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Abstract 

Background  Wildfire is a major proximate cause of historical and ongoing losses of intact big sagebrush (Artemi-
sia tridentata Nutt.) plant communities and declines in sagebrush obligate wildlife species. In recent decades, fire 
return intervals have shortened and area burned has increased in some areas, and habitat degradation is occurring 
where post-fire re-establishment of sagebrush is hindered by invasive annual grasses. In coming decades, the chang-
ing climate may accelerate these wildfire and invasive feedbacks, although projecting future wildfire dynamics 
requires a better understanding of long-term wildfire drivers across the big sagebrush region. Here, we integrated 
wildfire observations with climate and vegetation data to derive a statistical model for the entire big sagebrush region 
that represents how annual wildfire probability is influenced by climate and fine fuel characteristics.

Results  Wildfire frequency varied significantly across the sagebrush region, and our statistical model represented 
much of that variation. Biomass of annual and perennial grasses and forbs, which we used as proxies for fine fuels, 
influenced wildfire probability. Wildfire probability was highest in areas with high annual forb and grass biomass, 
which is consistent with the well-documented phenomenon of increased wildfire following annual grass invasion. 
The effects of annuals on wildfire probability were strongest in places with dry summers. Wildfire probability varied 
with the biomass of perennial grasses and forbs and was highest at intermediate biomass levels. Climate, which varies 
substantially across the sagebrush region, was also predictive of wildfire probability, and predictions were highest 
in areas with a low proportion of precipitation received in summer, intermediate precipitation, and high temperature. 

Conclusions  We developed a carefully validated model that contains relatively simple and biologically plausible 
relationships, with the goal of adequate performance under novel conditions so that useful projections of average 
annual wildfire probability can be made given general changes in conditions. Previous studies on the impacts of veg-
etation and climate on wildfire probability in sagebrush ecosystems have generally used more complex machine 
learning approaches and have usually been applicable to only portions of the sagebrush region. Therefore, our model 
complements existing work and forms an additional tool for understanding future wildfire and ecological dynamics 
across the sagebrush region. 
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Resumen 

Antecedentes  Los incendios de vegetación son la causa histórica más próxima y en curso, de las pérdidas en las 
comunidades intactas de artemisa grande (Artemisia tridentata Nutt.) y de las declinaciones en la fauna consumidora 
obligada de esa especie. En décadas recientes, los intervalos de retorno del fuego se han acortado, el área quemada 
se incrementó en algunos sitios, y la degradación del hábitat está ocurriendo donde el restablecimiento post-fuego 
está siendo obstaculizado por pastos anuales invasores. En las décadas por venir, el cambio climático puede acelerar 
la ocurrencia de esos incendios y sus retroalimentaciones invasivas, aunque el proyectar la dinámica futura de estos 
incendios requiere de un mejor conocimiento de los factores conducentes de los incendios en el largo plazo a lo 
largo de la región dominada por la artemisa grande. Integramos acá las observaciones de incendios con datos del 
clima y vegetación para derivar un modelo estadístico para toda la región de artemisa grande que representa cómo la 
probabilidad anual de incendios está influenciada por el clima y las características del combustible fino.

Resultados  La frecuencia de incendios de vegetación varió significativamente a lo largo de la región de artemisa 
grande, y nuestro modelo representó mucho de esa variación. La biomasa de los pastos perennes y hierbas, que 
nosotros usamos como substituto para los combustibles finos, influenciaron la probabilidad de ocurrencia de incen-
dios. La probabilidad de ocurrencia de incendios fue más alta en áreas con alta biomasa de hierbas anuales y pastos, 
lo que es consistente con el bien documentado fenómeno de un incremento de incendios luego de una invasión de 
pastos anuales. Los efectos de las anuales en la probabilidad de incendios fueron más fuertes en lugares con veranos 
secos. La probabilidad de incendios varió con la biomasa de los pastos y hierbas perennes y fue más alta con niveles 
de biomasa intermedios. El clima, que varía sustancialmente a lo largo de la región de la artemisa grande, fue también 
predictor de la probabilidad de incendios, y las predicciones fueron más grandes en áreas con una baja proporción de 
la precipitación recibida durante el verano, con precipitación intermedia y alta temperatura. 

Conclusiones  Desarrollamos un modelo cuidadosamente validado que contiene relaciones relativamente simples 
y biológicamente plausibles, con el objetivo de obtener una adecuada performance bajo condiciones noveles, de 
manera que proyecciones útiles sobre promedios anuales de probabilidad de incendios puedan ser hechas dados los 
cambios en las condiciones generales. Estudios previos sobre los impactos de la vegetación y clima en la probabilidad 
de incendios en ecosistemas de artemisa grande han generalmente usado aproximaciones más complejas basados 
en el aprendizaje automático (machine learning) y han sido generalmente aplicables sólo a porciones de la región 
dominada por artemisa grande. Por lo tanto, nuestro modelo complementa trabajos existentes y conforma una her-
ramienta adicional para entender futuros incendios de vegetación y la dinámica ecológica a lo largo de la región de 
artemisa grande. 

Background
Long-term shifts in climate, and associated changes in 
weather and vegetation, are anticipated to affect the  
frequency, size, and severity of wildfires in many parts 
of the globe (Abatzoglou and Kolden 2013; Barbero 
et  al. 2015; Parks et  al. 2016; Pausas and Keeley 2021). 
Climate change is expected to increase the prevalence 
of extreme fire weather (Bowman et al. 2020; Coop et al. 
2022), but substantial uncertainty exists around future  
trends in wildfires that are driven by interactions among 
climate, vegetation, and fuels (Kloster and Lasslop 2017;  
Wu et  al. 2021). Warming combined with reduced pre-
cipitation may, for example, promote fire in tropical 
rainforests by increasing flammability but reduce fire in  
arid ecosystems because of fuel limitation. Predicting future 
changes in wildfire is further complicated by uncertainty 
about future human population sizes and activities such 
as fire suppression, conversion to cropland, and defor-
estation (Knorr et al. 2016; Riley et al. 2019).

More focus has generally been put on understanding 
drivers of wildfire in forests, woodlands, and savannas 
than in non-forested drylands such as arid and semiarid 
shrublands, e.g., sagebrush-dominated ecosystems in the 
Western US (Crist 2023; Shinneman et al. 2023a, b). How-
ever, understanding the drivers of wildfire is critical in 
sagebrush-dominated ecosystems because fire is a major 
proximate cause of historical and ongoing losses of sage-
brush ecosystems and declines in sagebrush obligate spe-
cies and the ecosystem services derived from it (Doherty 
et al. 2022; Remington et al. 2021). Sagebrush ecosystems 
are being lost or degraded by the combination of annual 
grass invasion, altered wildfire regimes, conifer expan-
sion,  land use change, and climate change (Balch et  al. 
2013; Remington et al. 2021). Wildfires are a natural part 
of these ecosystems, and historically, fire return intervals 
likely varied among sagebrush plant community types, 
ranging between 35 and 450 years (Baker 2006), but large 
fires may have been rarer than they are today (Bukowski 
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and Baker 2013). Anthropogenic ignition was likely com-
mon prior to the arrival of European settlers, with indig-
enous people managing the Great Basin for reasons such 
as maintaining habitats for animals used as food and 
driving game during hunts (McAdoo et  al. 2013). With 
both lightning and indigenous sources of ignitions, the 
landscape likely was a patchwork of areas with lower fuel 
loads than today, lacking invasive plant infestations (McA-
doo et al. 2013). Fire suppression policies and removal of 
indigenous burning practices led to increased fire return 
intervals, and subsequent conifer encroachment contrib-
uted to higher woody fuel loads. However, in recent dec-
ades, fire return intervals have shortened significantly in 
some areas, and the area burned has increased, largely 
due to invasion by annual grasses (Baker 2013; Balch et al. 
2013; Shinneman et  al. n.d.). Subsequent habitat degra-
dation occurs where post-fire re-establishment of sage-
brush is hindered by the invasive annual grasses (Coates 
et  al. 2016). Therefore, understanding the factors that 
drive wildfire in this region and understanding how that 
may change in the future is of scientific and management 
interest.

Sagebrush plant communities that retain high eco-
logical integrity and function (e.g., wildlife habitat and 
ecosystem services) have been defined as those having 
a sagebrush overstory (primarily big sagebrush, Arte-
misia tridentata Nutt.), ecologically appropriate cover 
of native perennial grass and forbs in the understory, 
and low levels of invasive annual grasses and coniferous 
trees (Doherty et  al. 2022). In addition to directly com-
peting with native plants, cheatgrass (Bromus tectorum 
L.), an invasive annual grass, increases the risk of wild-
fire because it matures early in the growing season and 
then dries out, forming a continuous fine fuel (Davies 
and Nafus 2013). Additionally, invasive grasses such as 
North Africa grass (Ventanata dubia [Leers] Cross.) can 
increase the probability of wildfire due to increased fire 
spread not only in invaded patches but can facilitate fire 
spread into adjacent forests (Tortorelli et  al. 2023). Big 
sagebrush does not re-sprout following fire and can be 
slow to re-establish due to short-distance seed dispersal, 
low germination rates, and seedling mortality (Schlaepfer 
et al. 2014). Natural sagebrush regeneration occurs exclu-
sively from seeds in the seed bank and seeds originating 
from existing plants in unburned islands or from nearby 
plants outside the fire perimeter (Longland and Bate-
man 2002; Schlaepfer et al. 2014). In contrast, cheatgrass 
frequently becomes more abundant post-fire, which can 
inhibit the re-establishment of sagebrush, native peren-
nial grasses, and native forbs, thereby creating an invasive 
grass-fire cycle (D’Antonio and Vitousek 1992; Shinne-
man and Baker 2009). Recurrent fires deplete sage-
brush seed in the seed bank, leading to permanent type 

conversion to an annual grass state in areas where fire 
return intervals are short (Remington et al. 2021).

A consistent perspective on wildfires across the sage-
brush region is essential for informing long-term climate 
vulnerability and adaptation efforts (Doherty et al. 2022). 
The prevalence of wildfire varies substantially across the 
region (Pastick et al. 2021), driven by large variations in 
climate and vegetation (Remington et  al. 2021). Previ-
ous studies on the impacts of vegetation and climate on 
wildfire probability in sagebrush ecosystems have mostly 
focused on portions of the sagebrush region that are cur-
rently more heavily invaded by cheatgrass, such as the 
Great Basin (Bradley et al. 2018; Pilliod et al. 2017; Smith 
et al. 2022). While useful for the area they were trained 
on, such models may be less useful when applied across 
the entire sagebrush region because of environmental, 
anthropogenic, climatic, and vegetation differences.

Because long-term projections of ecological dynamics 
are fraught with uncertainty, simpler statistical models 
that represent well-understood fundamental relation-
ships may generate more reliable long-term forecasts 
than more complex, empirically derived predictive algo-
rithms. Recent studies have successfully used machine 
learning approaches for estimating wildfire probability 
across landscapes largely dominated by sagebrush (Pas-
tick et al. 2021; Smith et al. 2022). These models are very 
flexible and can therefore closely fit the observed data, 
but they also represent complex non-linear relation-
ships and interactions among independent variables that 
can be difficult to interpret and may create unrealistic 
predictions when applied under novel conditions, like 
those projected under climate change. This issue can be 
especially problematic with machine learning models 
that are prone to over-fitting (Wenger and Olden 2012). 
In contrast, simpler models that capture primary eco-
logical relationships can potentially perform well under 
novel future conditions, even if their relative simplicity 
causes them to underperform under current conditions 
(Bell and Schlaepfer 2016), and they may be well suited 
for integration into process-based ecological simulation 
models used for assessing long-term ecosystem dynam-
ics in the context of climate change (e.g., Palmquist 
et al. 2021).

For these reasons, we developed a relatively simple 
closed-form statistical model for estimating the aver-
age wildfire probability in sagebrush ecosystems. Previ-
ous work modeling wildfire probability in the sagebrush 
region has often focused on short time scales (e.g., using 
variables such as daily fire weather and fuel moisture), 
due to the strong correlation of area burned with these 
predictors, and some studies have included multiple 
ecosystem types instead of just focusing on sagebrush 
ecosystems (Finney et  al. 2011; Short et  al. 2020; Smith 
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et al. 2022; Tortorelli et al. 2023). Although these efforts 
are essential for informing decisions over the near term, 
most of them do not currently provide perspectives on 
potential multi-decadal shifts in wildfire probability that 
may be induced by climate change, and none yet provides 
insight at a national scale, though some provide projec-
tions for individual areas on the scale of ecoregions (Dye 
et al. 2023; Riley and Loehman 2016). The computational 
time required for these analyses can be extensive. Under-
standing long-term drivers of annual wildfire probabil-
ity is important for assessing how these ecosystems may 
change at regional scales and how those changes may 
inform long-term management decisions.

Our goal was to understand how wildfire probability 
relates to climate and fuel conditions across the entire 
sagebrush region. To do this, we developed a statistical 
model that represents the relationship between annual 
wildfire probability and a small number of climate and 
fuel variables. Because we wanted to understand poten-
tial fire responses to broad-scale changes in conditions, 
we related observed fire occurrence to general climatic 
and average vegetation characteristics. Specifically, we 
fit a closed-form biologically plausible logistic regression 
model that captures broad dynamics such that projec-
tions of average annual wildfire probability may be made 
given general changes in conditions. We then examined 
the sensitivity of modeled fire probabilities to simple 
shifts in climate and vegetation.

Methods
Study area
Our study area consists of the big sagebrush region 
(where big sagebrush, A. tridentata, is abundant), which 
is a subset of the global shrubland biome (Whittaker 
1975). This region is referred to elsewhere as the sage-
brush biome (Jeffries and Finn 2019) and occurs across 
13 states in the Western US (Fig.  1). Hereafter, we will 
refer to our study area as the sagebrush region. For all 
variables (described below), we acquired data (aggre-
gated to a 1  km × 1  km resolution) for the 782,321 km2 
that comprises this area (we excluded non-sagebrush 
pixels using the mask described in Doherty et al. 2022). 
On average, across our study area, the mean annual tem-
perature is 8.8 °C (range across pixels − 2.0–24.2 °C), the 
mean annual precipitation is 328 mm (54–2282 mm), and 
the mean proportion of precipitation that falls in sum-
mer (June to August) is 0.21 (0.03–0.50) (Fig. 1; Thornton 
et al. 2020).

Predictor variables
We used two vegetation and three climate variables 
(Fig. 1) to model annual wildfire probability across sage-
brush ecosystems in the Western US. The two vegetation 

variables were the mean aboveground biomass of annual 
forbs and grasses (hereafter annual biomass) and the 
mean aboveground biomass of perennial forbs and 
grasses (hereafter perennial biomass). We focused on 
annual and perennial biomass as they determine fine fuel 
availability in these ecosystems. We acquired this bio-
mass data from version 3 of the Rangeland Analysis Plat-
form (RAP; Jones et al. 2021) over 34 years (1986–2019) 
and aggregated spatially by calculating the means from 
the native resolution of ~ 30-m to 1-km pixels to match 
the resolution of the climate data. The aboveground 
biomass dataset from RAP is based on a process-based 
model that estimates annual net primary productivity 
of annuals and perennials from Landsat normalized dif-
ference vegetation index (NDVI) estimates that are col-
lected every 16 days. The model can separately estimate 
production for annuals and perennials because the meas-
ured NDVI for each pixel is disaggregated into separate 
estimates of NDVI for annuals and perennials based on 
their fractional cover (from the RAP cover dataset, which 
is trained on plot-level cover observations) and phenol-
ogy (Robinson et al. 2019).

Our three climate predictor variables were mean tem-
perature, annual precipitation, and proportion summer 
precipitation (PSP), which we defined as the proportion 
of annual precipitation that falls in June through August 
(Fig. 1). PSP ranges from 0 to 1, where a value of 0 would 
mean that no precipitation falls in June through August 
(interestingly, PSP had a trimodal distribution across our 
study area, Fig. 1c). The three climate indices were calcu-
lated using the Daymet daily weather dataset (1-km reso-
lution; Thornton et al. 2020).

For both climate and vegetation variables, we calculated 
3-year running averages, by taking the mean of values 
from the current year and previous 2  years. For exam-
ple, to calculate precipitation for 2015, we calculated the 
mean of annual precipitation from 2013, 2014, and 2015. 
We calculated these 3-year averages for 1988–2019 using 
climate and vegetation data from 1986 to 2019. Therefore, 
we had 32 climate and vegetation observations per pixel, 
resulting in a final dataset that contained 25,034,272 
observations (782,321 pixels × 32  years). We chose not 
to use a single value of predictor variables for each pixel 
(i.e., means across the entire study period) for two rea-
sons. First is that wildfire influences vegetation, and in 
sagebrush ecosystems, this is most apparent with the 
positive feedback between cheatgrass (and other invasive 
annual grasses) and wildfire. Abundance of annuals gen-
erally increases after wildfire (Smith et al. 2023), and we 
wanted the model to correctly incorporate the effect of 
annuals on wildfire, while not conflating it with the effect 
of wildfire on annuals. Second, the values of some of our 
predictor variables have changed over time, regardless of 
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Fig. 1  Maps of a mean annual temperature, b mean annual precipitation, and c mean proportion of precipitation that is received in summer (June 
to August) and the mean aboveground biomass of d annual forbs and grasses and e perennial forbs and grasses. Data was aggregated to 1-km 
resolution and masked to the extent of the sagebrush region (as in Doherty et. al. 2022). Histogram insets present the distribution of values shown 
on the maps. The means were calculated using climate and vegetation data from 1986 to 2019. Three-year running averages (instead of averages 
over the entire study period) of these variables were used as predictors in our model
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the occurrence of wildfire. For example, the abundance 
of annuals has increased over the last decades even in 
unburned locations (Appendix S1; Smith et al. 2023), and 
similarly, temperatures have been increasing across the 
region. Additionally, the abundance of annuals fluctu-
ates substantially through time (Additional file 1: Appen-
dix 1; Dahal et al. 2022), largely driven by fluctuations in 
precipitation (Pilliod et al. 2017). We chose to use 3-year 
averages to capture general antecedent climate and veg-
etation conditions that contribute to fine-fuel availabil-
ity in a given year. This approach was also informed by 
previous work which found that vegetation and weather 
conditions from the current year, the previous year, and 
2 years previous were predictive of wildfire probability in 
the Great Basin (Smith et al. 2022).

Response variable
We used the US Geological Survey (USGS) combined 
wildland fire dataset, which combines fire perimeter 
data from many sources, including the National Intera-
gency Fire Center and Monitoring Trends in Burn Sever-
ity (Welty and Jeffries 2021). We used fire perimeter 
data from wildfires in the sagebrush region from 1988 
to 2019, filtering out prescribed fires. While high-quality 
fire perimeter data is available back to 1984, annual RAP 
biomass data was available starting in 1986, which only 
allowed us to calculate 3-year running averages of bio-
mass for fires starting in 1988. The response variable we 
used for modeling (described below) was fire occurrence 
(i.e., 0 or 1 fire) in a given pixel and year. Figure 2a shows 
the total number of times each pixel burned from 1988 to 
2019. We considered a 1-km pixel to have been burned 

in a given year if > 47% of the pixel area was burned. We 
chose the 47% threshold, because by using that threshold, 
the total area of 1-km pixels classified as “burned” most 
closely matched the true total burned area. This approach 
limited the bias of predicted average fire probability made 
by our model.

Model fitting
We fit a logistic regression model relating fire occurrence 
to climate and vegetation. The response variable  was 
observed wildfire occurrence in a given pixel in a year 
(i.e., 0 or 1 fire). Logistic regression allowed for the esti-
mation of the annual probability of wildfire. We used a 
logit link function. Our model implicitly incorporated 
spatial and temporal effects of vegetation and climate on 
wildfire probability because we used data from across the 
sagebrush region (782,321 pixels) over 32 years. For sim-
plicity and because of computational constraints, we did 
not account for spatial or temporal autocorrelation. By 
ignoring this autocorrelation, we likely underestimated 
uncertainty in our parameter estimates. However, given 
the very large sample size, uncertainty from sampling 
variability is very low (additionally, because we are using 
values from all pixels in the sagebrush region, our data-
set could also be viewed as a complete census). Therefore, 
other factors are more likely to cause uncertainty in our 
parameter estimates, such as error in remotely sensed 
biomass estimates, collinearity among predictor variables 
making individual parameter estimates unstable, not cor-
rectly representing the true data generating process (e.g., 
missing variables and interactions, incorrect variable 
transformations), and other limitations that we highlight 

Fig. 2  a The number of years in which each pixel burned from 1988 to 2019 (USGS combined wildland fire dataset). The corresponding observed 
annual fire probability calculated from those fire frequencies is also shown in the legend. b The mean annual wildfire probability predicted 
by our model, based on vegetation and climate conditions. These values represent the mean probability (%) of fire occurring in a given year, 
and the corresponding fire return intervals (FRI) are also shown in the legend. The Histogram inset shows the distribution of values shown 
on the map (x-axis limits were restricted, 0.9% of data not shown). To more directly compare the average observed and modeled wildfire probability, 
see Figs. 4 and 5
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below in the “Discussion” section. To address some of 
these concerns, we evaluated the bias in the model across 
vegetation and climatic variables and their interactions 
(see the “Visualizing model fit” section), conducted 
automated selection of predictor variable transforma-
tions (described below), assessed whether relationships 
represented by the model were biologically reasonable, 
conducted cross-validation (see the “Cross-validation” 
section), and calculated bias in the final model for five 
regions within our study area (Additional file 1: Table S2).

Because many of the relationships between wildfire 
probability and predictor variables were non-linear, we 
tested applying different functions to the predictor vari-
ables to transform them. First, we applied transforma-
tions that changed the variable without adding additional 
terms, these were as follows: x (i.e., no change), √x, and 
log10(x). If we applied one of these transformations to a 
variable in the model, we also applied it to that variable 
where it appeared in an interaction term. Secondly, we 
also applied a second-order polynomial transformation 
to each of these already transformed main terms, so in 
total, we tested 6 possible functions for transforming 
a given variable: x (i.e., no change), √x, log10(x), x + x2, 
√x + x, log10(x) + (log10(x))2. Additionally, before apply-
ing a log10 transform, we added 1 to the value so that the 
transformed variable would not be undefined when the 
original value was 0, and values of the transformed varia-
ble would all have the same sign (e.g., otherwise a change 
in sign of log10 biomass would occur when going from 
below to above 1 g/m2). An exception was PSP (which is 
constrained between 0 and  1), in which case we added 
0.001 prior to the log10 transformation. We did not have 
a priori hypotheses of the shapes of the relationships, so 
we chose simple functions that would allow the model 
to represent plausible non-linear relationships that are 
monotonically increasing or decreasing or that are para-
bolic. We used a multi-step approach to find the overall 
“best” logistic regression model. First, we individually 
transformed each of the five predictor variables using 
each of the 6 functions and compared Akaike’s Informa-
tion Criterion (AIC) of the models (5 variables × 6 trans-
formations = 30 models). The best model (lowest AIC) 
was then selected; this was the model with the best single 
transformation. In step 2, we repeated the process again 
for the remaining untransformed variables and chose the 
best resulting model (4 variables × 6 transformations = 24 
models; these models have 2 variables transformed). We 
repeated this until all variables were transformed or until 
further transformations no longer substantially improved 
the model (ΔAIC < 10).

To determine what interactions to include in the 
model, we visualized all two-way interactions between 
variables. The best model included no interactions and 

over-predicted wildfire probability in wet (high annual 
precipitation) areas with high biomass of annuals but 
underpredicted in dry (low annual precipitation) areas 
with high biomass of annuals. Lastly, we repeated the 
iterative steps of finding the best transformations of the 
main effects of the five variables, as described above, but 
this time also included this interaction in the model. We 
considered adding shrub cover (from the RAP dataset) 
as an additional predictor variable but did not include it 
in the final model because it increased model complex-
ity without improving model fit substantially. Similarly, 
Smith et al. (2022) found that in comparison with herba-
ceous fuels, shrub cover was a relatively unimportant pre-
dictor of wildfire probability in Great Basin rangelands. 
For computational reasons, we conducted the iterative 
steps to find the best transformations using a random 
subset of 5 million observations, before then fitting the 
model with those transforms to the entire dataset. We 
compiled data using Google Earth Engine (Gorelick et al. 
2017), and statistical analyses were done using R version 
4.2.3 (R Core Team 2023). Models were fit using the “glm” 
function (stats package).

Visualizing model fit
We used partial dependence plots to visualize the rela-
tionships represented by the model. However, a limita-
tion of this approach is that if predictor variables are 
correlated or interactions are present, which is typical for 
climate and vegetation variables, the relationships do not 
fully represent the true relationships one would observe 
in the underlying data (Biecek and Burzykowski 2021). 
Therefore, we also constructed a “quantile” plot to visu-
alize observed and predicted wildfire probability across 
each percentile of a predictor variable. To achieve this, 
predictor data were binned by percentile (i.e., 100 bins), 
and the mean observed and predicted (modeled) wildfire 
probabilities were calculated across observations belong-
ing to each bin. Each point shown in the quantile plots is 
an average of ~ 250,000 observations (1% of the data). The 
quantile plots also allow for comparison between aver-
age observed and predicted wildfire probabilities across 
the range of a given predictor variable. Observed wildfire 
frequency (hereafter “observed wildfire probability”) was 
calculated by dividing the number of fire occurrences by 
the total number of observations.

We created additional “filtered quantile” plots, to assess 
how relationships between wildfire probability and bio-
mass varied with climate. First, observations were only 
kept if they fell within the two lowest or highest deciles 
of a given climate variable (i.e., below the 20th percentile 
or above the 80th percentile), and then “quantile” plots 
showing the relationships between wildfire probability 
and biomass were constructed from this filtered dataset. 
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This allowed for the comparison of, for example, the 
relationship between annual biomass and wildfire prob-
ability in areas with high PSP versus areas with low PSP. 
Note that the model predicts annual wildfire probability 
(which has a range from 0 to 1), but for the sake of read-
ability in figures, we present annual wildfire probability 
as a percentage (i.e., % wildfire probability per year). In 
the figures, we also present secondary axes with wildfire 
probability converted to fire return interval (the mean 
number of years between fire events).

Cross‑validation
We conducted cross-validation to better understand 
model performance using an environmental block-
ing approach (blockCV package, Valavi et  al. 2019). We 
used this approach because, due to the underlying spatial 
autocorrelation in the data, using a random set of pixels 
as the test dataset would underestimate our out-of-sam-
ple prediction error (Roberts et al. 2017). Using three cli-
mate variables (mean annual temperature, mean annual 
precipitation, and mean PSP), we grouped each cell into 
one of five blocks or “folds” (Additional file  1: Fig. S2). 
The folds represent regions that are somewhat climati-
cally distinct and therefore can help validate model per-
formance under new climatic conditions (Valavi et  al. 
2019). Folds were identified using kmeans, which is an 
unsupervised clustering algorithm (Hartigan and Wong 
1979). The data associated with the pixels in a given fold 
were used as a test dataset, and the data from the remain-
ing folds were used as a training dataset. As a result, we 
had five training datasets that we fit models to and then 
created predictions for the five respective test datasets. 
Each model we fit had the same variable transforma-
tions (i.e., the transformations of the best model fit to the 
entire dataset). 

Model sensitivity to changes climate and vegetation
As the final step, we conducted a sensitivity analysis to 
understand how model predictions would be affected by 
simple changes in climate and vegetation variables. The 
goal was not, for example, to create projections of wild-
fire probability in response to a real climate scenario, 
but instead to get a general sense of how sensitive the 
model is to simple changes in predictor variables and to 
what degree responses vary. To achieve this, we calcu-
lated predicted wildfire probability across the study area 
in response to six different changes of a single climate 
variable and four different changes of a single vegeta-
tion variable. The changes were 2 °C and 5 °C increases in 
temperature and 20% decreases and 20% increases in pre-
cipitation, PSP, annual biomass, and perennial biomass. 
We also calculated the expected annual area burned for 
each predictor variable perturbation by multiplying the 

predicted fire probability of each pixel by the area of the 
pixel and then summing across pixels. For this sensitivity 
analysis, we changed predictor variables individually, but 
we acknowledge that vegetation is expected to change 
with climate, potentially in complex ways.

Results
Model description
Across the study area, the observed mean annual wildfire 
frequency was 0.50% (a 200-year fire return interval), and 
individual pixels experienced between zero and seven 
fires from 1988 to 2019 (Fig.  2a). The observed mean 
annual burned area across the study area from 1988 to 
2019 was 3941 km2 (calculated as the area of 30 m × 30 m 
pixels whose centroid fell within fire perimeters) while 
the mean expected annual burned area based on the 
modeled wildfire probabilities was 3938 km2. Spatial pat-
terns of observed and predicted annual fire probabilities 
agreed quite well, with the higher fire probabilities occur-
ring in the northern Great Basin and lower probabilities 
toward the east (Fig.  2). Partial dependence plots illus-
trated that the predicted wildfire probability was greatest 
for high annual biomass (> 75 g/m2), intermediate peren-
nial biomass (46 g/m2), high temperature (> 15 °C), inter-
mediate precipitation (487  mm), and a low PSP (0.06) 
(Fig. 3).

We found a modestly sloped positive relationship 
between predicted wildfire probability and temperature. A 
strong negative relationship between wildfire probability 
and PSP was evident (except for a positive relationship at 
the lowest few percentiles of PSP), which reflects the fact 
that the eastern portion of the sagebrush region receives 
a large proportion of precipitation in summer (Fig. 1) and 
has fewer fires (Fig.  2) than the Great Basin to the west. 
We observed a positive, saturating relationship between 
annuals and wildfire probability (Fig. 3d). Predicted wild-
fire probability was most sensitive to changes in annuals 
(i.e., steepest slope) when PSP was low (dry summers) and 
least sensitive when PSP was high (wet summers) (Fig. 3d). 
Across the ranges of temperature, precipitation, PSP, and 
perennials, the predicted wildfire probability was low if 
biomass of annuals was low (20th percentile) (Fig. 3a–c, e).

The shapes of predicted wildfire probability shown in the 
“quantile” plots (Fig. 4) differ somewhat from those repre-
sented by the partial dependence plots (Fig. 3), and this is 
presumably because of the non-independence of climate 
and biomass predictor variables as well as interactions 
between variables. The partial dependence plots (Fig.  3) 
illustrate how the mean model predictions shift when 
the value of a given variable is changed, while other vari-
ables remain unchanged. The quantile plots are different, 
in that they allow for the comparison of wildfire probabil-
ity between actual areas that, for example, have high (e.g., 
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95th percentile) versus low (e.g., 5th percentile) biomass of 
annuals. Because of non-independence between climate 
and vegetation variables, such areas will also differ in other 
ways, for example, areas with few annuals tend to be cooler 
than those with abundant annuals (Fig. 5a).

There was high agreement in quantile plots between the 
average observed and predicted wildfire probability across 
the ranges of all predictor variables (Fig. 4). Both observed 
and predicted wildfire probability increased with annual 
biomass, decreased with PSP, and was highest at interme-
diate levels of perennial biomass, temperature, and pre-
cipitation (Fig.  4). Notably, relationships between wildfire 
probability and annual and perennial biomass varied with 
climate (Fig. 5). The relationship between annual biomass 
and wildfire probability was much stronger in areas that 

have dry summers (< 20 percentile PSP) compared to areas 
with wet summers (> 80th percentile PSP) (Fig. 5e). Addi-
tionally, for a given amount of annual biomass, the mean 
observed and predicted wildfire probability tended to be 
higher in areas with high (> 80th percentile) annual precipi-
tation (Fig. 5e).

The equation of our final model (Eq. 1) is not supported 
by data outside of the range of the data we used for model 
fitting (Additional file  1: Appendix  2). For instance, the 
maximum value of annual biomass in our dataset was 
190  g/m2, and predictions of fire probability at higher 
biomass values are not supported. Most variables in the 
model have coefficients such that very high values of the 
variable would cause wildfire probability to approach 
zero (i.e., downward facing parabolic shapes; Fig. 3).

(1)
y = −92.86+ 14.01log(AFG + 1)− 0.8117log(AFG + 1)2 + 0.5054PFG0.5

− 0.03730PFG

+0.02672T + 49.25log(P + 1)− 8.236log(P + 1)2

−7.505log(PSP + 0.001)− 3.118log(PSP + 0.001)2

−4.047log(AFG + 1) ∗ log(P + 1)

Fig. 3  Partial dependence plots depicting the effect of the five predictor variables on modeled annual wildfire probability. The primary (left) 
y-axis shows the mean predicted wildfire probability for a fixed level of a given predictor variable, and the secondary (right) y-axis shows 
the corresponding fire return interval (FRI). The black line shows the mean predicted fire probability across all combinations of values of the other 
predictor variables. The colored dashed (solid) lines show the mean predicted wildfire probability when one of the other predictor variables is held 
at its 20th (80th) percentile. The 9 tick marks above the x-axis show the 10th to 90th percentiles (in increments of 10); the darker tick marks are 
the 20th and 80th percentiles. The x-axes show a mean temperature, b annual precipitation, c proportion summer precipitation, d aboveground 
biomass of annual forbs and grasses, and e aboveground biomass of perennial forbs and grasses
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where

Or if written in terms of p:

Abbreviations
log = base 10 logarithm
p = annual wildfire probability
AFG = annual forb and grass aboveground biomass 

(g/m2)* 
PFG = perennial forb and grass aboveground biomass 

(g/m2)* 
T = mean temperature (K)* 
P = annual precipitation (mm)* 
PSP = proportion summer precipitation (proportion 

of annual precipitation received in June to August)* 
*These variables were calculated as 3-year running 

averages (mean of the current and previous 2 years) 

y = ln(
p

1− p
)

p =
1

1+ e−y

Cross‑validation
Cross-validation results suggested that overall, the fit 
of our final model was fairly robust (Additional file 1: 
Appendix  3). Partial dependence plots showed that 
most of the relationships represented in our model 
remained stable when five different training datasets, 
each representing ~ 80% of the entire dataset, were 
used (Additional file  1: Fig. S3). These five models 
also reproduced observed patterns in wildfire prob-
ability quite well for associated test datasets (Addi-
tional file 1: Appendix 3). The slope of the relationship 
between predicted wildfire probability and annual bio-
mass varied the most between the five cross-validation 
models, suggesting it was the term in the model with 
the greatest uncertainty. For example, when we with-
held the northeast most portion of the study area 
from the dataset, which has less frequent wildfire 
than much of the rest of the region, the relationship 
between annual biomass and wildfire probability was 
stronger (Additional file 1: Fig. S3), and, consequently, 
that model then substantially over-predicted mean 

Fig. 4  Comparison of mean observed and predicted annual wildfire probability. Panels show the mean observed (black circles) and predicted 
(blue triangles) annual wildfire probability for each percentile of a mean temperature, b annual precipitation, c proportion summer precipitation, d 
aboveground biomass of annual forbs and grasses, and e aboveground biomass of perennial forbs and grasses. Corresponding fire return intervals 
(FRI) are shown on the secondary (right) y-axis. Data were binned by percentile (i.e., 100 bins) of a given predictor variable, and the x-axis (a–e) 
shows the mean value of each percentile of that variable. To illustrate, the right-most black circle in d shows the mean observed wildfire probability 
across all pixels where biomass of annuals is between the 99th and 100th percentile, and the rightmost blue triangle in that panel shows the mean 
predicted wildfire probability for those same pixels. Each point represents the mean of ~ 250,000 observations (i.e., 1% of the entire dataset). In f, 
the mean observed and predicted annual wildfire probability values shown in a–e are plotted against each other (1:1 line shown for reference)
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Fig. 5  Assessment of model performance at extreme climate conditions, showing low (blue) and high (red) values of the three climate predictors. 
Main panels show observed (circles) and predicted (triangles) mean annual wildfire probability across a range of aboveground biomass of (a, c, 
e) annual grasses and forbs and (b, d, f) perennial grasses and forbs. Corresponding fire return intervals (FRI) are shown on the secondary (right) 
y-axis. Data are shown separately for pixels having low (< 20th percentile; reds) or high (> 80th percentile; blues) levels of a, b mean temperature; 
c, d annual precipitation; and e, f proportion summer precipitation (PSP). Biomass values were binned by percentile, and the mean observed 
and predicted annual wildfire probability is shown for each percentile of biomass. To illustrate, the right-most red circle in panel a shows the mean 
observed wildfire probability across pixels with low precipitation (< 20th percentile) where biomass of annuals is between the 99th and 100th 
percentile, and the right-most yellow triangle in that panel shows the mean predicted wildfire probability for those same pixels. Each point on 
the figure represents the mean of ~ 50,000 observations. Best fit lines in the main panels were generated using locally estimated scatterplot 
smoothing and are included to help visualize the trends in the data. In the insets, the mean observed and predicted annual wildfire probability (%) 
values shown in the main panels are plotted against each other (1:1 line shown for reference), with colors representing data from areas with low 
(red) and high (blue) levels of the respective climate variable. The 20th (low) and 80th (high) percentiles of the climate variables were 6.7 °C 
and 10.9 °C temperature, 226 mm and 420 mm precipitation, and 0.104 and 0.321 PSP, respectively
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wildfire probability in the northeast (Additional file 1: 
Table S2). The relationship with temperature also var-
ied between models fit to the five training datasets 
(Additional file 1: Fig. S3).

Model sensitivity to changes in climate and vegetation
The model generated plausible estimates of wildfire prob-
ability under altered climate and vegetation conditions 
(Fig. 6). Overall, changes in predicted wildfire probability 
(both increases and decreases) were most common in the 
northern Great Basin, where wildfire probability is cur-
rently high. The model was more sensitive to changes in 
the biomass of annuals than perennials. A 20% increase 
in annuals caused an 11% increase in expected burned 
area, with wildfire probability increases occurring almost 
everywhere (Fig.  6h), but increases were very small in 
areas that currently have low wildfire probability (Addi-
tional file 1: Appendix 4). By comparison, a 20% increase 
in perennials caused a 3% decrease in the expected 
burned area, which reflects increases in predicted wild-
fire probability in areas that currently have few perennials 
and decreases where they are currently more abundant. 
Warmer temperatures caused consistent, but fairly 
small increases in predicted wildfire probability across 
the study area, with 5  °C warming translating to a 14% 
increase in the expected annual burned area. Increasing 
annual precipitation by 20% generally increased wildfire 
probability, except for in a few very wet locations where 
decreases were predicted (11% increase in expected 
burned area overall). Lowering PSP (i.e., drier summers) 
increased predicted wildfire probability (13% increase 
in expected burned area), while increased PSP reduced 
wildfire probability (12% decrease in expected burned 
area).

Discussion
Model overview
We built a closed-form statistical model under the prin-
ciples of parsimony, which was able to successfully 
reproduce much of the substantial variation in wildfire 
patterns across the sagebrush region. The model includes 
only five variables: three that represent key aspects of 
climate and two vegetation variables that represent the 

availability of fine fuels. A benefit of our model is that it 
represents fairly simple ecologically plausible relation-
ships (Fig. 3) and therefore may be more likely to perform 
reasonably under novel conditions (Bell and Schlaepfer 
2016). Unlike some previous efforts, our model was fit 
using data from across the entire sagebrush region and 
complements existing, more complex regional mod-
els. Wildfire frequency varies substantially across the 
sagebrush region which spans a wide range in climate 
and fuels conditions and consists of plant communi-
ties dominated by one of several big sagebrush subspe-
cies that form both sagebrush semidesert shrubland and 
sagebrush-steppe ecosystems. Our model may prove use-
ful for those trying to understand the general effects that 
changes in climate and vegetation have on mean annual 
wildfire probabilities across this region. Because the 
model forms relatively straightforward links to underly-
ing drivers of wildfire probability, it should be well suited 
for integration into ecological simulation models used for 
assessing long-term ecosystem dynamics in the context 
of climate change (e.g., Palmquist et al. 2021).

Our results suggest that both annual and perennial 
grass and forb biomass influence wildfire probability, 
although the shape of those relationships differ. Observed 
wildfire probability was highest in areas with high annual 
biomass. Cheatgrass, an invasive species, is the dominant 
annual grass in sagebrush ecosystems, and the increase 
in wildfire probability with annual biomass is consistent 
with the well-documented phenomenon of increased 
wildfire following cheatgrass invasion (Bradley et al. 2018; 
Pastick et al. 2021; Smith et al. 2022). Our model suggests 
that wildfire probability increases most sharply when 
the abundance of annuals goes from low to moderate 
implying that the ability of annuals to carry fire increases 
quickly, even before they become highly abundant. These 
results are similar to Bradley et  al. (2018) who found 
that areas with even fairly small amounts of cheatgrass 
were associated with increased wildfire frequency. Both 
our model (Fig.  3) and the observational trends (Fig.  5) 
indicate that when there are few annuals, wildfire prob-
ability is low, regardless of the climatic conditions. This 
is consistent with the notion that wildfire “needs” annual 
grasses in this region (Smith et  al. 2023). However, it is 

Fig. 6  Evaluation of model sensitivity to key climate and vegetation variables. The panels show the distribution, across pixels, of the change 
in the predicted number of times a location will burn per 100 years in response to a 2 °C and b 5 °C increases in the mean temperature and 20% 
decreases and 20% increases in c, d annual precipitation; e, f proportion summer precipitation; g, h biomass of annuals; and i, j biomass 
of perennials. The dotted lines show the minimum and maximum changes. Individual values shown in the histogram are based on the mean 
change in predicted wildfire probability across years at a pixel in response to the change in a given predictor variable. The numbers on the panels 
present the mean change in the expected burned area per year across the study area, relative to the annual burned area predicted under observed 
(ambient) conditions. We would like to underscore that these are examinations of model sensitivity and are not climate change projections. 
Ongoing work will integrate this model into a plant community model that will simulate climate and vegetation changes under climate change

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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important to note that our cross-validation results indi-
cate uncertainty in the magnitude of the effect of annual 
biomass on modeled wildfire probability. Additionally, 
the spatial dataset we used did not distinguish between 
native and invasive annuals, and while cheatgrass and 
other invasive annual grasses do generally represent the 
majority of the annual herbaceous plant biomass in this 
system (Dahal et al. 2022), native forbs are also an impor-
tant component of the plant community that do not have 
the same effect on the wildfire as cheatgrass.

In contrast to annuals, our model indicates that wildfire 
probability peaks at intermediate levels of perennial grass 
and forb biomass. Smith et al. (2022) found that wildfire 
probability peaked at a perennial biomass (~ 300  g/m2) 
that was higher than suggested by our model. This differ-
ence could be because their model was trained using veg-
etation data at a higher spatial and temporal resolution 
than ours, which resulted in a wider range of biomass 
values, and their study area was restricted to the Great 
Basin, which receives less summer precipitation than 
other parts of the sagebrush region that we included.

In addition to annual and perennial herbaceous bio-
mass, we identified three climatic variables, which were 
related to wildfire probability: mean temperature, annual 
precipitation, and proportion summer precipitation 
(PSP), which we defined as the mean proportion of pre-
cipitation that falls in June through August. These vari-
ables were meant to capture recent climatic conditions 
and were calculated as a 3-year running average (e.g., the 
mean of annual precipitation in the current and preced-
ing 2  years). PSP helped distinguish the fire regimes of 
the Great Basin in the west and the Great Plains in the 
east. Wildfire probability was much higher in areas with a 
low PSP. Much of the sagebrush region has a cool season-
dominated precipitation regime, but the north-eastern 
portion (western Great Plains, northeastern Wyoming) of 
the region, which has the highest perennial biomass, has 
a more summer-dominated precipitation regime (Fig. 1, 
Additional file 1: Table S2). Despite the additional availa-
ble fine fuels in this area, the wetter summers may be the 
cause of the lower burn frequency we observed (Addi-
tional file 1: Table S2). The abundance of grasses relative 
to shrubs is higher in summer-dominated precipitation 
regimes (Paruelo and Lauenroth 1996; Renne et al. 2019), 
and the pulses of water throughout the summer wets veg-
etation directly and allows grasses to retain greenness 
longer, thereby likely maintaining fine fuel moisture later 
in the growing season.

The frequency of observed wildfires varied with tem-
perature and precipitation, with the highest wildfire 
frequency occurring at intermediate levels of both tem-
perature and precipitation. High wildfire probability at 
intermediate precipitation may occur because grass and 

forb growth (and thereby fine fuels) increases with pre-
cipitation, but in general, fuel moisture is higher when 
there is abundant precipitation (Flannigan et  al. 2016), 
creating a trade-off between fuel quantity and fuel mois-
ture and flammability. Similarly, more wildfires occurred 
in areas with intermediate temperature, which may also 
reflect a trade-off between fuel moisture and quantity, 
where under the hottest conditions, fuels will dry eas-
ily, but plant growth and thereby fuels are more limited. 
However, in our model, predicted wildfire probability 
increased with temperature across the entire range of 
temperature, suggesting that after accounting for the 
availability of fine fuels, warmer conditions increase wild-
fire probability.

Because we used running 3-year averages of climate 
and vegetation data to fit our model, it is more useful for 
understanding the potential impacts of general shifts in 
climate and vegetation, rather than short-term changes 
such as the effect an exceptionally warm spring might 
have on wildfire probability that summer. Using aver-
age climate and vegetation data is more computationally 
tractable, and the data are more readily available; how-
ever, using climate variables tends to produce weaker 
correlations with burned area than daily or monthly 
weather metrics (Riley et al. 2013). In this way, our model 
complements previous models—often more complex 
ones based on machine learning—that incorporate more 
near-term antecedent conditions such as, for example, 
total precipitation the preceding season or month (Abat-
zoglou and Kolden 2013; Pastick et al. 2021; Smith et al. 
2022). Such models have sometimes been created with 
the explicit goal of helping predict fire risk in the upcom-
ing year (Maestas et al. 2022; Smith et al. 2022).

Despite the different modeling approaches we used, 
the spatial patterns in wildfire probability we predict 
are broadly similar to a previous statistical model of 
wildfire probability that was fit to a large portion of the 
sagebrush region (r = 0.80; Pastick et al. 2021) as well as 
to burn probabilities for the sagebrush region developed 
via Monte Carlo simulation (r = 0.68; Short et  al. 2023; 
Additional file 1: Appendix 5). In line with the observa-
tional data, our model predicts the highest wildfire prob-
ability in the northern Great Basin (northern Nevada and 
southern Oregon and Idaho) and lower wildfire probabil-
ity in the southern and eastern portions of the sagebrush 
region (Fig.  2). Across the Great Basin, our results also 
correlate well (r = 0.82) with the modeled estimates from 
Smith et al. (2022) (Additional file 1: Appendix 5).

Model sensitivity to climate and vegetation
To ensure that our model is appropriate for use in 
studies on the impacts of shifts in climate and veg-
etation, we evaluated the sensitivity of our model to 
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univariate modifications of three climate variables 
(+ 2  °C and + 5  °C warming and ± 20% changes in pre-
cipitation and PSP) and two vegetation variables (± 20% 
changes in biomass of annuals and perennials). For 
context on the magnitude of these changes, by the end 
of the century under a CMIP6 intermediate greenhouse 
gas emissions scenario (SSP2-4.5), 2.5 to 5.2  °C warm-
ing, and 0.6 to 15% increases in the mean annual pre-
cipitation are projected for western North America 
(Gutiérrez et al. 2021). We did not evaluate full climate 
change projections here, although these analyses are 
planned in future studies that will include associated 
changes in vegetation and fuels. Overall, our sensitiv-
ity analysis of climate variables showed that predicted 
wildfire probability responses to 5  °C warming and 
to ± 20% changes in precipitation and PSP were all of 
fairly similar magnitudes (11–20% changes in expected 
burned area), and 2  °C warming caused the small-
est change (5% increase in expected burned area). The 
univariate modification of + 5  °C increased annual 
wildfire probability by less than 0.1 percentage points 
in most places, with maximum increases of about 0.5 
percentage points (Additional file  1: Appendix  4). For 
comparison, using a fire spread simulation approach, 
Riley and Loehman (2016) estimated a 0.35 percentage 
point increase in wildfire probability in northern Idaho 
shrublands by the mid-twenty first century in response 
to climate change under a medium–high emissions 
scenario. Similarly, Gao et  al. (2021) used a simpler 
physically based model that relies on climate to predict 
wildfire probability and found that, due to warming, 
wildfire probability is likely to increase in most regions 
of the USA. However, the model from Gao et al. (2021) 
did not incorporate vegetation and may have limita-
tions in the sagebrush region where, even under fixed 
climate conditions, annual grass invasion can strongly 
impact the fire cycle.

We found that our model was very sensitive to changes 
in the abundance of annuals, with an 11% increase in 
expected burned area in response to a 20% increase in 
annuals. This is a relatively large change in the expected 
burned area in response to a fairly small increase in 
annuals, especially given that portions of the sagebrush 
region have experienced roughly a doubling in biomass 
of annuals over the last three decades (Additional file 1: 
Appendix 1). The increase in wildfire probability that 
drove this change in burn area was mostly concentrated 
in the northern Great Basin (Additional file  1: Appen-
dix 4), but we expect it would be more widespread with 
larger increases in annuals. By comparison, predicted 
wildfire probability responses to changes in the biomass 
of perennials were more limited and varied geographi-
cally (Additional file 1: Appendix 4).

Limitations
Our overall approach and data used create some limi-
tations on the conclusions that can be made using our 
model. The wildfire, climate, and biomass datasets we 
relied on all contain errors in their estimates. For exam-
ple, total herbaceous aboveground biomass estimated by 
RAP had a correlation of 0.63 with plot-level estimates 
(Jones et al. 2021), and errors such as these likely affected 
our model coefficients to varying degrees. The climate 
data we used was available at a 1-km resolution, and the 
biomass data was therefore averaged to that scale. Con-
sequently, we missed the wider range in biomass that 
can occur at finer spatial scales, and using vegetation 
data collected at fine scales as input into our equation 
may provide misleading estimates of wildfire probability. 
Additionally, since our model does not use fire weather 
predictors, it may be conservative under future climate 
scenarios in cases where extreme fire weather increases 
(e.g., due to increased variance of daily temperature) in a 
way that is not fully captured by changes in average con-
ditions (e.g., increased mean temperature).

Our model relies on observed spatial relationships. 
While we included only a few variables in our model, 
they were not fully independent of each other. The effect 
of multi-collinearity on individual parameter estimates in 
a model can be substantial, but fortunately, the effect on 
predictive accuracy may be relatively small. We chose to 
develop a simple model that could be incorporated into 
other climate modeling efforts and have adequate func-
tionality under novel conditions. However, even with 
a simple model such as ours, predictions under future 
conditions could become unrealistic if the model’s pre-
dictions rely more on correlative rather than causal rela-
tionships and if existing relationships between predictor 
variables change in the future. Our approach hedges 
against this problem by representing relationships that 
are biologically reasonable.

In much of the study area, infrequent fires (fire return 
intervals > 100  years) are predicted by our model. Due 
to the relatively short period (1988–2019) of wild-
fire data used, we, and other researchers using similar 
datasets, rely on space-for-time substitution for these 
kinds of estimates. Additionally, our model implicitly 
incorporates both spatial and temporal relationships, 
but our study region is very large and spans wide cli-
mate gradients, so in the dataset we used, the spatial 
variability in climate is generally larger than temporal 
variability in climate, and therefore, our model is heav-
ily influenced by those spatial patterns. As a result, pro-
jections using our model assume, for example, that if a 
cool site becomes hotter, it will eventually have similar 
fire regime characteristics to a site that has a hot cli-
mate today. This assumption is problematic if or when 
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climate and vegetation are in disequilibrium lead-
ing to a mismatch between new and legacy conditions 
(Felton et al. 2022; Parks et al. 2016). For example, if a 
site has accumulated fuel because it historically expe-
rienced high plant productivity, but then becomes hot 
and dry (and less productive), it may have elevated fire 
risk while legacy fuel loads are still present. In compari-
son with forests, such a mismatch between climate and 
fuels may be less strong in sagebrush ecosystems over 
the long run due to the shorter-lived nature and lower 
overall biomass contributions of the vegetation.

In addition to climate and vegetation, factors such as 
proximity to roads, likelihood of human ignitions, abil-
ity of fire to spread from adjacent land, storm tracks, 
fuel treatments, and other disturbances are likely also 
important for understanding wildfire probability in 
sagebrush communities. In addition, fire extent is heav-
ily influenced by fire suppression efforts. While these 
influences are broadly reflected in the wildfire occur-
rence data we used, we did not directly capture them 
in our model because we wanted to keep it focused on 
vegetation and climate dynamics. More complex spatial 
modeling approaches such as FSim can directly incor-
porate some of these additional factors (Finney et  al. 
2011); however, substantial uncertainty exists in their 
future extent, making them challenging to include in 
estimates of climate change effects on fire. The source 
of wildfire ignition is, for example, an important factor 
affecting wildfire trends, and there is substantial spatial 
variation in the fraction of fires that are human-caused 
(Balch et al. 2017).

Over the past few decades, human-caused fires have 
become more frequent within the sagebrush region 
(National Interagency Fire Center). Human ignitions 
have lengthened the fire season because they can occur 
in wetter fuels and also in areas with few lightning 
strikes (Balch et  al. 2017). To try and at least partially 
assess whether our results were sensitive to the deci-
sion of ignoring ignition sources, we fit another model 
that included the same vegetation and climate predictor 
variables, but with a measure of human modification on 
the landscape (Theobald et  al. 2020) added as another 
predictor variable (Additional file  1: Appendix  6). We 
included this additional variable to act as a rough proxy 
for the level of human activity and thereby the potential 
for human-caused ignitions. Including this additional 
variable did not change the influence of the other vari-
ables in the model (i.e., little change in coefficients of 
the other variables; Additional file  1: Table  S3). This 
suggests that the climate and vegetation relationships 
represented in our model are not unduly affected by the 
direct effects of human activity (at least based on the 
available data used).

Next steps
Feedbacks between climate, vegetation, and wildfire are 
complex to model, and further research is needed to 
better understand these interactions. For our sensitivity 
analysis, we calculated the change in predicted wildfire 
probability in response to a fixed change in one variable 
at a time, which clearly does not reflect a real climate 
change scenario. To address this, we are in the process of 
incorporating our wildfire model into an individual plant-
based model (STEPWAT2; Palmquist et al. 2018), which 
will enable us to explore fire-vegetation-climate interac-
tions in the sagebrush region. Since our wildfire model 
can be expressed in a closed-form equation that relies 
on only five variables, incorporating it into such a plant 
dynamics model can, at least in some cases, be relatively 
straightforward. Prior to utilizing it for such purposes, 
we advise researchers to consider the robustness of the 
relationships the model depicts and whether its incorpo-
ration of average antecedent conditions (as opposed to 
fire weather) is appropriate for their specific needs.

Conclusion
Understanding the drivers of fire in sagebrush ecosystems 
is important because these ecosystems are undergoing 
rapid change largely driven by the invasion of highly flam-
mable annual grasses and subsequent wildfire-induced 
habitat degradation. We found that annual wildfire prob-
ability varied greatly across the sagebrush region and that 
these observed patterns could be represented quite well by 
a logistic regression model that included two vegetation 
(biomass of annual and perennial grasses and forbs) and 
three climate (temperature, precipitation, PSP) predictor 
variables. Our model was fit using 3-year averages of ante-
cedent climate and fine fuels from the entire sagebrush 
region and should be reasonably robust under novel con-
ditions because it consists of ecologically plausible rela-
tionships that capture a wide range in climate and fine fuel 
conditions. It thereby complements existing more complex 
models that were fit using annual (or sub-annual) data and 
forms an additional tool for understanding and modeling 
wildfire and global change impacts on vegetation in the 
ecologically and economically important sagebrush region.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s42408-​024-​00252-4.

Additional file 1: Appendix 1. Time-series of biomass of annuals. Fig. S1. 
(Left) Time-series of aboveground biomass of annual forbs and grasses. 
Different colors represent five climatically different regions or ‘folds’ of the 
study area (Fig. S2). The solid lines show the mean biomass across pixels in 
the fold that have burned at least once between 1988-2019 and dashed 
lines show the mean biomass across pixels that never burned during that 
time period. (Right) Ordinary least squares regression lines fit to the values 
shown in the left panel. Appendix 2. Predictor variable summary 
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statistics. Table S1. Summary statistics describing the central tendency 
and range of predictor variables used to fit the wildfire probability 
model. Using the model to make predictions with input values of 
predictor variables that are below the minimums or above the 
maximums provided here would not be supported by the data we 
used. Predictor variables were three-year running averages of mean 
temperature, annual precipitation, proportion summer precipitation, 
and aboveground biomass of annuals and perennials. For example, the 
minimum temperature presented here represents the lowest three year 
mean temperature that occurred in a 1 km pixel in the sagebrush 
region between 1988 and 2019. Appendix 3. Model bias assessment 
and cross validation. Fig. S2. Environmental blocking was used to 
categorize individual pixels into each of 5 blocks or ‘folds’ based on 
similarity of mean annual temperature, mean annual precipitation, and 
the mean proportion of precipitation received in summer. Observed 
and predicted wildfire probability for each fold is provided in table S2, 
to summarize regional bias in the model. Data from pixels in a given 
fold was also used to create a test dataset, while the remaining four 
folds were used as the training dataset. Separate models were fit to 
each of these five training datasets (Fig. S3). Table S2. Mean values of 
each predictor variable, and observed and predicted wildfire 
probability, across pixels belonging to each of five environmental 
blocks or ‘folds’ shown in Fig. S2. Also provided are the mean 
region-wide values (i.e., means across all pixels). Fig. S3. Partial 
dependence plots depicting the effect of the five predictor variables on 
modeled annual wildfire probability. Separate lines show results for 
models fit to each of five training datasets (where one fold was left out) 
as well as the final model fit to the complete (‘biome-wide’) dataset. For 
a given model, the y-axis shows the average predicted wildfire 
probability (percent wildfire probability per year) for a fixed level of a 
given predictor variable, across observations of the other predictor 
variables. Along the x-axis panels show a) mean temperature, b) annual 
precipitation, c) proportion summer precipitation, d) aboveground 
biomass of annual forbs and grasses, and e) aboveground biomass of 
perennial forbs and grasses. Fig. S4. Mean observed and predicted 
annual wildfire probability values for fold 1 (model fit to data from the 
other four folds). See Fig. 4 in the manuscript for details on interpreta-
tion. Fig. S5. Mean observed and predicted annual wildfire probability 
values for fold 2 (model fit to data from the other four folds). See Fig. 4 
in the manuscript for details on interpretation. Fig. S6. Mean observed 
and predicted annual wildfire probability values for fold 3 (model fit to 
data from the other four folds). See Fig. 4 in the manuscript for details 
on interpretation. Fig. S7. Mean observed and predicted annual 
wildfire probability values for fold 4 (model fit to data from the other 
four folds). See Fig. 4 in the manuscript for details on interpretation. Fig. 
S8. Mean observed and predicted annual wildfire probability values for 
fold 5 (model fit to data from the other four folds). See Fig. 4 in the 
manuscript for details on interpretation. Appendix 4. Sensitivity 
analysis. Fig. S9. Evaluation of model sensitivity to changes in climate 
and vegetation variables.  Panels show the projected change in the 
number of fires per 100 years in response to a) 2 °C and b) 5 °C 
increases in mean temperature,  and 20% decreases and 20% increases 
in (c, d) annual precipitation, (e, f ) proportion summer precipitation, (g, 
h), biomass of annuals and (i, j) biomass of perennials. Gray on the maps 
denotes areas with negligible changes in wildfire frequency (less than 
0.1 additional or 0.1 fewer fires per 100 years). Histogram insets present 
the distribution of values shown on the maps (these are the same 
histograms as shown in Fig. 6 in the manuscript, except here x-axis 
limits were restricted to allow for easier comparison of distributions). 
Appendix 5. Dataset comparison. Fig. S10. Comparison between 
wildfire probability estimated by the model presented in this 
manuscript and long-term wildfire probability modeled by Pastick et al. 
(2021). The values from Pastick et al. represent the probability of wildfire 
occurring in a given location over a long period of time (1988-2019). 
Values from Pastick et al., were aggregated from a 30m x 30m 
resolution to a 1km x 1km resolution. Points on the figure represent a 
random sample of pixels in the western and central part of the 
sagebrush region where the two datasets overlap. The Pearson 
correlation between the datasets is 0.80. Fig. S11. Comparison 
between wildfire probability estimated by the model presented in this 

manuscript and burn probability modeled by Short et al. (2023). Values 
from Short et al. (2023) were aggregated from 250 m x 250 m to a 1km x 
1km resolution and converted to % (i.e., multiplied by 100). A random 
sample of pixels is shown (both datasets cover the entire sagebrush 
biome). The Pearson correlation between the datasets is 0.68. An ordinary 
least squares regression line is shown in blue, and the 1:1 line is in black. 
Fig. S12. Comparison between wildfire probability estimated by the 
model presented in this manuscript and relative wildfire probability 
modeled by Smith et al. (2022). Annual predicted values (1988-2019) from 
Smith et al. (2022) were averaged across years and aggregated to a 1km x 
1km resolution. Points on the figure represent a random sample of pixels 
in the Great Basin which is where the two datasets overlap. The Pearson 
correlation between the datasets is 0.82. Appendix 6. Including human 
modification as a predictor of annual wildfire probability. Table S3. 
Comparison of model coefficients between our main model (described in 
the manuscript), and a model with human modification (HMod) added as 
an additional predictor variable. Note that including HMod only caused 
small changes in the other coefficients. Both models were logistic 
regression models so that the probability of ‘success’ (fire) in a given year 
could be modeled. A logit link function was used. Fig. S13. Partial 
dependence plots depicting the effect of the predictor variables on 
modeled annual wildfire probability and showing the similarity between 
the main model (which is described in manuscript; blue) and the model 
where human modification was included as an additional predictor 
variable (black). The y-axis shows the average predicted wildfire 
probability for a fixed level of a given predictor variable, across all 
combinations of values of the other predictor variables. Rugs on the x-axis 
show the deciles (10th - 90th percentiles) of the predictor variable. Along 
the x-axis panels show a) mean temperature, b) annual precipitation, c) 
the proportion of precipitation that falls in summer (June-Aug), d) 
aboveground biomass of annual forbs and grasses, e) aboveground 
biomass of perennial forbs and grasses, and f ) human modification. Fig. 
S14. Comparison of mean observed and predicted annual wildfire 
probability for the model where human modification was included as an 
additional predictor variable. Panels show mean observed (black circles) 
and predicted (blue triangles) annual wildfire probability for each 
percentile of a) mean temperature, b) annual precipitation, c) the 
proportion of precipitation that falls in summer (June-Aug), d) above-
ground biomass of annual forbs and grasses, e) aboveground biomass of 
perennial forbs and grasses, and f ) human modification. Data were binned 
by percentile (i.e., 100 bins) of a given predictor variable, and the x-axis 
shows the mean value of each percentile of that variable. To illustrate, the 
right most black circle in panel d) shows the mean observed wildfire 
probability across all pixels where biomass of annuals is between the 99th 
and 100th percentile, and the rightmost blue triangle in that panel shows 
the mean predicted wildfire probability for those same pixels. Each point 
on the figures represents the mean of ~250,000 values (i.e., 1% of the 
entire dataset). Fig. S15. (a) Annual wildfire probability predicted by the 
model that used human modification in addition to historical average 
vegetation, and climate conditions as predictors. These modeled values 
represent the probability (%) of fire occurring in a given year. (b) The 
change in predicted wildfire probability shown in panel (a) and the 
wildfire probability predicted by the main model (which does not include 
human modification as a predictor; shown in Fig. 2a). Blues indicate that 
the model that included human modification predicted lower wildfire 
probability, whereas reds indicate that this model predicted higher 
wildfire probability. Appendix 7. Variable importance. Fig. S16. Variable 
importance of all variables in the logistic regression model presented in 
the manuscript. Here variable importance was defined as the absolute 
value of the test statistic (z) of the respective coefficient. Both climate and 
vegetation variables are three year running averages (i.e., mean of the 
current year and previous two years). Abbreviations: T, temperature; P, 
annual precipitation; PSP, proportion summer precipitation; AFG, 
aboveground biomass of annual forbs and grasses; PFG, aboveground 
biomass of perennial forbs and grasses; log, base 10 logarithm. 
Interactions between variables are denoted by ‘:’.
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