding agricultural fires can be found
in the Supplementary Information (SI) (8. Results - Spati-
otemporal Patterns excluding agricultural fires).

Furthermore, with the increasing presence of social
media, social sensing data have also become an impor-
tant source of recording and complementing data out-
side the official databases. Wildfire Today is a website
that collects and releases wildfire news in real time
(Wildfire Today 2024). The data from Wildfire Today
supplement and validate the official fire datasets. Their
information is compiled from government reports,
social media sources, guest writer submissions, and fire
monitoring dashboards. For example, the escaped fire
recorded in Victorville, California, on March 31, 2015,
was not found in either of CALFIRE’s databases. In
addition, their records of independent fire events have
become increasingly comprehensive and complete in
recent years. We collected the escaped prescribed fire
news and reports from the Wildfire Today archives as an
external data source. There are 13 records that point to
actual escaped prescribed fires from 2008, the year the
website was developed, to 2020.

To organize the data from different databases, we
extracted the fire start date, fire name, and location
information from all three databases, identified the
data source, and sorted them together according to the
fire start date. After removing duplicates, there are 310
escaped prescribed fire records with accurate locations,
represented by coordinates of the centroid point of fire
perimeters, in California from 1991 to 2020, about 10
escaped per year.

Environmental variables
The climate and topography data were extracted mainly
from the spatial climate dataset Parameter-Elevation
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Regressions on Independent Slopes Model (PRISM)
(PRISM 2020). These environmental variables were
selected based on parameters relevant to determining the
burn window for prescribed fires, specifically wind speed,
maximum vapor pressure deficit (VPD), maximum tem-
perature, and precipitation, which contribute to escape
events (Baijnath-Rodino et al. 2022). Multi-year (2007—
2013) Annual Average Wind Speed in meters per second,
at 10 m above surface level, was extracted from the Wind
Integration National Dataset (WIND) Toolkit, developed
by National Renewable Energy Laboratory. The resolu-
tion above California is 2 km x 2 km (Draxl et al. 2015).
The maps for environmental variables can refer to SI (1.
Data - Environmental Variables).

The Landscape Fire and Resource Management Plan-
ning Tools program uses “plot-level ground-based visual
assessments and Lidar observations,” providing infor-
mation about the percentage of canopy cover of herba-
ceous plants, shrubs, and trees (LANDFIRE 2016). To
investigate which types of vegetation are related to the
highest escape risk, the Fuel Vegetation Cover (FVC) (SI
Fig. S1(g)) of the program with a resolution of 30 m was
overlayed on the escape record to calculate the spatial
correlation. Additionally, the National Vegetation Clas-
sification (NVC) (SI Fig. S1(h) with the same resolution
was used to further determine the dominant plant spe-
cies in the prescribed fires that escape.

Methods

Temporal analysis

To analyze the temporal variation of the escaped pre-
scribed fires, the total annual, seasonal, and monthly
counts and the burned area were plotted against time.
This study adopts the meteorological seasons used in
California, with December, January, and February (DJF)
representing winter; March, April, and May (MAM) rep-
resenting spring; June, July, and August (JJA) represent-
ing summer; and September, October, and November
(SON) representing fall. Escaped prescribed fires with
burned areas exceeding 5000 acres (2023 hectares) were
considered extreme events, as they could significantly
skew the results of burned area analyses by creating nota-
ble peaks in the months and seasons when they occurred.
Therefore, these extreme events were treated as outliers,
plotted as individual points in the figures, and excluded
from the temporal analysis of total burned area. Statistics
that include these extreme events are available in SI (2.
Methods - Outliers Detection and Treatment).

The direct calculation of the probability of prescribed
fire escape over the last 30 years, using escaped records
divided by total prescribed fires, is problematic due to
differences in data sources. Specifically, not all prescribed
fires have records indicating whether they escaped, and
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some escaped events may not have been recorded in the
database. This discrepancy has a more significant impact
on the burned area than on fire counts, especially when
considering extremely large escaped fires (outliers). To
address this issue and take total prescribed fire counts
into account when analyzing the temporal patterns of
escaped prescribed fires, Bayesian hierarchical models
were used to investigate the occurrence probability and
mean occurrence counts on a monthly basis. Specifi-
cally, the binomial distribution is apt for characterizing
the count of successes in a sample drawn from a popula-
tion, and the Poisson distribution is applied in describing
the probability of a particular number of events taking
place within a fixed interval of time or space. Therefore,
we opted for the Binomial-Beta model (Wilcox 1981) and
the Poisson-Gamma model (Foster and Bravington 2013)
to independently estimate the occurrence probability
and occurrence counts of escaped prescribed fires each
month. The detailed description and equations can be
found in SI (3. Methods - Bayesian Models).

Spatial analysis

The analysis of spatial patterns was initiated with a com-
prehensive spatial randomness test (CSR) designed to
delineate the first-order property of point processes
Wiegand and A. Moloney (2004). This test measures the
spatial randomness of escaped prescribed fires, and the
x? (chi-squared) statistic serves as a metric of the varia-
tion between observed and expected point distributions
in the absence of any relationship between them in this
test. The second-order property of point processes, based
on pairs of points, is used to characterize how the spa-
tial point pattern deviates from complete spatial random-
ness (cluster or repulsion). The G-function, K-function,
and L-function (Ripley 1976, 1977; Diggle 2003) are three
common tools to measure how the spatial point pattern
deviates from a homogeneous Poisson distribution, and
their equations are detailed in SI (4. Methods - Com-
plete Spatial Randomness Test; 5. Methods - Identifica-
tion of Clustering or Repulsion Patterns). In general, if
the estimated functions based on escaped prescribed fire
records (observations) consistently exceed the theoretical
distribution, it indicates that the observed point patterns
contain more points than expected under the theoretical
homogeneous Poisson distribution. This suggests that the
spatial distribution of escaped prescribed fires is clus-
tered. The confidence intervals of the theoretical Poisson
distributions for the G, K, and L functions were calcu-
lated by Monte Carlo simulation (Genton et al. 2006;
Turner 2009) with 99 iterations, to avoid randomness in
the single theoretical distribution estimation. As long as
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the observed distribution falls within the envelope of the
confidence interval, it is completely spatially random.

As a reference for interpreting the spatial patterns of
escape events, the spatial intensity function of the occur-
rence of escape events, which describes the distribution
of escape events density, was estimated by non-paramet-
ric kernel estimates (Kuter et al. 2011; Liu et al. 2010).
The choice of KDE is made because this method only
looks at the point patterns themselves, without covari-
ables; besides, it is non-parametric which means it does
not need to include the model of the underlying process.
Here, the mean squared error (MSE) between the ker-
nel estimator and the actual counts was used to select
the bandwidth, for which the optimal bandwidth should
minimize the MSE, and the optimal value is 0.17.

To establish the relationship between environmental
variables and escaped prescribed fire incidents, logis-
tic regression analysis was employed. As a form of gen-
eralized linear regression, logistic regression facilitates
the dichotomization of dependent variables based on
multiple independent attributes (Hosmer Jr. et al. 2013;
De Vasconcelos et al. 2001). Environmental conditions
corresponding to each escaped prescribed fire point were
extracted and incorporated into the logistic regression
model. Subsequently, through the model training pro-
cess, the weights of individual variables were determined,
indicating the influence of various meteorological and
topographic factors on the occurrence of escape.

Spatial point clusters were analyzed in ArcGIS Pro
using three methods: density-based clustering, hot spot
analysis, and multivariate clustering. Density-based
clustering aims to identify densely concentrated points
distinguished from lower-density or vacant regions.
Applying the Ordering Points to Identify Clustering
Structure (OPTICS) technique (Agrawal et al. 2016),
this method detects clusters considering the spatial
distribution of points and their distances to a specific
number of neighbors. The minimum feature in each
cluster was set to 4.

The Hot Spot Analysis tool calculates the Getis-Ord
Gi* statistic for each feature in a data set to determine
whether local patterns exhibit significant deviations from
global features (Getis and Ord 1992; Ord and Getis 1995).
Results from this analysis provided z-scores and p-values,
which served as indicators of spatial clustering of either
high or low values. Higher z-scores that are statistically
significant denote intensified clustering of high values
(hot spots), whereas lower statistically significant nega-
tive z-scores suggest notable clustering of low values
(cold spots).

The multivariate clustering method applied the
K-means algorithm in an attempt to identify clus-
ters characterized by high intra-cluster similarity and
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The details and equations of above analyses were pro-
vided in SI (6. Methods - Kernel Density Estimation).

significant inter-cluster differences (Jian 2009; Hinde
et al. 2007). The selection of cluster numbers was
attempted with 3, 4, and 5 clusters, ultimately deter-
mining 4 clusters as optimal due to its effective sepa-
ration of clusters with distinct characteristics, all while
maintaining minimal complexity.

Results

Temporal patterns

Due to limitations in the existing prescribed fire data-
sets, accurately determining the proportion of escapes

A\
@) 800 E==1Burned Area of Fires r@ 1 120
2 600 ©— Counts of Fires ] o
= Outliers 1 90 §$
& 400 } s 8
5 r 1% £3
@] -5 ©
g ’700 - .—l '6' ISI IBI A r\ A g
3 |—| o) O » o—2 = 30 %3
: plemaa L i 22
0 o'ﬁz!g!:a!a.o.wuo..o.!aﬂﬁllﬂ [l r||—||_|||r01 0o F
1991 1993 1995 1997 1999 2001 2003 20{)75 2007 2009 2011 2013 2015 2017 2019
ear
(b) 8ot T2
@ /o)
u-u.gi) 1 10 § ~
e
aé 60 g Jg <8
g3 EE
52 40 | 16 EE
O @ =S
g o o 14 82
© 20 F 00— @—g =2
e 0 | | 12 &7
0 _Q__/,)_o_o_@_&lﬁL.{ﬁ_f.)._E_.L Mo 0—o IZI o e - 0
1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
Year
© @ (e) '
21 F d a o) 1 167 S ORx Fire
2000 r(\— 400°g 120 g| o280 ®Escaped Rx Fire
el 8 & 8
L 4 3202 & IR
g 1600 3202 | o | 1028 S0}
=] 2|8 o 2| §
& 1200 [ o {2408 | <
5 g§|& 60 f © ? 18 £/ 140 |
2 800 | © o { 1602| 2 <| E
=] -] 2l A
= 2| gl
S 400 } 18 2o [ 1428 7f
11, (m
0 0 2|lo o 0 &< o
DIF MAM JJA  SON DIF MAM JA  SON DIJF MAM JJA SON
Season Season Season
(D @ (g) N s (h) ORx Fire
1000 f { 250% 60°F 2 BEscaped Rx Fire
- 2 ® 2]~ 320 }
& $ 50 F R 112 8(%
, 800 b { 2002 | & ElE
< & é {110 g[S
s 2% 40t o} 2lg 20T
& 600 | o] 1508 | & o P18 |2
G 09 30 } @ 2
° | glg p el d |6 B|E 160 |
g 400 (g y o A 1002 | < o <2
] o g2 207 o 3
O o g8 -0 e 14 €|& 30
(A L
o 2 2|
, ﬁ“ 0o 2 0 nllll ” anmi, 2 0 I:L
1212 3 4567 8 91011 1212 3 456 7 8 91011 121 2 3 4 5 6 7 8 9 1011
Month Month Month
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in prescribed fires is a challenge. Consequently, Fig. 1
shows the side-by-side comparison of the 30-year tem-
poral patterns of annual, seasonal, and monthly counts of
prescribed fires and escaped prescribed fires, along with
their associated burned areas from 1991 to 2020.

The annual trends of both prescribed fires and escaped
prescribed fires were significantly influenced by the con-
sistency of the record sizes. In 1991, only 36 prescribed
fires were recorded, covering a total burned area of
22,810 acres (9230 hectares). This number rose consider-
ably in 2005, with 369 prescribed fires recorded, resulting
in a total burned area of 64,240 acres (26,000 hectares).
In 2019, the number of prescribed fires surpassed
700, covering more than 100,000 acres of burned area
(Fig. 1a). Over the past three decades, 52.58% of escaped
prescribed fires (163 out of 310) occurred in cropland.
The risk of escape for prescribed fires related to agricul-
tural use is greater than that for forest management, as
only 11.35% of prescribed fires (531 out of 4,679) were
conducted in cropland.

The triangular markers in Fig.1b denote three escaped
prescribed fires characterized by exceptionally large
burned areas (> 5000 acres, or 2 hectares): the Weinstein
Fire in 2000 (8284 acres or 3352 hectares), the Sierra
Fire in 2006 (10,592 acres or 4286 hectares), and the
Big Meadow Fire in 2009 (7553 acres or 3056 hectares).
The transition of prescribed fires into extreme wildfires
is influenced by a combination of environmental fac-
tors, fire management practices, and occasional human
actions. While these extremely large escaped prescribed
fires are influenced by the same environmental factors
as smaller escaped fires, their significant burned areas
would heavily skew the results of the temporal analysis.
We chose not to exclude them entirely, as these large
events are often the ones that bring public attention to
prescribed fire escapes. Instead, we treated them sepa-
rately, excluding them from the general statistical analysis
while representing them as individual markers to high-
light their significance (Fig. 1d, g).

Prescribed fires exhibit a prominent peak during
autumn (SON) in both counts and total burned area
(Fig. 1c). Looking at individual months, October emerges
as the month with most implementation of prescribed
fires (Fig. 1f). Moreover, May, June, and November also
experience intensive prescribed fire implementations (>
500 fires), with prescribed fire counts of 522, 519, and
587, respectively. The average burned area of a single
prescribed fire is the largest during the summer (JJA)
(Fig. le). Apart from the summer period, January, Feb-
ruary, and October notably have larger average burned
areas (> 200 acres or 81 hectares) compared to other
months (Fig. 1h). Although the implementation of
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prescribed fires may be less frequent during January and
February, the scale of each implementation is substantial.

During the past 30 years, escaped prescribed fires have
predominantly occurred during spring (MAM), with
May experiencing the largest total burned area if outli-
ers are disregarded (Fig. 1d, g). From January to May,
the count of escape records steadily increases, while the
total burned area remains relatively stable, except for a
notable increase in May. As June arrives, both the total
counts and burned areas of escaped fires start to decline
due to the beginning of the wildfire season and the adop-
tion of more cautious prescribed fire implementation.
However, from July onward, the total counts of escapes
show a second sustained upward trend, with relatively
higher burned areas observed in September and Novem-
ber. Notably, the average single escaped fire burned area
is significantly high in May and September, followed by
June and November, corresponding to months close to
the beginning and end of the wildfire seasons.

Temporal statistics that consider only fires in natural
vegetation, excluding agricultural burns are provided in
SI (Fig. S5). The exclusion of agricultural fires from this
analysis does not significantly affect the annual, seasonal,
or monthly temporal patterns observed for both pre-
scribed fires and escaped prescribed fires. The sole nota-
ble change is a significant increase in the average burned
area of escaped prescribed fires occurring in May, June,
and September.

The occurrence probability of escaped fires in each
month over the last three decades by decade was ana-
lyzed using the Binomial-Beta Bayesian model (Fig. 2d—
f). The points represent the estimated mean escape
probability in each month. The thicker line represents the
50% posterior credible interval and the thinner outer seg-
ments represent 90% posterior credible interval, indicat-
ing that, given the observed historical data, there is a 50%
and 90% probability that the true estimate lies within the
interval, respectively. The credible intervals of monthly
escape probability from 1991 to 2000 are wide, indicat-
ing high uncertainty, owing to limited data and inconsist-
ent entry frequency and quality. Since 2001, the credible
intervals have become narrower, indicating an improve-
ment in the data integrity of escaped prescribed fire
records.

During the period of 2001-2010, the highest escape
probability occurs in July and August, with consider-
able uncertainty, as these months fall within the wild-
fire season. This pattern remains consistent from 2011
to 2020. From 2001-2010 to 2011-2020, the probabil-
ity of escape occurrence increased in all months while
maintaining similar monthly trends. The most signifi-
cant increases are observed in late winter and spring,
particularly in February, which even becomes a minor
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Fig. 2 Distribution of escaped Rx fire occurrence probability and mean counts in each month across California from 1991 to 2020. The probability
distribution was estimated using the Binomial-Beta model, while the mean occurrence count distribution was estimated using the Poisson-Gamma
model. The points represent the mean value, the thick inner segments represent 50% posterior credible interval and the thinner outer segments

represent 90% posterior credible interval

peak of escape probability. After that, the probability of
escape gradually decreases until June. The mean escape
probability in autumn and winter remains lower than
0.1. While the month with the highest escape probabil-
ity may not coincide with the month having the most
escape records or the largest escaped fire burned areas,
the conclusion that the risk of escape is higher just
before the wildfire season compared to right after the
wildfire season remains valid. Given that fall burns are
executed most frequently (Baijnath-Rodino et al. 2022),
selecting suitable burn windows within this period
becomes essential to mitigate the risk of escapes.
Meanwhile, the mean count of possible escapes in each
month for the past 30 years by decades was analyzed by
the Poisson-Gamma model (Fig. 2d—f). From the first
decade to the last, it is evident that mean counts increase
in all months. The monthly distribution of the mean fire
count in the last decade (Fig. 2f) closely aligns with the
30-year total counts of escaped prescribed fires by month
(Fig. 1g), confirming the rapid increase in escaped fire
records between 2011 and 2020. During this period, a

new peak emerged in the spring, in addition to the exist-
ing autumn peak, which is consistent with the 30-year
seasonal distribution shown in Fig. 1d. This indicates a
significant increase in spring escapes from 2011 to 2020,
making it a major peak by the end of the 30-year period.

Spatial patterns

The results of the Complete Spatial Randomness Test
(CSR) for escaped prescribed fires revealed a p-value of
10~%, indicating that their spatial intensity (i.e., the den-
sity) is significantly non-constant at a significance level
of 0.05. This suggests that the escapes are not randomly
distributed. The estimation of G, k, L functions (refer to
SI Fig. S4) suggests that the spatial distribution of the
escaped prescribed fires is clustered.

The spatial distribution of escaped prescribed fires
can be viewed as a point process (Fig. 3). Evidently, the
escapes were concentrated in northern California and
central California, particularly along the Sierra Nevada
mountains and in the Central Valley. Additionally, there
were notable hot spots of escapes in the southwestern
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Fig. 3 Spatial distribution of escaped prescribed fires in California from 1991 to 2020. Red points represent the locations of escaped prescribed fires,

while county boundaries are shown in grey

corner of California, spreading across the San Bernardino
National Forest and the Angeles National Forest on the
San Gabriel Mountains.

To determine the high-density regions for escaped
prescribed fires, we classified their clusters based on
the distances among individual escape events and their
associated density (Fig. 4). The cluster map was over-
laid with California’s climate divisions and ecoregions
to identify the climate and ecosystem characteristics
associated with each cluster (Fig. 4a, b). Considering
the climate divisions, the two largest clusters were situ-
ated in the middle of the Sacramento Drainage (climate
division 402) and San Joaquin Drainage (climate division
405) basin area. Additionally, three climate divisions
along the coast, namely the North Coast Drainage (cli-
mate division 401), the Central Coast Drainage (climate
division 404), and the South Coast Drainage (climate
division 406), included the majority of the remaining
escaped prescribed fires, exhibiting a moderate cluster
density. Notably, the Southeast Desert Basin contains
the only isolated cluster, located in the Palo Verde Val-
ley and near the Colorado River Indian Reservation. In

the analysis of ecoregions (Fig. 4b), it was found that the
majority of the escaped prescribed fires classified into
six clusters were concentrated in the Central California
Foothills and Coastal Mountains (region 6) as well as the
Central California Valley (region 7). Furthermore, the
Sierra Nevada Mountains (region 5) contained points
on the eastern periphery of the two largest clusters. The
integrated density distribution of escaped prescribed
fires at the state level (Fig. 4c) shows consistent spatial
patterns with Fig. 4 a, b.

Due to the lack of an exact match between the pre-
scribed fire database and the escaped prescribed fire
database, calculating the rate of escape in a specific
region may introduce some bias. To account for the over-
all prescribed fire implementation, a comparison was
made between the hot and cold spots for prescribed fires
and escaped prescribed fires across California (Fig. 4d,
e). Hot and cold spots on the maps indicate whether the
local point pattern is statistically different from the global
features, i.e., it displays more intensity or sparsity. The
initiation of prescribed fires in natural vegetation or agri-
cultural lands were represented using different colors of
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Fig. 4 Spatial distribution of escaped Rx fire across California. The points in (a and b) represent escaped prescribed fire locations, with different
colors representing distinct clusters. A total of 10 clusters were identified, and clusters with the same color, but not adjacent and located far apart,
are considered separate clusters. Varying levels of grey in panels (a) for climate divisions and (b) for ecoregions denote the magnitude of total
escaped prescribed fire counts. Panel (c) depicts the estimation of kernel density for escaped Rx fires; panel (d and e) depict the identification of hot
and cold spots for Escaped Rx fires and Rx fires, respectively. The points indicate the locations of fires, with different colors representing the types

of prescribed fires initiated

points. Both maps reveal extensive areas of high-confi-
dence hot spots, while the cold spots only appeared at a
90% confidence level, predominantly concentrated in the
desert basin. The hot spots for prescribed fire records are
concentrated in several regions, including the Northern
Coast Drainage in northern California, the eastern area
of the Sierra Nevada Mountains in central California, and
a small cluster in the South Coast Drainage in Southern
California. On the other hand, the hot spots for escaped
prescribed fires exhibit patterns similar to the spatial
density distribution, with concentrations observed in the
Sacramento Drainage (climate division 402) and the San
Joaquin Drainage (climate division 405), respectively.

The overlap of hot spots in the two maps is only evi-
dent in central California, particularly on the western
side of the Sierra Nevada Mountains (Fig. 4d, e). Within
the Sacramento Drainage, the overlaps largely coincide

with the areas of highest density for escaped prescribed
fires. However, in the San Joaquin Drainage, the overlaps
occur on the eastern side of the high-density center for
escaped prescribed fires, avoiding the main high-density
area and containing only a moderate density of escaped
prescribed fires. Consequently, the middle of the Sac-
ramento Drainage emerges as one of the most common
areas for prescribed burns as well as one of the areas with
the highest occurrence of escape events. In contrast, the
middle of the San Joaquin Drainage, where prescribed
fires are more frequent, displays a moderate density
of escapes. The highest density of escapes in the San
Joaquin Drainage is situated to the west of the prescribed
fire hot spot and is not contained within the prescribed
fire hot spots at all. This pattern of prescribed fire and
escaped prescribed fire hot spots adjacent to each other
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but not intersecting is consistent throughout the rest of
California.

The spatial patterns of fires occurring mainly in natu-
ral vegetation, excluding agricultural burns are presented
in SI (Fig. S6). Following the exclusion of prescribed and
escaped agricultural fires, the distribution of hot spots for
prescribed or escaped natural vegetation fires essentially
remained unchanged. The primary hot spots continue
to be located along the Central Valley, while additional
relative hot spots emerged in northern California, areas
noted for the high density of national forests.

Environmental condition profile in escaped prescribed fire
sites

Prescribed fires are often carried out in areas with high
risks of wildfires. Despite the strict and careful selec-
tion of the date and area for the implementation of pre-
scribed fires from the planning to execution phases,
complete prevention of escapes remains a challenge
(Ryan et al. 2013). Among the various factors contrib-
uting to escapes, environmental conditions within the
burned area by prescribed fires pose the greatest diffi-
culty in accurate prediction during planning or manipu-
lation during implementation (Agastra 2022). Results
from logistic regression, which examined all prescribed
fires and escaped incidents throughout California as pre-
sented in Table 1, highlight wind speed as the predomi-
nant factor influencing the risk of prescribed fire escape.
Specifically, higher wind speeds at 10 meters are associ-
ated with an increased risk of escape fires. Additionally,

Table 1 Logistic regression results for explanatory
environmental variables associated with escaped prescribed fires
in California from 1991 to 2020

Variables Coefficient S.E. p-value
Precipitation (in.) —0.0003 0.0002 <0.05
Max temperature (°C) —0.0534 0.0730 0.46
Max vapor pressure deficit (hPa) 0.0390 0.0351 027
Fuel vegetation cover (%) —0.0227 0.0032 <0.05
Wind speed (m/s) 0.1572 0.0685 <0.05
Elevation (km) —-0.0020 0.0002 <0.05
Aspect (°) —0.0012 0.0006 0.06
Slope (°) -0.0189 0.0092 <005

(See figure on next page.)
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fuel vegetation cover is identified as a significant variable
affecting escape risk. In contrast, other variables show
limited influence on escape occurrences. The significant
impact of wind, contrasted with the minor influence of
other variables on escape occurrences, may be attributed
to the high variability in wind speed and direction (Simp-
son et al. 2013; Sharples et al. 2012) and large uncertainty
(Sanjuan et al. 2014) in wind prediction during pre-
scribed fire practices. Additionally, California’s extensive
spatial scale and diverse environmental conditions tend
to diminish the effects of other environmental factors
when analyzing escapes at the state level.

Given the vast geographical expanse and complex cli-
matic conditions of California, the causes of prescribed
fire escapes exhibit considerable variation across spatial
distributions. Therefore, the escaped prescribed fires
were classified into four clusters based on the selected
environmental variables (Fig. 5). This classification
ensures that fires within the same cluster share the great-
est similarities, while those in different clusters display
the most significant variations. Upon overlaying climate
division and ecoregion boundaries, it becomes obvious
that the majority of cluster boundaries align with Califor-
nia’s ecoregions.

Cluster 1 mainly encompasses escaped prescribed fires
within the Central California Valley (region 7), while also
including scattered events within the Central California
Foothills and Coastal Mountains (region 6). The Cen-
tral California Valley is crucial for California’s agricul-
tural production, featuring flat terrain, fertile soils, and
a favorable climate, with nearly 70 percent of its land
in cultivation (Kuminoff et al. 2000). Notably, escaped
events in cluster 1 exhibit relatively low precipitation and
wind speed, coupled with high maximum temperatures
and vapor pressure deficits compared to average climatic
conditions. The cluster demonstrates characteristics of
lower elevation, aspect, and slope, suggesting the pres-
ence of flatter, lower terrains. The hot and dry summers
in this region are deemed risky for the implementation of
prescribed fires, and any instances of escape could have
significant negative impacts on local agriculture.

Escaped prescribed fires within cluster 2 are primar-
ily distributed along the ecoregion of Central California
Foothills and Coastal Mountains, and Sierra Nevada,
almost encircling cluster 1. This region is characterized

Fig. 5 Multivariate clustering of escaped prescribed fires and total counts in environmental divisions. The points in panels (a and b) represent
escaped prescribed fire locations, with different colors representing distinct clusters. A total of 4 clusters were classified using contributed
environmental variables, namely precipitation (PPT), maximum temperature (Tmax), maximum vapor pressure deficit (VPDmax), mean wind speed
at 10 m (WindSpeed), aspect (ASP), elevation (ELE), slope (SLP), and fuel vegetation cover (FVC). Varying levels of grey in panels (a) for climate
divisions and (b) for ecoregions denote the magnitude of total escaped prescribed fire counts. Panel ¢ shows the distribution of standardized

environmental variables among multivariate escaped Rx fire clusters
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by a Mediterranean climate, with hot, dry summers and
cool, moist winters, and is predominantly covered by
chaparral and oak woodlands. Grasslands are found at
lower elevations, while patches of pine occur at higher
elevations (Griffith et al. 2016). The climate conditions
in cluster 2 are milder in comparison to cluster 1. This
is evident through the presence of more precipitation,
lower temperatures, lower vapor pressure deficits, and
higher terrain. Prevailing afternoon winds and high veg-
etation cover in this region contribute to the occurrence
and spread of the escapes.

Cluster 3 includes escaped fires dispersed throughout
northern California, primarily located in the outer and
upper regions of cluster 2. These fires span four main
ecoregions: the Coast Range, Cascades, Klamath Moun-
tains, and Northern Basin and Range. All of these regions
are characterized by dense forests and rich biodiversity,
shaped by complex geological formations of volcanic,
granitic, and sedimentary rocks. While the Cascades and
Klamath Mountains have a more temperate and moist
climate, the Eastern Cascades experience greater temper-
ature extremes (Griffith et al. 2016). Climate and topo-
graphical conditions in this cluster show similarities with
cluster 2 but exhibit a more extreme nature. During the
prescribed fire burn window, extreme caution is required
due to the potentially high wind speed, low air humidity
and dense vegetation cover (Fig. 5¢).

Cluster 4 contrasts with the previous clusters by focus-
ing on escaped prescribed fires that occurred in south-
ern California, with occurrences distributed similarly
between the South Coast and Southeastern Desert
regions. While escaped fires in the South Coast region
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were found in areas of high vegetation density, all escaped
fires in the Southeastern Desert region were exclusively
associated with agricultural land use, particularly crops,
as prescribed fires are typically not initiated in natural
desert habitats. Both regions share common character-
istics, including limited vegetation cover, a hot and arid
climate year-round, and high wind speeds (Fig. 5c), which
create significant challenges for the management and
control of prescribed fires.

The same logistic regression procedure was applied to
escaped natural vegetation fires, excluding agricultural
fires resulting in coefficients for each environmental vari-
able that remained unchanged. However, cluster classifi-
cation was not conducted for escaped natural vegetation
fires due to insufficient data size, which would not yield
meaningful results.

Furthermore, the assessment of vegetation cover in
escaped prescribed fires can be extended to specific vege-
tation types and land uses. As shown in Table 2, trees are
the most prevalent vegetation type in areas of escaped
fires, followed by herbs, with shrubs being the least com-
mon. Most escapes occurred in areas with 20-60% tree
cover, while herb cover between 40 and 50% was also
notably dominant. Within the National Vegetation Clas-
sifications, escapes were most frequently observed in
California Montane Conifer and California Broadleaf
forests. Among herb types, California Ruderal Grassland
and Meadow were prominent, while California Xeric
Chaparral was a common shrub type in escaped pre-
scribed fires.

Roads were identified as the most frequently impacted
land use type associated with escaped prescribed fires,

Table 2 Dominant vegetation classes and land use types in escaped prescribed fires

Vegetation type

Accumulated
percentage (%)

Percentage (%)

Fuel vegetation cover

Developed - roads

40 <tree cover < 50%

30 <tree cover < 40%

40 < herb cover < 50%

50 <tree cover < 60%

20 <tree cover < 30%

National vegetation classification
Developed - roads

California Montane Conifer Forest and Woodland
Western Warm Temperate Orchard
California Xeric Chaparral

California Broadleaf Forest and Woodland
California Ruderal Grassland and Meadow

15.48 15.48
11.31 26.79
6.85 3363
5.95 39.58
536 4494
5.06 50.00
15.48 15.48
8.63 24.11
8.63 32.74
7.14 39.88
6.85 46.73
5.95 52.68

The table displays the highest-ranking vegetation species until the cumulative percentage reaches 50%
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primarily due to their high density in agricultural regions.
The agricultural area classified as Western Warm Tem-
perate Orchard ranked third among the vegetation types
affected by these escapes. These findings suggest that a
significant proportion of escaped prescribed fires origi-
nates from agricultural and land management burns, as
evidenced by the high incidence of these events occur-
ring near roads. A table detailing escaped prescribed
fires, excluding agricultural fires, is available in SI (8.
Results - Spatiotemproal Patterns excluding agricultural
fires). After excluding agricultural fires, the escaped
natural vegetation fires predominantly occurred in areas
with moderate tree, shrub, and herb density. While the
dominant vegetation types in the escaped natural fires
remained consistent with all escaped fires, the land use
types of roads and orchards did not appear in the top 50%
of common land use types associated with these escapes.

Discussions

Although the temporal statistics demonstrate a general
increase in the implementation of prescribed fires in
California, especially from 2010 to 2020 (Fig. 1b), it is
essential to consider the role of improved data collection
standards and improved fire data system management,
which has contributed to more accurate and comprehen-
sive prescribed fire records. In the past, data on escapes
of prescribed fires on private land were challenging to
collect, and small-scale, controllable escapes were often
unreported and undocumented (Weir et al. 2019). Con-
sequently, only escapes that turned into large wildfires,
and under the management of CAL FIRE'’s units or coop-
erating agencies were included in the database, under the
classification of wildland fires. Since 2014, the number
of escaped prescribed fires has continued to grow, while
the total burned area has stabilized-a trend also noted in
other studies (Miller et al. 2020; Cummins et al. 2023).
This pattern may reflect advancements in technology
and improved control measures in the implementation of
prescribed fires.

It is also notable that over the past three decades, almost
half of escaped prescribed fires (163 out of 310) were initi-
ated by crop fires. This statistic highlights the increased risk
associated with prescribed fires conducted in agricultural
settings. The unique features of croplands, such as the pres-
ence of highly combustible materials and their proximity to
roads and infrastructure, contribute to the likelihood of fire
escapes and fatalities (Twidwell et al. 2015). Initiating a pre-
scribed fire on private land is often less strict than on public
land due to differences in governance, resources, and liabil-
ity concerns. Agricultural burn practices, in particular, may
not always follow the strict protocols required for public
land prescribed fires, potentially leading to less controlled
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conditions (Wilkin et al. 2024). In the U.S.,, private landown-
ers must typically obtain permits and comply with local fire
agency regulations, but these rarely involve the extensive
ecological and hazard assessments required for public land
burns. Assistance from prescribed burn associations or
agencies like Cal Fire is available, often covering planning
and execution, including liability (McCormack et al. 2023).
However, this reduced procedural rigor can increase the risk
of escaped fires, especially in agricultural areas with abun-
dant combustible materials, highlighting the need for stricter
risk assessments for private land burns. Environmental fac-
tors, such as wind patterns and seasonal droughts, can fur-
ther exacerbate these risks by facilitating the rapid spread
of flames beyond intended boundaries (Swain et al. 2023;
McCormack et al. 2023). The consequences of these escapes
can be severe, impacting not only crop yields but also neigh-
boring ecosystems and communities. Therefore, it is crucial
to develop and implement enhanced management strate-
gies and regulatory frameworks to mitigate these risks and
ensure the safe implementation of prescribed fires in agricul-
tural contexts.

The prescribed fires and escapes have similar sea-
sonal and monthly trends in all of the above statistics,
displaying two peaks close to the beginning and the end
of the wildfire season. However, a reversal is observed
in the months associated with their principal and sec-
ondary peaks. Prescribed fires experience a prominent
peak subsequent to the summer period, while a minor
peak emerges preceding summer (Fig. 1c and f). Con-
versely, the pattern is inverted for escaped prescribed
fires (Fig. 1d and g), where the major peak occurs prior
to summer and the minor peak follows the summer sea-
son. The concentrated reduction of accumulated for-
est fuels during these peak months can be attributed to
suitable fuel moisture and climate conditions, such as
temperature, humidity, and wind speed, which facilitate
prescribed burning without excessive dryness and a low
risk of loss of control (Chiodi et al. 2018). However, the
reverse of the major and minor peaks indicates that pre-
scribed fires executed right before or at the beginning of
the wildfire seasons have a higher probability of escape
and result in larger escaped areas compared to fires
burned at the end of or right after the wildfire seasons.
Significant periods of winter in much of California expe-
rience relative humidity, maximum air temperatures, and
wind speeds that fall within the meteorological thresh-
olds suitable for conducting prescribed fires (Baijnath-
Rodino et al. 2022). These winter periods are identified as
windows for effective prescribed burning under low-risk
conditions, as demonstrated by previous studies (York
et al. 2021; Baijnath-Rodino et al. 2022).
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The general spatial pattern of escapes concentrated
in northern and central California would be intuitively
expected, given that more prescribed fires would be
targeted to occur in regions historically adapted to a
high-frequency, low-intensity fire regime. The regular
implementation of crop fires on privately owned land
in the Central Valley is also a primary contributor to
escaped prescribed fires. In most regions of California,
a consistent spatial pattern is observed where areas with
higher prescribed fire activity tend to experience fewer
escapes, whereas regions with higher escape frequen-
cies typically have fewer prescribed fire activities nearby,
often adjacent but non-intersecting with prescribed fire
hot spots.

The spatial distribution of escaped prescribed fires
across California underscores the influence of environ-
mental conditions on fire management challenges. The
identified clusters reflect various levels of impact from
climates and vegetation characteristics, emphasizing the
importance of customized fire management strategies.
Wind speed emerges as a critical factor affecting escape
likelihood, necessitating advanced predictive models to
account for California’s dynamic wind patterns. The rapid
and unpredictable variations in wind speed and direction
during practical applications impede the comprehensive
prediction of the entire wind condition profile during
prescribed fires (Sanjuan et al. 2014; Sharples et al. 2012;
Simpson et al. (2013). Fuel vegetation cover and specific
vegetation types, such as California Montane Conifer
and Ruderal Grassland, play pivotal roles in fire behav-
ior and escape occurrences. The prevalence of escapes
in areas with moderate tree cover (20-60%) highlights
vulnerabilities in prescribed fire practices, particularly
in regions prone to extreme weather events and dense
vegetation. Agricultural lands are identified as high-risk
areas for fire escapes, underscoring the need for targeted
mitigation measures and enhanced monitoring proto-
cols (Regmi et al. 2023). Integrating these findings into
fire management policies can mitigate escape risks and
enhance overall wildfire resilience in California’s diverse
ecosystems.

Conclusion

In this study, we investigated the temporal and spatial
patterns of escaped prescribed fires from 1991 to 2020
in California. Exploring when and where the prescribed
fires are more likely to escape is critical for resource man-
agers developing forest management and fuel treatment
strategies. The analyses of this study aim to reveal the
seasonal and monthly trends of escape prescribed fires,
their spatial distribution characteristics and structure,
and the relationship between environmental variables
and the occurrence of escapes.
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The findings show that the implementation of pre-
scribed fires in California has exhibited a significant
upward trend since 1991, marked by a notable increase
in both the number of prescribed fires and the total
burned area. Similarly, the records of escaped prescribed
fires also show a rising trend from 2010 to 2020. How-
ever, a substantial portion of this increase is attributed
to enhanced data collection processes and improved
database completeness, rather than a proportional rise
in corresponding prescribed fire escapes. Seasonally and
monthly, prescribed fires and escaped prescribed fires
display similar patterns, with two peaks occurring close
to the beginning and end of the wildfire season. Notably,
the month with the highest probability of escapes does
not necessarily align with the month recording the most
escape incidents or the largest escape areas. In addition,
prescribed fires executed before or at the start of the
wildfire season are associated with a higher incidence of
escape and result in larger escaped areas.

The spatial distribution of escaped prescribed fires
shows cluster patterns across California, which shows
that in most regions of California, areas with more pre-
scribed fires generally experience fewer escapes, while
areas with higher occurrences of escapes have less fre-
quent prescribed fire implementations and are often
adjacent to prescribed fire hot spots.

Among the observed vegetation types in escaped pre-
scribed fires, trees with cover ranging from 20 to 60% are
the most prevalent, followed by 40 to 50% herbs. Given
the large coverage and complicated topography in Cali-
fornia, the underlying causes of environmental condi-
tions leading to escapes vary across different regions.
In the central California Valley, escapes predominantly
result from high temperatures and low humidity levels.
Areas close to or located within the Sierra Nevada Moun-
tains and Coastal ranges experience escape events influ-
enced significantly by high wind speeds and abundant
vegetation cover. Despite comparatively lower vegetation
density in the south coast and southeast desert regions,
the confluence of extremely high temperatures and wind
speeds, as well as low humidity levels and precipitation,
increases the risk of prescribed fire escapes.

The process of collecting information about pre-
scribed fires revealed several challenges to the cur-
rent ability to quantify the rates of prescribed fire
escapes. There is no database designed specifically
to capture prescribed fire escapes across landowner
groups. Consequently, there is a lack of consistency in
defining escapes and documenting their occurrences.
Prescribed fires that occur on private land make up a
significant proportion of the total number of controlled
burns that occur in California. However, prescribed
fires on private lands are not monitored across counties
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and across burn sizes consistently. If a significantly
large escape event originates from a prescribed fire on
private land, only then it is likely to be documented
in one of the databases used in this study, biasing the
true picture. However, since prescribed fires that do
not escape are not monitored consistently, it is chal-
lenging to accurately estimate the rate of prescribed
fire escapes. Therefore, a more systematic protocol to
record both prescribed fire events and escape events
uniformly across all counties will be beneficial in imple-
menting landscape management practices. Future
research should also focus on refining predictive mod-
els, expanding dataset integration, and implementing
proactive fire management strategies to mitigate escape
risks effectively across California’s varied landscapes.
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