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Drought triggers and sustains overnight 
fires in North America

Kaiwei Luo1 ✉, Xianli Wang1,2 ✉, Mark de Jong3 & Mike Flannigan1,4

Overnight fires are emerging in North America with previously unknown drivers and 
implications. This notable phenomenon challenges the traditional understanding  
of the ‘active day, quiet night’ model of the diurnal fire cycle1–3 and current fire 
management practices4,5. Here we demonstrate that drought conditions promote 
overnight burning, which is a key mechanism fostering large active fires. We examined 
the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events 
(OBEs, each defined as a night when a fire burned through the night) in North America 
during 2017–2020 using geostationary satellite data and terrestrial fire records.  
A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE 
was identified in 20% of these large fires. OBEs were early onset after ignition and OBE 
frequency was positively correlated with fire size. Although warming is weakening the 
climatological barrier to night-time fires6, we found that the main driver of recent 
OBEs in large fires was the accumulated fuel dryness and availability (that is, drought 
conditions), which tended to lead to consecutive OBEs in a single wildfire for several 
days and even weeks. Critically, we show that daytime drought indicators can predict 
whether an OBE will occur the following night, which could facilitate early detection 
and management of night-time fires. We also observed increases in fire weather 
conditions conducive to OBEs over recent decades, suggesting an accelerated 
disruption of the diurnal fire cycle.

Asymmetric warming, in which nights are warming more rapidly than 
days resulting from anthropogenic climate change7,8, may markedly 
affect diurnal fire activity. Although changing daytime conditions9 are 
known to exacerbate fires6, the potential shifts in night-time burning 
have received less attention, as night-time fires are typically hindered 
by cooler and moister atmospheric conditions and increased moisture 
in fine fuels10. This conventional understanding of the day–night fire 
pattern has been widely applied to fire suppression4 and prescribed5, 
cultural1 and agricultural2,3 burning. However, recent reports from 
frontline firefighters and satellite observations have indicated an 
increase in the frequency and duration of night-time fire incidents 
in Canada and the USA and an increase in the number and intensity of 
night-time fire ‘hotspots’6,11. These findings raise concerns that increas-
ing night-time flammability in certain regions may be expanding the 
diurnal burning period towards a tipping point, at which the absence 
of night-time conditions acting as a break on fire activity could lead to 
self-perpetuating overnight burning and thus larger, longer-duration 
fires.

Satellite-based active fire products provide consistent observations 
of fire activity over many years12. However, existing research13–15 on fire 
diurnal cycles has primarily focused on regional-scale patterns, with 
fire extent and intensity often peaking in the mid-afternoon. Studies 
have shown that night-time fire seasons are shorter than daytime fire 
seasons in most Australian10 and global6 climate regions. Night-time 

hotspots tend to be present during the peak fire season6,16 and are more 
commonly associated with large fires, especially in arid regions17 and 
under extreme droughts11. Although local cases of overnight fire have 
been documented18, we were unable to find any methodical studies 
exploring this phenomenon and its implications or its underlying driv-
ing factors.

Fire activity has been widely linked to weather conditions captured 
by fire weather indices and meteorological parameters, such as the 
Canadian Fire Weather Index System (CFWIS)19 and vapour pressure 
deficit (VPD, a widely used metric measuring how rapidly the atmos-
phere dries fuel)20. The CFWIS components are the most commonly 
used indices for both operational and research purposes regionally21,22 
and globally23–25. The CFWIS first tracks potential fuel moisture con-
ditions in surface fine fuel and moderate and deep organic layers at 
daily or hourly time steps26, capturing the varying speeds with which 
these fuels react to ambient weather. Using the resulting fuel mois-
ture codes, the CFWIS then derives indices of potential fire behav-
iour: potential rate of spread, available fuel and fire intensity27. The 
extent to which fires can burn at night is partly governed by diurnal 
weather fluctuations28 and corresponding changes in small-diameter 
dead surface fuel moisture29. The day–night extrema values and 
range of these factors can be important for overnight burning as 
they determine both the initial conditions at the start of the night 
and night-time minima, and a smaller day–night range may sustain 
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longer-lasting night-time burning. Large-diameter dead surface fuels 
and subsurface soil and organic materials that react slowly to mete-
orological conditions may also play a key role in overnight burning as 
they provide relatively stable influences on fires11,30, despite diurnal 
meteorological fluctuations. The systematic effect of slow-reacting 
and fast-reacting fuels and weather dynamics on overnight burning  
remains unexplored.

Here we combined high-temporal-resolution active fire data from the 
Geostationary Operational Environmental Satellite-R (GOES-R) Series31 
with high-spatial-resolution terrestrial fire datasets to characterize 
the hourly fire diurnal cycle of each fire and identify OBEs (overnight 
burning events, defined as nights when fires burned through the entire 
night) in North America during the period 2017–2020 (Methods and 
Extended Data Fig. 1). The distribution, characteristics and implica-
tions of OBE fires (that is, fires with at least one OBE) were examined 
in detail. A systematic examination of fire weather metrics (including 
CFWIS and VPD) based on the European Centre for Medium-Range 
Weather Forecasts Reanalysis version 5 (ERA5)32 was conducted to 
assess underlying drivers and explore the prediction of OBEs. This 
study represents a comprehensive exploration of the overnight burning 

phenomenon, including its characteristics, implications, underlying 
drivers and prediction. It will contribute to the knowledge gap in diurnal 
fire activity and its changing nature, and has practical implications for 
night-time fire management.

Widespread and extreme overnight burning
We studied the diurnal cycles of 23,557 fires that occurred in North 
America during 2017–2020 and a total of 1,095 OBEs were identified 
in 340 fires (Fig. 1 and Extended Data Table 1). OBEs were rare in small 
fires but common in large fires. Out of a total of 21,116 fires smaller than 
1,000 ha, only 11 OBEs were identified (Extended Data Fig. 2). Large fires 
(>1,000 ha) accounted for the remaining 99% of OBEs (n = 1,084), which 
constituted 2.2% of the total nights for these large fires. Among these 
large fires, 20% were OBE fires, with this proportion rising as high as 35% 
in western mountain areas. OBEs were mostly concentrated in western 
mountain areas (temperate mountain system: 45% and subtropical 
mountain system: 31%) and the boreal region (13%), in which large fires 
were also the most prevalent. OBEs peaked in summer ( June–August) 
and autumn (September–November) in western mountain areas, with 
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Fig. 1 | Substantial overnight burning in North America, 2017–2020.  
The map shows the season (such as summer: June–August) and the number of 
OBEs per OBE fire, which are represented by the colour and size of filled circles, 
respectively. When OBEs within a fire occur in several seasons, the geographic 
position is jittered and plotted several times with different colours for clearer 
visualization. The background is coloured by biome classifications. All OBE 
fires are represented by black triangles. A total of 1,095 OBEs were identified  
in 340 out of 23,557 fires and 99% of OBEs were associated with large fires 

(>1,000 ha). Among these large fires, 20% were OBE fires. OBEs were mostly 
concentrated in western mountain areas and the boreal region. Multi-OBE fires 
were the predominant form of OBE fires and accounted for 85% of all OBEs,  
with the top 10 multi-OBE fires averaging 27.1 nights of overnight burning.  
The numbered green triangles represent two large fire cases that are discussed 
further: (1) the 2020 Creek Fire (California, subtropical mountain system)  
and (2) the 2019 McMillan Complex wildfire (Alberta, boreal region). The 
identification approach for OBEs can be found in the Methods.
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few in spring (March–May), whereas around a quarter of OBEs in the 
boreal region occurred in spring, especially in Alberta (Fig. 1).

Overnight burning potentially promotes extreme fires with larger 
burned areas and longer durations of active burning. We found a posi-
tive correlation between fire size and the number of OBEs (Fig. 2a). 
Notably, fires larger than 1,000 ha, although comprising only 10% of 
all fires, were responsible for 90% of the total area burned in North 
America during 2017–2020 based on the fire datasets analysed herein 
(Methods). Moreover, OBEs tend to occur consecutively. Multi-OBE 
fires (fires with more than one OBE) were the predominant form of 
OBE fires and accounted for 85% of all OBEs (Fig. 1 and Extended Data 
Table 1). More than 50% of OBEs were concentrated in just 14% of OBE 
fires (Fig. 2b), with the top 10 multi-OBE fires averaging 27.1 nights of 
overnight burning (Fig. 1). About two-thirds (63% and 62%, respec-
tively) of OBE fires were multi-OBE fires in temperate and subtropical 
mountain systems, which actively burned through 5.4 and 6.4 nights on 
average, respectively (Extended Data Table 1). Calculating the number 
of days between two successive OBEs in each multi-OBE fire indicated 
that most OBEs are temporally clustered, often occurring continuously 
or within a short time interval during the lifetime of a fire (Fig. 2c). For 
example, 43 OBEs were identified within 52 days of the Creek Fire in 

California during the 2020 fire season (Fig. 1 and Extended Data Fig. 3), 
resulting in a total area burned exceeding 150,000 ha. Furthermore, 
the first OBE of all OBE fires tended to occur in the first few days after 
ignition; more than 50% of the first OBEs occurred within 2 days of 
ignition and nearly one-third of the first OBEs occurred on the day of 
ignition (Fig. 2d). This leaves little time for firefighting interventions, 
which—combined with the consecutive occurrence of OBEs—increases 
the likelihood of OBE fires becoming out of control and reaching large 
final sizes.

We used Earth Observation fire products from the GOES-R geosta-
tionary satellite series as it is the only source of regular, high-frequency 
fire detections (≤15-min temporal resolution) for North America and 
is, therefore, the only satellite system capable of identifying OBEs 
(Methods). Notably, the number and characteristics of OBEs and OBE 
fires reported herein are still likely to be conservatively estimated, 
given our stringent requirements for identifying an OBE (Methods) 
and the omission errors of Earth-observation-based active fire detec-
tion algorithms (for example, cloud/vegetation canopy obscuration, 
oblique sensor observation angles and small and/or smouldering fires 
with limited fire extents and intensities that fall below the minimum 
detection thresholds)33.
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Fig. 2 | Overnight burning promotes extreme fires. a, Fire size versus the 
number of OBEs per OBE fire by biome and for all biomes combined (‘All’). 
Relationships are fitted using linear regression and, in all cases, P < 0.05, 
indicating that fire size is positively correlated to the number of OBEs. The 
shaded area surrounding the line represents the uncertainty ranges of the 95% 
confidence interval. b, Cumulative percentage of OBE fires versus cumulative 
percentage of OBEs by biome and for all biomes combined (‘All’). The 
cumulative percentage of OBE fires is ordered by the number of OBEs, with 
single-OBE fires starting at 0% and fires with the highest number of OBEs at 
100%. Dashed red lines indicate that 14% of OBE fires contributed to more  

than half of all OBEs. c, The frequency and distribution of the number of days 
between each OBE and the successive OBE in multi-OBE fires. In 67% of cases, 
OBEs occurred on two consecutive nights, indicating a frequent consecutive 
occurrence of OBEs. d, The frequency and distribution of the number of days 
between fire ignition and the occurrence of the first OBE, for all OBE fires. In 
52% of OBE fires, the first OBE occurred within 2 days of ignition and in 31%  
of OBE fires, an OBE occurred on the ignition day. For better visualization,  
the only OBE fire (1 out of 340 OBE fires) with a time interval after ignition 
exceeding 100 days was excluded from the bar chart but included in the pie chart.
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Drought drives overnight burning
Given that 99% of OBEs were detected in fires larger than 1,000 ha, we 
focused our analysis on these large fires to investigate the underlying 
factors contributing to OBEs. We examined the differences in all fire 
weather variables (including daily slow-reacting variables and the day-
time and night-time extrema values of hourly fast-reacting variables), 
as well as the day–night range of fast-reacting variables, between OBEs 
and non-OBEs within fires larger than 1,000 ha (Methods). We focused 
on this analysis in the five main biome–season groups with 100 or more 
OBEs, which included boreal summer, temperate mountain system 
summer and autumn, and subtropical mountain system summer and 
autumn (Extended Data Table 1). Substantially hotter, drier and windier 
conditions were found for OBEs compared with non-OBEs as almost all 
fire weather variables showed significantly lower (relative humidity) 
and higher (other variables) values for OBEs (one-sided Mann–Whitney 
U test, P < 0.05; Fig. 3a,b and Extended Data Fig. 4). For example, in the 
temperate mountain system autumn, the mean value of moderately 
slow-drying fuel moisture (DMC, 255.8) and potential fuel availability 

(BUI, 279.3) for OBEs were, respectively, 152% and 116% higher than 
non-OBEs (101.6 and 129.1, respectively). However, the day–night ranges 
of all fast-reacting weather variables for OBEs were not significantly 
smaller than for non-OBEs (Extended Data Fig. 5).

Moreover, to assess the fire weather extremes for OBEs, we calcu-
lated the percentile value of each OBE’s fire weather variable from fires 
larger than 1,000 ha relative to the distribution of values extracted from 
records for the years 2000–2020 and 1979–1999 in the correspond-
ing fire perimeter. The value of each fire weather variable for OBEs 
generally exceeded the 90th percentile of comparable observations 
during 2000–2020 in the same location (Fig. 3c and Extended Data 
Fig. 6), for example, BUI and DMC exceeded the 93rd and 92nd per-
centiles, respectively. Extreme fire weather conditions were indicative 
of potentially high burning intensity (FWI) and fire spread (ISI). Days 
and nights associated with OBEs were prone to becoming ‘fire spread 
days’, characterized by substantial area growth34, leading to large fire 
sizes. Notably, for OBEs, co-located fire weather percentiles calcu-
lated on the basis of the 2000–2020 climatology were significantly 
lower (paired Wilcoxon test) than those calculated on the basis of the 
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Fig. 3 | Fire weather is elevated during overnight burning and has become 
more extreme over time. a,b, Significantly greater (one-sided Mann–Whitney 
U test, P < 0.05) fire weather conditions for OBEs (red for summer and orange 
for autumn) than those for non-OBEs (grey for summer and black for autumn) 
within fires larger than 1,000 ha in the boreal (a) and temperate mountain 
system (b). We invert the y axis of these distributions in autumn for clearer 
visualization. Details for all variables in the five main biome–season groups  
are shown in Extended Data Fig. 4. c, The line-linked paired points respectively 
represent the percentile of fire weather for each OBE within fires larger than 

1,000 ha relative to comparable observations during the 1979–1999 and  
2000–2020 periods at the same geographic location. The 1979–1999 percentiles 
are significantly higher than the 2000–2020 percentiles for each fire weather 
variable (paired Wilcoxon test, P < 0.05), indicating an increasing trend in fire 
weather conditions conducive to overnight burning in recent decades. Box 
plots show the distribution of these percentile values, with a median line, mean 
triangle and box ends representing first and third quartiles. Whiskers extend to 
values within 1.5 times the interquartile range. Details for other fire weather 
variables are shown in Extended Data Fig. 6.
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1979–1999 climatology (Fig. 3c), indicating an increasing trend in fire 
weather conditions conducive to overnight burning in recent decades.

To further understand the underlying drivers of recent OBEs, we 
constructed random forest binary classification (that is, OBEs or 
non-OBEs) models35 for nights of fires larger than 1,000 ha in the five 
main biome–season groups to determine the relative importance of 
fire weather variables (Methods). We excluded ranges of fast-reacting 
variables in this analysis because of their insignificance in the previ-
ous analysis (Extended Data Fig. 5). The results indicated that cumu-
lative fuel dryness and amount (that is, drought-related variables) 
played a crucial role in supporting OBEs (Fig. 4). Specifically, either 
DMC or BUI was found to be the most important factor in all groups. 
Moreover, further analysis that included all OBEs from all fire sizes 
(Extended Data Fig. 7) and the qualitative analysis of the 2020 Creek 
Fire in California (Extended Data Fig. 3) also illustrated the dominant 
role of drought conditions on OBEs. Notably, despite the dominance 
of drought, surface fine fuel moisture (FFMC) and potential fire spread 
(ISI) also strongly influenced OBEs in boreal summer and temperate 
mountain system summer.

Overnight burning is predictable
In operational wildfire management, fire danger indices and adjective 
ratings used for decision-making are typically generated at a daily (that 
is, local noon) time step, rather than an hourly one, especially in remote 
areas36. To explore the potential predictability of OBEs (that is, whether 
the coming night is an OBE or not) in such an operational setting and to 

understand the coupling between daytime conditions and night-time 
burning, we constructed logistic regression models (Methods) for 
nights of fires larger than 1,000 ha in five main biome–season groups 
using different combinations of daily-noon slow-reacting variables 
given the importance of these variables (Fig. 4). The results indicated 
that OBEs were predictable and that daytime conditions largely set 
the foundation for their occurrence. For each biome–season group, at 
least 66% of OBEs were correctly predicted (Extended Data Table 2). For 
example, in the best-performing model for the temperate mountain 
system autumn, 82.6% of OBEs were correctly predicted (Fig. 5).

Overnight fires are an emerging challenge
Compared with interannual, annual and seasonal fire activity, diurnal 
fire activity—especially the night-time aspect—has long been over-
looked. However, the recent widespread occurrence of unexpected and 
extreme OBEs in conventional large-fire-prone areas in North America 
has highlighted the urgency of this research. 99% of OBEs were associ-
ated with large fires (>1,000 ha) and at least one OBE was identified in 
20% of these large fires. OBEs were early onset after ignition (>50% of 
the first OBE of all OBE fires occurred within 2 days of ignition) and 
OBE frequency was positively correlated with fire size. These findings 
combined with the frequent consecutive occurrence of OBEs are chal-
lenging traditional diurnal fire knowledge and current fire management 
practices. The occurrences of OBEs are associated with extreme fire 
weather, particularly intensified fuel dryness and availability (that is, 
drought conditions). Drought conditions disrupt the usual balance of 
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Fig. 4 | Drought conditions are the main driver of overnight burning. For 
each main biome–season group, we calculate the normalized mean decreases 
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to classify OBEs or non-OBEs for nights of fires larger than 1,000 ha. The 
variables are ranked from the most important to the least important. Slow- 
reacting variables are represented by dark-red horizontal bars and daytime  

and night-time extrema of fast-reacting variables by grey and black bars, 
respectively. Drought conditions play a crucial role in supporting OBEs as either 
DMC or BUI (cumulative fuel dryness or amount; drought-related variables) 
was found to be the most important factor in all groups. The performance of 
the models is evaluated by the area under the receiver operating characteristic 
curve (AUC).



326 | Nature | Vol 627 | 14 March 2024

Article

diurnal flammability and promote overnight burning, which is a key 
mechanism fostering large active fires. Our study also emphasizes 
the predictability of OBEs with daily-noon conditions, providing new 
insights into the diurnal fire cycle, with implications for night-time 
fire management.

Overnight burning presents substantial challenges for fire man-
agement. First, conditions conducive to OBEs typically occur when 
fire suppression capacity is already stretched. The extended burning 
duration, larger burned area and intensity and extreme fire behaviour 
can exponentially increase containment expenses37. Second, the early 
onset of OBEs after ignition leaves little time for firefighters to react 
and the consecutive occurrence of OBEs limits containment options. 
Multi-OBE fires, the dominant form of overnight burning, are therefore 
harder to suppress and more likely to become escaped fires. Third, 
firefighters face limited time for rehydration, sleep and reduced body 
temperature, exacerbating physical and mental stress38. Reduced vis-
ibility and more complicated night-time situations further escalate this 
adversity11,39. To cope with these challenges, early fire detection efforts 
and developing new tools that allow for more effective decision-making 
may be beneficial given the increasing budget pressures on fire man-
agement40. For example, as we show here for the first time, OBEs are 
predictable based on daytime conditions. Combining these findings 
with fire weather forecasting and real-time data assimilation of obser-
vations in an operational system could enhance strategic and tactical 
fire management decisions.

We identified that the main drivers of OBEs were cumulative fuel 
dryness and availability, which aligns with previous studies that have 
suggested that night-time fires (for example, higher occurrence17 and 
longer persistence11,18) favour drier conditions. These factors not only 
react slowly to diurnal fluctuations but also exhibit time lags of days to 
weeks19, which prevent fires from being extinguished during adverse 
night-time conditions. This may also explain why OBEs usually occur 
on consecutive or nearly consecutive nights (Fig. 2c). Nonetheless, the 
drivers of OBEs may still vary between regions and seasons, and the 
role of fast-reacting variables should not be discounted. For instance, 
nearly a quarter of boreal OBEs were identified in spring when fuel 
dryness and availability usually cannot accumulate sufficiently. The 
qualitative analysis of the 2019 McMillan Complex wildfire, Alberta 

(Extended Data Fig. 8) and previous research on large spring fires in 
Alberta41 indicate that wind may play an important role in spring OBEs 
in the boreal region. Sudden changes in night-time conditions, such as 
the passage of a dry cold front42 or the onset of heatwave conditions, 
can also weaken or even eliminate the night-time barrier to fires, result-
ing in OBEs. As well as their role in promoting OBEs, the importance of 
fast-reacting variables also lies in the fact that they can inhibit overnight 
burning. For instance, even when drought indicators have accumulated 
to high levels, these fast-reacting variables can interrupt the consecu-
tive occurrence of OBEs, as demonstrated in the qualitative analysis 
of the 2020 Creek Fire (Extended Data Fig. 3). It is also worth noting 
that cumulative fuel dryness and availability are primarily induced by 
prolonged periods of insufficient precipitation and high temperatures, 
further underscoring the significance of fast-reacting variables. Fur-
thermore, as large fires are typically associated with drought condi-
tions43, a potential consequence of the detection limits of the GOES-R 
active fire product is an increased emphasis on the role of variables 
that reflect fuel dryness and availability.

We have found a rise in extreme fire weather conditions conducive 
to OBEs in recent decades, which is consistent with the prolonged dry-
ing period (for example, extreme droughts in the western USA)44,45 
and increasing trends in fire-conducive weather during the day or 
night6,7,46. However, the relationship between diurnal fire activity and 
climate change remains largely understudied. First, as climate change 
drives the transition to flash, intensified and prolonged droughts47, 
it is expected to compress the time frame in which factors leading to 
OBEs accumulate. This could potentially result in a future scenario 
in which OBEs occur more rapidly since onset of fire and occur more 
frequently in succession, posing much greater challenges for mitiga-
tion and management. Second, warming is eroding the climatological 
barrier that traditionally restricted night-time fires6. The asymmetric 
increasing trend in fast-reacting variables, such as temperature and 
VPD, therefore holds the potential to drive broader shifts in diurnal 
burning patterns, leading to an increased occurrence of OBEs that 
may rely less on drought conditions. The nonlinear impact of asym-
metric warming, in which a slight increase in daytime temperatures 
may disproportionately enhance diurnal flammability, adds an extra 
layer of complexity to this issue. To gain a deeper understanding of 
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Fig. 5 | Overnight burning is predictable based on daytime fire weather 
conditions. Logistic regression models were built to predict whether nights  
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season group, using daily fire weather variables only. The receiver operator 
characterization curve (ROC) of each resample (background pale lines) for a 50 
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are shown in each subplot, with the overall area under the ROC (AUC) value 
presented. The recall represents the percentage of correctly predicted OBEs 

among observed OBEs. The equations in each subplot show the logistic 
equations for the model output in different biomes, in which P represents the 
probability of OBE occurrence. At least 66% of OBEs were correctly predicted 
for each group, indicating that OBEs are predictable and that daytime conditions 
largely set the foundation for their occurrence. The overall ROC, AUC, recall and 
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this complex relationship, future research should involve the examina-
tion of both fuel and climatological factors evaluated in an integrated 
day–night manner. It may also be beneficial to combine active fire 
observations from both low-Earth-orbit and geostationary platforms 
to improve OBE detection and understanding of the diurnal fire cycle. 
Furthermore, insights into how diurnal burning patterns are expected 
to shift regionally and globally in the future can provide both scientific 
and practical value for confronting future fire challenges48,49.
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Article
Methods

Study area and biome categorization
The domain of this study covers the continental United States and 
Canada. We defined our study area based on the biome categorization 
from ref. 50 and following the approach of ref. 9, but further combined 
boreal coniferous forest, boreal mountain system and boreal tundra 
woodland into an integrated biome ‘boreal’ for analysis. The resulting 
12 classes (Fig. 1) represent biomes with broadly homogeneous climate 
and vegetation characteristics, specifically, one boreal biome, one 
tropical biome, five temperate biomes (continental forest, oceanic 
forest, mountain system (west and east), steppe and desert) and five 
subtropical biomes (humid forest, dry forest, mountain system, steppe 
and desert). Given that no OBE was observed in the eastern area of the 
temperate mountain system biome, all discussion of this biome refers 
to the areas located in western North America.

Wildland fire geospatial databases
Three wildland fire databases were used in this study: the Canadian 
National Burned Area Composite (NBAC)51, the USA Monitoring Trends 
in Burn Severity (MTBS)52 and the Combined Wildland Fire Polygons 
(CWFP) datasets53. The NBAC is part of the Fire Monitoring, Accounting 
and Reporting System (FireMARS), jointly developed by the Canada 
Centre for Mapping and Earth Observation of Natural Resources Canada 
and the Canadian Forest Service. The NBAC maps the polygon area 
burned in Canada from 1986 to 2020 (version 20210810) derived from 
30-m Landsat imagery and high-quality agency imagery of spatial reso-
lution <30 m. It provides attributes including detected start and end 
dates, reported start and end dates, fire size and fire cause.

The MTBS is maintained by the U.S. Geological Survey Center for 
Earth Resources Observation and Science (EROS) and the USDA For-
est Service Geospatial Technology and Applications Center (GTAC). 
It maps burn severity and extent of fires across all lands of the United 
States from 1984 to 2020 (data released on 28 April 2022). It includes 
all fires ≥1,000 acres (about 405 ha) in the western United States and 
≥500 acres (about 202 ha) in the eastern United States and provides 
attributes such as ignition date and area burned52. The CWFP uses a 
collection of 40 distinct fire layers, using a combination of manual 
processes and scripts to merge these various datasets into a singular 
comprehensive dataset. It encompasses recorded information on both 
wildfires and prescribed fires that have occurred in the United States 
and specific territories, offering an all-encompassing view of fires that 
have burned over the past few centuries, spanning from 1835 to 2020. 
The U.S. Geological Survey released this CWFP dataset on 8 December 
2021. For USA fire datasets, we used fires smaller than 405 ha from the 
CWFP as a complementary dataset to the larger wildfires, exceeding 
405 ha, obtained from the MTBS.

Moreover, we used these three fire databases to calculate both the 
proportion of fires larger than 1,000 ha to the total number of fires 
and the proportion of their burned area to the total burned area of all 
fires in the study area.

Geostationary active fire detections
The Fire/Hot Spot Characterization Full Disk (FDCF) products from both 
GOES-16 (May 2017 to present) and GOES-17 (August 2018 to present) 
were used to obtain the subhourly active fire detections (‘hotspots’) in 
North America during the period 2017–2020. The FDCF products were 
downloaded from their first available dates to 2020. These products 
use both visible and infrared Advanced Baseline Imager (ABI) spectral 
bands to locate fires and retrieve subpixel fire characterizations with 
5–15- min temporal resolution and a nominal 2-km spatial resolution 
(coarser with increasing distance from the subsatellite point)31. These 
satellites are positioned at 75.2° W and 137.2° W, respectively, and can 
observe the entire burnable land in North and South America when used 
together. The night-time active fire detection algorithm is considered 

to be more sensitive to smaller and/or cooler fires than the daytime 
algorithm because ambient background temperatures are more homo-
geneous and lower at night, increasing the potential contrast provided 
by active fire pixels33.

Notably, the availability, frequency and quality of the fire detection 
data varied both regionally and over the course of the study period, as 
a result of the sequential launch of GOES-16 and GOES-17, changes in 
imaging frequency and the coverage area and view zenith angle (VZA) of 
each instrument (see below for more detail on these variations). Owing 
to these influences, we restrict our use of the hotspot dataset here to 
identifying the hourly burning status of the individual fires recorded in 
the wildland fire databases. The available hotspot data had a minimum 
observation frequency of four times per hour at any location within the 
study area and, as such, we considered these data fit for this purpose.

Specifically, given the sequential launch and commissioning of 
GOES-16 and GOES-17 and the different coverage areas of each satel-
lite, data availability is not consistent across North America between 
2017 and 2020 (Extended Data Fig. 9a,b). The FDCF of northwestern 
North America (an area including Alaska and the Yukon) is not imaged 
by GOES-16 and so hotspot data are only available for this region fol-
lowing the launch of GOES-17 and subsequent FDCF product genera-
tion (August 2018 to December 2020). Similarly, northeastern North 
America is only imaged by GOES-16, so although data are available 
here for the entire 2017–2020 period, all hotspots identified in this 
region were solely detected by GOES-16. In central North America, 
approximately twice as many images, and therefore fire products, were 
available after the launch of GOES-17 and subsequent FDCF product 
generation than beforehand, when the only source of GOES-R hotspots 
for the region was GOES-16.

Moreover, during the 2017–2020 period, the scanning mode of  
GOES-16 and GOES-17 has changed over time to meet changing opera-
tional and experimental needs (Extended Data Fig. 9c,d). Availability  
of full disk imagery, and the FDCF products derived from it, has there-
fore varied in frequency between 5 min (Mode 4), 15 min (Mode 3) and 
10 min (Mode 6). In 2017 and 2018, Mode 3 was the most common oper-
ating mode (that is, 15-min temporal resolution data), whereas in 2019 
and 2020, Mode 6 was the dominant operating mode (that is, 10-min 
data). As a result, more hotspot data are available for the later part of 
the 2017–2020 period. For more information on GOES scanning mode 
specifics, see https://www.goes-r.gov/.

As the GOES-R satellites are in geostationary orbits, each ground- 
point location within the study area has a fixed VZA with respect to 
each GOES instrument. VZA influences the accuracy of fire detection 
algorithms in several ways54,55. For our study, the fact that the hotspot 
omission error rate increases with VZA required careful consideration 
and prevented us from performing detailed direct OBE intercompari-
sons between biomes with very different VZAs.

Hourly fire diurnal cycle and OBE identification
We developed an algorithm to characterize the hourly fire diurnal cycle 
of all fires in the NBAC and the combined MTBS–CWFP datasets and 
identify OBEs. The start (end) date for fires in the NBAC was the earlier 
(later) date between the detected start (end) date and the reported 
start (end) date. For fires in the MTBS, the start date was the recorded 
ignition date. As the MTBS does not contain information on fire  
end dates, end dates were inferred from the GOES-R hotspot data based 
on the last date on which two consecutively active burning hours were 
determined. The same approach was used to infer start and end dates 
for NBAC and CWFP fires with missing start and end date records. 
GOES-R hotspots intersecting fire perimeters from the fire start and 
end dates were extracted.

Fires without matching hotspots from 2017 to 2020 were excluded 
from further analysis. Fires may be missing corresponding hotspot data 
owing to active fire detection algorithm omission errors33, as well as 
the aforementioned data gaps in the GOES-R active record. We added 
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a 500-m buffer on the perimeter of fires smaller than 200 ha to reduce 
the effect of potential geolocation errors on matching up active fire 
detections with relatively small fires. The resulting hourly fire activity 
data were converted from Coordinated Universal Time (UTC) time zone 
to local time zones based on the spatial centroid of the fire perimeters 
and day of year. The exact times of sunrise and sunset were used to 
separate daytime and night-time for each day, with sunrise referring to 
the top edge of the sun appearing on the horizon and sunset referring 
to the top edge of the sun disappearing below the horizon. Using these 
local times, each hour was designated as either a daytime or a night-time 
hour, with night-time hours defined as the first hour after sunset to the 
last hour before sunrise. Each hour was further assigned to one of four 
categories: active daytime, non-active daytime, active night-time or 
non-active night-time. A fire was considered active in a specific hour 
when at least one hotspot was detected within its perimeter during that 
hour. For each night when the night-time duration was longer than 4 h 
and all night-time hours were classified as active, the night was classified 
as an OBE (that is, a night when a fire burns through the entire night). 
Nights on which fire activity did not occur in every night-time hour 
were classified as non-OBEs. The 4-h night-time duration threshold 
was applied to exclude part of nights of high-latitude summer fires 
from further analysis. This is because the extent of weather and fine 
fuel moisture fluctuations is limited during very short night-time peri-
ods56,57, making it unsuitable for studying the impact of changes in 
night-time conditions on overnight burning. Time-zone conversions 
and local sunrise and sunset times were obtained through the use of 
R packages lutz and suncalc.

GOES-R versus low-Earth-orbit satellites active fire detection
To confirm the suitability of using GOES-R to identify OBEs, we exam-
ined how frequently fire activity was observed by three independent 
low-Earth-orbit satellite systems when they provided imagery tempo-
rally and spatially coincident with OBEs: Suomi National Polar-orbiting 
Partnership (NPP) with Visible Infrared Imaging Radiometer Suite 
(VIIRS)58 and Terra and Aqua with Moderate Resolution Imaging Spec-
troradiometer (MODIS)59. For each OBE, we examined the number of 
corresponding overpasses and the fire activity per overpass within 
the fire perimeter at the time of OBE occurrence. We used the MODIS 
GeoMeta Collection 6.1 and geoMetaVIIRS products to reconstruct 
historic overpass information and used MODIS and VIIRS hotspot infor-
mation from the NASA Fire Information for Resource Management  
System.

We found that 98.3% (1,694/1,724) of Suomi NPP, 95.5% (1,284/1,344) 
of Terra and 91.6% (1,206/1,317) of Aqua overpasses coincident with 
OBEs had associated active fire observations, supporting our use of 
GOES-R for OBE identification. Notably, Suomi NPP, Terra and Aqua pro-
vided on average just 1.57, 1.23 and 1.20 observations per OBE, respec-
tively, despite the average night-time duration of OBEs being 10.13 h.

Fire weather calculation and extraction
In this study, meteorological variables provided by ERA5 reanalysis 
data were used to process and calculate fire weather from 1979 to 2020, 
including the inputs and components of the CFWIS as well as VPD. 
ERA5 is the fifth generation of global hourly atmospheric reanalysis 
produced by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and is widely used in wildfire studies9,60. It resolves the 
atmosphere using 137 levels from the surface up to a height of 80 km 
on a 31-km horizontal grid9.

The CFWIS usually outputs six daily components by first tracking 
moisture in three fuel layers of varying depth with corresponding mois-
ture codes: Fine Fuel Moisture Code (FFMC, litter and fine fuels), Duff 
Moisture Code (DMC, organic fuels at moderate depth) and Drought 
Code (DC, deep and compact organic fuels). The remaining three 
components are potential fire behaviour indices: Initial Spread Index 
(ISI, the rate of fire spread), Buildup Index (BUI, the cumulative fuel 

availability) and Fire Weather Index (FWI, the fire intensity). To account 
for the impact of diurnal fluctuations in weather and surface fine fuel 
moisture on OBEs, the hourly FFMC and ISI were calculated using the 
procedures outlined in refs. 57,61. The hourly FFMC calculation was 
based on the hourly weather observations of 2-m temperature (T, °C), 
relative humidity (RH), wind speed (WS, km h−1) and precipitation, as 
well as the previous hour’s weather conditions. RH was calculated from 
2-m T and 2-m dew point T following equations (1) and (2) in ref. 62. WS 
was calculated from 10-m U (zonal velocity) and V (meridional velocity). 
The hourly ISI combined hourly FFMC and hourly WS. The hourly VPD 
(kPa) was calculated on the basis of the conversion equation from ref. 63 
using 2-m T and 2-m dew point T. The remaining four components of 
the CFWIS (FWI, DMC, DC and BUI) were obtained from ref. 9 at daily 
temporal resolution, as they or their subcomponents are slow-reacting 
to weather fluctuations. We extracted the aforementioned fire weather 
variables for each fire during its lifetime, buffering 24 h at the start date, 
and then time-matched these data with the corresponding fire diurnal 
cycles. For each time step, data were spatially averaged across all grid 
cells intersected by a given fire perimeter.

The spatiotemporal distribution and statistics of OBEs
We summarized the spatial and temporal distribution of OBEs by biome 
and season. OBE fires were further categorized into single-OBE fires 
and multi-OBE fires, in which only one OBE and more than one OBE 
occurred, respectively. The proportion of multi-OBE fires to all OBE 
fires and the mean number of OBEs per multi-OBE fire was calculated 
by biome.

Extreme characteristics of OBEs
We summarized the number of OBEs and OBE fires in seven fire-size 
categories: 0–200 ha, 200–1,000 ha, 1,000–10,000 ha, 10,000–
20,000 ha, 20,000–50,000 ha, 50,000–100,000 ha and >100,000 ha. 
Linear regression (significance level: 0.05) was used to investigate the 
relationship between the number of OBEs and fire size for OBE fires in 
all biomes, as well as separately in boreal, temperate mountain system 
and subtropical mountain system (three main biomes with the most 
OBEs). Moreover, we calculated the number of days between ignition 
and the occurrence of the first OBE in each OBE fire and the number 
of days between two adjacent OBEs in each multi-OBE fire to evalu-
ate the succession of OBEs and the potential impact of OBEs on fire 
management.

Comparison of fire weather conditions
Given that 99% of OBEs were detected in fires larger than 1,000 ha, we 
focused our analysis on these large fires to investigate the underlying 
factors contributing to OBEs. We examined the differences in the fire 
weather between OBEs and non-OBEs (including non-OBEs during OBE 
fires) within fires larger than 1,000 ha in the five main biome–season 
groups with 100 or more OBEs (boreal summer, temperate mountain 
system summer and autumn and subtropical mountain system sum-
mer and autumn) using a one-sided Mann–Whitney U test (significance 
level: 0.05) to investigate significant drivers of OBEs. Mann–Whitney 
U test was selected because the distribution of some variables was 
skewed. Using the same test, we also evaluated differences in the day–
night range of hourly variables between OBEs and non-OBEs, as we 
suggested that a smaller diurnal range in fire weather may facilitate 
the occurrence of an OBE. These ranges were FFMCDmax-Nmin, ISIDmax-Nmin, 
RHDmin-Nmax, TDmax-Nmin and VPDDmax-Nmin.

Assessment of an increasing trend in OBE fire weather extremes
To assess the fire weather extremes for OBEs, we calculated the per-
centile value of each OBE’s fire weather variable from fires larger than 
1,000 ha relative to the distribution of values extracted from records 
for the years 2000–2020 and 1979–1999 in the corresponding fire 
perimeter. The fire weather variables examined were the four daily 
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components (FWI, BUI, DMC and DC) of the CFWIS and, based on hourly 
variables, the daytime extrema (FFMCDmax, ISIDmax, VPDDmax, TDmax and 
RHDmin) and night-time extrema (FFMCNmin, ISINmin, VPDNmin, TNmin and 
RHNmax), capturing the changes of slow-reacting and fast-reacting 
fuel and weather dynamics. We then used a paired Wilcoxon test to 
compare these two percentiles for each OBE’s fire weather variable to 
determine whether there has been a change in fire weather between 
the two time periods.

Importance analysis of fire weather variables
We aimed to understand the dominant factors influencing OBEs by 
building random forest models35 to analyse the relationship between 
fire weather and OBE occurrence within fires larger than 1,000 ha in 
the five main biome–season groups (see ‘Comparison of fire weather 
conditions’). The random forest models were built using a binary 
dependent variable (OBE or non-OBE) and all fire weather variables 
as the explanatory variables, except the ranges of fast-reacting vari-
ables, most of which showed no significant differences between OBEs 
and non-OBEs. Random forest is an ensemble approach that consists of 
many individual decision trees, which take input from randomly boot-
strapped variables and samples. In random forest ensembles, we chose 
500 trees in each forest and a depth of 1 for each tree. By setting the tree 
depth to 1, both hierarchical relationships and interactions between 
variables would be avoided. To ensure statistically reliable results, 
we repeated the process 50 times using fivefold cross-validation. To 
resolve the impact of the disparity in frequencies of the two classes, 
non-OBEs data were downsampled in each training. We used the mean 
decrease in the Gini coefficient (that is, Gini importance) to measure 
how each variable contributes to the impurity decreases of the tree 
nodes in the resulting random forest. The higher the value of the Gini 
importance, the higher the importance of the variable in the model. 
We normalized the Gini importance values and used the area under 
receiver operator characterization (ROC) curve (AUC)64 to evaluate 
the performance of models. Model construction and performance 
evaluation were performed using the R package caret65.

Simply adding all OBEs and non-OBEs from fires <1,000 ha into the 
variable importance analysis would be problematic, as it would lead to 
the inclusion of many non-OBEs from fires without OBEs into the data-
set. This would considerably skew the proportion of OBEs to non-OBEs 
and OBEs would primarily be associated with large fires, whereas 
non-OBEs would primarily be associated with small fires. To avoid this 
issue, we conducted a further analysis similar to the above-mentioned 
random-forest-based variable importance analysis but adopting a 
stratified sampling approach to include all OBEs and an equivalent 
number of non-OBEs for each biome–season group in each fire-size cat-
egory: 0–200 ha, 200–1,000 ha, 1,000–10,000 ha, 10,000–20,000 ha, 
20,000–50,000 ha, 50,000–100,000 ha and >100,000 ha. We repeated 
this stratified sampling ten times and, for each stratified sampling, 
we performed a 50 times fivefold cross-validation, then averaged the 
results to ensure the robustness of this analysis.

Two large-fire case studies were selected to demonstrate the relation 
between the occurrence and consecutive occurrence of OBEs and fire 
weather varying in time and space: the 2020 Creek Fire (California, 
subtropical mountain system) and the 2019 McMillan Complex wildfire 
(Alberta, boreal).

Prediction of OBEs
To explore the potential predictability of OBEs (that is, whether the 
coming night is an OBE or not) and to understand the coupling between 
daytime conditions and night-time burning, we constructed logistic 
regression models for nights of fires larger than 1,000 ha in five main 
biome–season groups (see ‘Comparison of fire weather conditions’) 
using either a single daily variable (four models) or a combination of 
several daily variables (11 models). We discarded models that incorpo-
rated several variables if the variance inflation factor of any variable 

was greater than 2 to avoid multicollinearity. Similarly, 50 times five-
fold cross-validation and downsampling in each training were also 
performed for each prediction model. Model performance was evalu-
ated using ROC, AUC, recall (that is, the proportion of OBEs that were 
successfully predicted by the model) and false positive rate. The best 
models were determined by both AUC (primary criterion) and recall 
(secondary criterion). Model building and performance evaluation 
were conducted using the R package caret.

Data availability
The datasets for conducting the analysis presented here are all pub-
licly available. The NBAC, MTBS and CWFP wildland fire datasets are 
respectively available from the Canadian Forest Service (https://cwfis.
cfs.nrcan.gc.ca/datamart/metadata/nbac), https://www.mtbs.gov/ 
and the U.S. Geological Survey (https://data.usgs.gov/datacatalog/
data/USGS:61707c2ad34ea36449a6b066). The GOES-16 and GOES-17  
full disk active fire products are available on Amazon Web Service 
S3 Explorer (https://registry.opendata.aws/noaa-goes/). The hourly 
ERA5 climate data used for this study are available at https://doi.
org/10.24381/cds.adbb2d47. The biome categorizations used in this 
study are available at https://www.worldwildlife.org/publications/
terrestrial-ecoregions-of-the-world. The MODIS GeoMeta Collection 
6.1 and geoMetaVIIRS products for reconstructing overpasses are from 
the Level-1 and Atmosphere Archive & Distribution System (https://
ladsweb.modaps.eosdis.nasa.gov/archive). The MODIS and VIIRS active 
fire products were obtained from the Fire Information for Resource 
Management System (https://firms.modaps.eosdis.nasa.gov/down-
load/). Source data are provided with this paper.

Code availability
Codes used to analyse the data are available from https://github.com/
KaiweiLL/overnight-fires or https://doi.org/10.5281/zenodo.10278113.
 

50. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new 
global map of terrestrial ecoregions provides an innovative tool for conserving 
biodiversity. BioScience 51, 933–938 (2001).

51. Hall, R. et al. Generating annual estimates of forest fire disturbance in Canada: the 
National Burned Area Composite. Int. J. Wildland Fire 29, 878–891 (2020).

52. Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 
(2007).

53. Welty, J. & Jeffries, M. Combined Wildland Fire Datasets for the United States and Certain 
Territories, 1800s-Present (U.S. Geological Survey, 2021); https://doi.org/10.5066/
P9ZXGFY3.

54. Hall, J. V., Zhang, R., Schroeder, W., Huang, C. & Giglio, L. Validation of GOES-16 ABI and 
MSG SEVIRI active fire products. Int. J. Appl. Earth Obs. Geoinf. 83, 101928 (2019).

55. Wooster, M. J. et al. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land 
Surface Analysis Satellite Applications Facility (LSA SAF) – part 1: algorithms, product 
contents and analysis. Atmos. Chem. Phys. Discuss. 15, 15831–15907 (2015).

56. Page, W. G., Jenkins, M. J. & Alexander, M. E. Foliar moisture content variations in lodgepole 
pine over the diurnal cycle during the red stage of mountain pine beetle attack. Environ. 
Model. Softw. 49, 98–102 (2013).

57. Van Wagner, C. E. A Method of Computing Fine Fuel Moisture Content Throughout the 
Diurnal Cycle Information Report PS-X-69 (Canadian Forestry Service, 1977).

58. Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375 m active fire detection 
data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 
85–96 (2014).

59. Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection 
algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

60. Di Giuseppe, F. et al. Fire Weather Index: the skill provided by the European Centre for 
Medium-Range Weather Forecasts ensemble prediction system. Nat. Hazards Earth Syst. 
Sci. 20, 2365–2378 (2020).

61. Wang, X. et al. cffdrs: an R package for the Canadian Forest Fire Danger Rating System. 
Ecol. Process. 6, 5 (2017).

62. McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis 
of global fire weather from 1979 to 2018–overwintering the Drought Code. Earth Syst. Sci. 
Data 12, 1823–1833 (2020).

63. Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation 
vapor pressure. J. Appl. Meteorol. Climatol. 35, 601–609 (1996).

64. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating 
characteristic (ROC) curve. Radiology 143, 29–36 (1982).

65. Kuhn, M. Caret: classification and regression training. Astrophysics Source Code Library, 
record ascl:1505.003; https://ascl.net/1505.003 (accessed 20 May 2022).

https://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nbac
https://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nbac
https://www.mtbs.gov/
https://data.usgs.gov/datacatalog/data/USGS:61707c2ad34ea36449a6b066
https://data.usgs.gov/datacatalog/data/USGS:61707c2ad34ea36449a6b066
https://registry.opendata.aws/noaa-goes/
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://ladsweb.modaps.eosdis.nasa.gov/archive
https://ladsweb.modaps.eosdis.nasa.gov/archive
https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
https://github.com/KaiweiLL/overnight-fires
https://github.com/KaiweiLL/overnight-fires
https://doi.org/10.5281/zenodo.10278113
https://doi.org/10.5066/P9ZXGFY3
https://doi.org/10.5066/P9ZXGFY3
https://ascl.net/1505.003


Acknowledgements This study is supported by Canada Wildfire. K.L. is supported by the 
China Scholarship Council (202006070013). We thank P. Jain and D. Castellanos-Acuna for 
providing the fire weather data and C. Guo, S. C. P. Coogan, B. M. Wotton and H. Qian for their 
suggestions and help.

Author contributions Conceptualization: M.F., X.W. and K.L. Methodology: K.L., X.W., M.F.  
and M.d.J. Investigation: K.L., X.W., M.F. and M.d.J. Visualization: K.L., X.W. and M.d.J. Funding 
acquisition: M.F., X.W. and K.L. Project administration: M.F. and X.W. Supervision: M.F. and X.W. 
Writing—original draft: K.L. and X.W. Writing—review and editing: K.L., X.W., M.d.J. and M.F.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07028-5.
Correspondence and requests for materials should be addressed to Kaiwei Luo or Xianli Wang.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-024-07028-5
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Data processing workflow used for identifying OBEs 
and extracting coincident fire weather data. First, the hourly diurnal cycle of 
each fire was examined using terrestrial wildfire databases and GOES-R active 
fire detections. Specifically, the hourly burning status of each fire was 
determined by the combination of the extracted or determined start and end 
dates and the extracted hotspots within its fire perimeter. Based on the spatial 

centroid of the fire perimeter, every hour during each fire’s lifetime was then 
designated either a daytime or night-time hour. Nights on which fire activity 
did and did not occur in every night-time hour were classified as OBEs and 
non-OBEs, respectively. Second, the hourly and daily fire weather grids within 
or intersected by each fire perimeter were extracted and then time-matched 
with the hourly diurnal cycle.



Extended Data Fig. 2 | The number of fires and OBEs categorized by fire 
size. The number of fires (a) and OBEs (b) categorized by fire size: 0–200 ha, 
200–1,000 ha, 1,000–10,000 ha, 10,000–20,000 ha, 20,000–50,000 ha, 

50,000–100,000 ha and >100,000 ha in North America during 2017–2020. 
Furthermore, we computed the ratio between the number of OBEs and the total 
number of fires in each respective category.
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Extended Data Fig. 3 | Active fire detections and coincident fire weather for 
the 2020 Creek Fire in California, in the subtropical mountain system 
biome. The top-left plot shows the time series of GOES-R active fire detection 
hotspots. Hotspots are categorized and coloured according to daytime (grey) 
and night time (red and orange for night-time hotspots in OBEs and non-OBEs, 
respectively). The remaining plots show the corresponding fire weather 
variables as time series. The Creek Fire burned a total of 154,364 ha, with 43 
OBEs observed over 52 days from 6 September to 27 October. Despite rainfall 

(3.6 mm in total) temporarily putting a stop to OBEs and decreasing fire 
weather codes and indices on 18 September (see (1)), OBEs quickly resumed on 
19 September owing to the dryness of moderately slow-drying fuels (DMC) and 
high fuel availability (BUI), highlighting the critical role of drought in facilitating 
overnight burning. However, non-OBEs can still occur when DMC and BUI were 
high and unaffected (see (2)). These non-OBEs are associated with periods of 
corresponding changes in the fast-reacting variables adverse to fire spread, 
such as relatively low temperature and increased RH.



Extended Data Fig. 4 | Comparison of all fire weather variables between 
OBEs and non-OBEs. Comparison of fire weather conditions during OBEs and 
non-OBEs within fires larger than 1,000 ha in the boreal, temperate mountain 
system and subtropical mountain system. For each biome, curves show the 
density distribution of daily variables and daytime and night-time extrema of 
hourly variables for OBEs (red for summer and orange for fall) and non-OBEs 

(grey for summer and black for fall). We invert the y axis of the distribution of 
fire weather variables in fall for better visualization. All variables for OBEs in 
each biome–season group were significantly greater (or smaller in the case of 
RH; one-sided Mann–Whitney U test, P < 0.05) than those for non-OBEs, except 
TNmin in subtropical mountain system fall (P = 0.25).
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Extended Data Fig. 5 | Comparison of day–night range of hourly fire 
weather variables between OBEs and non-OBEs. Comparison of day–night 
range of hourly fire weather variables (FFMC, ISI, RH, T and VPD) between OBEs 
and non-OBEs within fires larger than 1,000 ha in boreal, temperate mountain 
system and subtropical mountain system. For each biome, curves show the 
density distribution of day–night ranges for OBEs (red for summer and orange 

for fall) and non-OBEs (grey for summer and black for fall). We invert the y axis 
of the distribution of fire weather variables in fall for better visualization. Only 
FFMC of OBEs showed a significantly smaller range than non-OBEs (one-sided 
Mann–Whitney U test, P < 0.05) in boreal summer (P = 0.03) and subtropical 
mountain system summer (P = 0.03) and fall (P = 0.01).



Extended Data Fig. 6 | Percentile distributions and statistical significance 
of selected fire weather variables for OBEs (1979–1999 versus 2000–2020). 
The line-linked paired points respectively represent the percentile of fire 
weather (DC and daytime and/or night-time extrema of ISI, FFMC, VPD,  
T and RH) for each OBE within fires larger than 1,000 ha relative to comparable 
observations during the 1979–1999 and 2000–2020 periods at the same 
geographic location. The 1979–1999 percentiles are significantly higher than 

the 2000–2020 percentiles for each fire weather variable (paired Wilcoxon 
test, P < 0.05). Box plots represent the distribution of these percentile values. 
Each box plot includes a horizontal line to represent the median, a triangle to 
represent the mean, a box with lower and upper ends that represent the first 
and third quartiles and whiskers extending from the corresponding ends of the 
box to the smallest value at most 1.5 times the interquartile range and largest 
value no further than 1.5 times the interquartile range.
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Extended Data Fig. 7 | Fire weather variable importance for OBEs based on 
random forest modelling and stratified sampling in fire-size categories. 
For each main biome–season group, we calculated the normalized mean 
decreases in the Gini coefficient of fire weather variables. This was done using  
a random forest model to classify OBEs and non-OBEs. We used a stratified 
sampling approach that ensured the inclusion of all OBEs, along with an 
equivalent number of non-OBEs in each biome–season group in each fire-size 

category: 0–200 ha, 200–1,000 ha, 1,000–10,000 ha, 10,000–20,000 ha, 
20,000–50,000 ha, 50,000–100,000 ha and >100,000 ha. The variables are 
ranked from the most important to the least important. Slow-reacting variables 
are represented by dark red horizontal bars and daytime and night-time extrema 
of fast-reacting variables by grey and black bars, respectively. The performance 
of the models is evaluated by the area under the receiver operating characteristic 
curve (AUC).



Extended Data Fig. 8 | Active fire detections and coincident fire weather for 
the 2019 McMillan Complex wildfire in Alberta, in the boreal biome. The 
top-left plot shows the time series of GOES-R active fire detection hotspots. 
Hotspots are categorized and coloured according to daytime (grey) and  
night time (red and orange for night-time hotspots in OBEs and non-OBEs, 
respectively). The remaining plots show the corresponding fire weather 
variables as time series. The McMillan Complex wildfire burned a total of 

199,888 ha, with nine OBEs within 13 days from 19 May to 31 May. Two OBEs 
clusters occurred during the McMillan Complex wildfire centred on 20 May 
(see (1)) and 29 May (see (2)). During both of these periods, DMC and BUI remained 
relatively low (although both were 40+). However, high wind speeds and dry 
surface fine fuel (FFMC) at night time increased fire spread potential (ISI) and 
fire intensity potential (FWI), thereby facilitating the occurrence of OBEs.



Article

Extended Data Fig. 9 | Coverage and data availability of the GOES-R FDCF 
products. Data quality flag layers for GOES-16 (image: 2020250020019200000) 
(a) and GOES-17 (image: 2020250020031900000) (b) illustrate the spatial extent 
of the FDCF of GOES-R satellite. GOES-16 does not capture the northwestern 

area of North America and GOES-17 does not capture the northeastern area of 
North America. c,d, Number of FDCF products analysed in this study for GOES-16 
and GOES-17, respectively, classified by scanning mode.



Extended Data Table 1 | Summary of the total number of OBEs and OBE fires

The ‘Single’ and ‘Multiple’ columns respectively present the number of OBEs from single-OBE fires and multi-OBE fires. The ‘Persistence’ column presents the mean number of OBEs for 
multi-OBE fires. No OBEs were observed in the temperate oceanic forest biome. Season classifications are as follows: spring (March–May); summer (June–August); fall (September–November); 
winter (December–February).



Article
Extended Data Table 2 | The metrics for prediction models by variable combination and biome–season group

The AUC, recall (threshold: 0.5) and false positive rate (FPR; threshold: 0.5) metrics for logistic regression prediction models by variable combination and biome–season group. The highest 
AUC and recall values and lowest FPR values are in bold. The best models, determined by both AUC (the most important criterion) and recall (secondary criterion), are highlighted with a red 
background.
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