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Emissions from burned structures in
wildfires as significant yet unaccounted
sources of US air pollution

Wenfu Tang 1 , Christine Wiedinmyer 2,3, Louisa K. Emmons 1,
Amara L. Holder 4,5, Johannes H. Uhl6,7,8, Lise Ann St. Denis 7, Maxwell Cook9,
Ronnie Abolafia-Rosenzweig10, Cenlin He 10, Kelley C. Barsanti1,
Stefan Leyk 6,9, John T. Abatzoglou 11, Jennifer K. Balch 2,12,
Helen Worden 1 & Pieternel F. Levelt1,13,14

Structure fires in the wildland–urban interface (WUI) are becoming more fre-
quent and destructive, yet their emissions of air pollutants remain poorly
quantified and are not included in national inventories. Here we present a
conterminous-scale inventory of WUI-related structure fire emissions in the
United States from 2000 to 2020. A small number of highly destructive events
dominate structure fire emissions—the 20 most destructive fires account for
68% of total carbon monoxide emissions. Structure fire emissions are more
spatially concentrated than vegetation fire emissions, and in several states
emissions of specific hazardous air pollutants such as hydrochloric acid
exceed those from all anthropogenic sources combined. We show that struc-
ture burning in wildfires is strongly influenced by fire-conducive weather, and
destructive structure fires are more likely to occur in forested and urbanized
landscapes. These results reveal structure fires as a major source of toxic air
pollution, with important implications for air quality, public health, and fire
management.

The wildland-urban interface (WUI) is the geographic area where
wildland vegetation and land developed by human activity come into
contact or intermingle1. Fires in WUI have long posed a critical and
growing challenge, particularly across the United States (U.S.), as they
often involve not only natural vegetation but also the combustion of
buildings, infrastructure, vehicles, and other urbanmaterials. This mix

of structural and vegetative fuels can produce smoke with distinct
chemical composition and toxicity2. Since 2005, WUI fires have
destroyed more than 100,000 homes across the U.S3. Recent studies
have shown that WUI area, WUI housing, and the fractions of fire
counts and burned area within WUI regions are rising4, thus high-
lighting the increasing prevalence ofWUI fires. Moreover, wildfires are
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growing 250% faster across the West since 20055, challenging fire
suppression efforts that can reduce home ignitions. In recent years,
several destructive (defined by the number of houses destroyed in
fires) WUI fires have highlighted the increasing significance of these
WUI fires, including the 2018 Camp Fire in Butte County, California,
which burned more than 15,000 structures6; the 2021 Marshall Fire in
Boulder County, Colorado, which destroyed more than
1000 structures7; the 2023 Lahaina Fire in Maui, Hawaii, which
destroyed more than 2000 structures8; and most recently, the 2025
fires near Los Angeles, California, which are estimated to have
destroyed at least 16,000 structures9.

WUI fires differ from wildland fires in several important ways.
First, WUI fires occur where human development and wildland areas
overlap, and they are often initiated when vegetation fires spread into
communities and ignite structures—typically through embers—rather
than originating in urban settings. Because of this overlap, human-
caused ignitions aremoredominant, leading to a higher likelihood and
frequency of ignitions compared to those in remote wildlands10,11.
Additionally, because WUI fires often occur close to population cen-
ters, their emissions can more directly degrade local air quality,
resulting in extensive public health impacts10,12–14. Fire behavior,
environmental drivers, suppression strategies, and management
approaches also differ significantly between WUI and wildland
fires7,15–20. Perhaps most importantly for this study, WUI fires often
involve the burning of structures, a key distinction from purely wild-
land vegetation fires12,14,21.

From the perspectives of atmospheric chemistry, air quality, and
public health, structure burning is particularly important to quantify
due to the toxic emissions produced from building materials22,23.
Compared with vegetation fires, structure fires emit a broader and
more complex mix of hazardous pollutants due to the combustion of
materials, such as plastics, treated wood, wiring, and household con-
tents. Thismixture includes not only criteria pollutants, such as carbon
monoxide (CO) and particulate matter (PM), but also volatile organic
compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), acid
gases (e.g., hydrochloric acid, HCl), and toxic metals (e.g., lead, Pb)2,14.
These pollutants not only degrade outdoor air quality but also infil-
trate homes that are adjacent to the burn area, posing health risks to
residents in nearby WUI neighborhoods13,23. In this study, we study
emissions from burned structures in wildfires and use HCl and Pb as
illustrative hazardous pollutants.

Quantifying emissions from burned structures in wildfires is
essential for understanding their impacts on atmospheric composition
and chemistry, air quality andhumanhealth. However, unlike vegetation
fire emissions, which have been quantified through extensive modeling
and field measurements24–27, large-scale information on structure fire
emissions remains scarce. Quantifying fire emissions requires three key
pieces of information: fire occurrence and extent, the mass of fuel
burned (can be estimated from fuel load and percent combustion), and
emission factors (EFs) for each chemical species (i.e., mass of pollutant
emitted per mass of fuel burned)28. Obtaining these data at large scales
has historically been challenging and subject to significant uncertainties,
even for vegetation fires29. For structure fire emissions, it has only
recently become feasible, thanks to the availability of critical datasets
including the all-hazards incident records mined from the U.S. National
Incident Management System (NIMS)3, structure fuel load data30,31, and
recently developed EFs for structure burning14.

Despite remaining uncertainties, we present here a comprehen-
sive inventory of structure burning emissions in wildfires across the
conterminous U.S. for the period 2000–2020—named as the Fire
Inventory fromNCAR—WildlandUrban Interface (FINN-WUI) version32.
We further analyze the spatial characteristics, temporal trends, and
drivers of structure burning emissions, providing a foundation for
future work on atmospheric and health impacts ofWUI fires. Note that
we do not use formally definedWUI layers (for example, ref. 33) in this

analysis. Instead, we characterize events as WUI-related or structure
fireemissions basedon the co-occurrenceof structure loss andwildfire
activity. Our estimates focus on structure-impacted wildfires rather
than relying on spatially delineated WUI boundaries.

Results
Distributions of emissions from structure burning differ from
vegetation burning emissions
We compare structure burning emissions across the conterminous
U.S. from 2000 to 2020with emissions fromvegetation burning. Here,
we use CO as an illustration. CO is a major atmospheric criteria pol-
lutant and a widely used tracer for fire emissions, with its EFs being
relatively similar between structure and vegetation fires—approxi-
mately 70 g/kg of fuel for structure burning and 100 g/kg for biomass
burning. The spatial pattern of CO emissions from structure and
vegetation fires across the conterminous U.S. reveals both similarities
and key distinctions (Fig. 1). From 2000 to 2020, structure fires occur
nationwide, with the largest accumulation of burned structural fuel in
California and the Southeast (Fig. 1A). In 2020, several structure fire
events produce CO emissions exceeding 10⁹ grams (g), with notable
hotspots in California (Fig. 1B). While structure fire emissions are epi-
sodic and locally intense, their spatial footprint in 2020 closely aligns
with vegetation fire emissions within the WUI regions (Fig. 1C) and
across all landscapes (Fig. 1D). This resemblance suggests that both
structure and vegetation fire emissions may be driven by common
factors, such as regional fire weather and broader climatic conditions,
which are explored in a later section. The co-occurrence of emission
hotspots in areas such as California and the Southeast suggests that
fire-conducive environments can simultaneously increase risks across
various fuel types and land-use categories. Despite these similar
regional patterns, structure fires tend to occur nearer to population
centers, often amplifying their impact on air quality and public
health10.

Despite their overall similar regional patterns, CO emissions from
structure fires exhibit stronger spatial and event-level concentration
across the conterminousU.S., in contrast to thebroader distributionof
emissions from vegetation fires. As shown in Fig. 2A, average annual
CO emissions from states that experienced vegetation burning
(2002–2020) are highest in California, Oregon, and several south-
eastern states, but are distributed across many parts of the country.
These emissions include prescribed fire emissions, which are dis-
tributed across the southeast. In contrast, structure fire CO emissions
(Fig. 2B) are more geographically concentrated, with California alone
contributing nearly 5 × 10⁹ g/year ( ~ 69%). Other high-emission states
include Tennessee, Texas, and Oregon, where large WUI fires have
occurred. To complement our state-level emissions analysis, we nor-
malize structure fire CO emissions by total burned area in each state
(Fig. 2C). This reveals where structure burning emissions are dis-
proportionately high relative to overall fire activity. California and
Tennessee stand out, highlighting the intensity of structural loss in
these states. Other states, such as Colorado, New York, and Michigan,
also exhibit elevated structure emission density relative to their total
burned area. These results suggest that structure fire emissions are not
solely a function of fire size, but also depend on land use, structure
density, and fire-urban interactions.

Figure 2D illustrates the dominant impact of a fewextremeevents.
The 20 wildfires with the highest estimated structure fuel burned
between 2000 and 2020 account for a disproportionate share of
national burned structure emissions inwildfires. The 2018CampFire in
California stands out, with CO emissions from burned structure
exceeding 5 × 10⁵ g and nearly 15,000 structures destroyed. These
findings demonstrate how a small number of high-impact fires can
significantly contribute to national emission totals, reflecting the epi-
sodic yet intense nature of structure fire pollution. Emissions of
structure burning in wildfires are largely driven by extreme events,
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which appear to have become more frequent in recent years. Of the
top 20 events in Fig. 2C, only 5 occurred during 2000–2010, while 15
occurred between 2010 and 2020. Notably, 12 of them took place in
the most recent five years (2016–2020), suggesting a significant
upward trend in the frequency of large, high-emission structure
burning events (bootstrap test, p- value (p) <0.01). The implications of
this trend and the associated year-to-year variability will be analyzed in
the next section.

Interannual and seasonal variability of structure burning
emissions
Structure fire emissions (blue line in Fig. 3A) exhibit substantial year-
to-year variability, with prominent peaks in 2003, 2007, 2016, 2020,
and especially 2018—the year of the Camp Fire, which result in nearly
6 × 10¹⁰ g of CO emissions, accounting for 26% of the total emissions
from structure burning in wildfires during the 2000–2020 period. The
early 2000s are marked by relatively low fire activity and smaller
events, while the post-2010 period has a clear increase in both the
frequency and scale of wildfires that involve structure burning
(Figs. S1 and S2). Vegetation fire emissions in the conterminous U.S.
(orange line) are generally an order of magnitude higher and have
smaller interannual variability (coefficient of variation for the time
series of vegetation fire CO emissions and structure burning CO
emissions in wildfires are 0.3 and 1.5, respectively), reflecting the
broader spatial extent and frequency of wildland fires. These year-by-
year variations show the episodic nature of structure fire pollution and
the growing prevalence of large, high-emission events in recent years.
Despite the difference in absolute magnitude, the structure and
vegetation fire emissions share similar interannual behavior in earlier
years. Between 2002 and 2015, structure and vegetation fire emissions
were moderately correlated (r =0.51), suggesting common climatic or
environmental drivers. From 2016 to 2020, this correlation weakens
(r =0.33), although the shorter time window limits the statistical

confidence of this comparison. The reduced correspondence in recent
years may indicate the emergence of factors influencing structure fire
emissions that are less aligned with general vegetation fire variation.
Long-term averages further emphasize a shifting structure fire regime.
Between 2011 and 2020, average annual CO emissions from structure
burning are approximately three times greater than those from 2000
to 2010, while emissions from vegetation burning increase by only 14%
over the same periods. This disproportionate growth points to an
increasing frequency and severity of high-impact structure fires.
Notably, the top 20 most destructive events (‘destructive’ refers spe-
cifically to destruction of structures in this study) account for 68% of
total structure fire CO emissions over the full period, highlighting the
extent to which annual totals are shaped by a small number of extreme
events. However, these events are becoming less rare. Recent fires—
including the 2021 Marshall Fire (Colorado), the 2023 Lahaina Fire
(Maui, Hawaii), and the 2025 fires near Los Angeles (California)—signal
an ongoing trend towardmore frequent, high-emission structure fires.

The monthly distribution of fire incidents highlights important
differences between total fire activity, structure-involved fires, and the
most destructive events (Fig. 3B). Both total fire incidents and those
involving structure burning exhibit similar seasonal patterns, with
peak activity in July and August. In contrast, the 20 most destructive
structure fires are heavily concentrated in the late summer and early
autumn (August toOctober), a periodwhenoverallfire counts begin to
decline, but aligns with high wind conditions and often human-related
ignitions, particularly in California34. This seasonal asymmetry sug-
gests that the most damaging structure fires tend to occur under dif-
ferent conditions than typical wildland fires. The seasonality of the 20
most destructive structure fires is largely driven by wildfires in the
western U.S., with 18 of the 20 events occurring in theWest and only 2
in the East. Regional differences in seasonal patterns are further illu-
strated in Fig. S3. The seasonality of the most destructive structure
fires also shifted from a peak in October (2000–2010) to

Fig. 1 | Spatial distribution and emissions from structure and vegetation fires
across the conterminous U.S. A Structure fire distribution from 2000 to 2020
across the conterminous U.S., with circle size representing the total amount of fuel
burned for each fire. For visibility, values smaller than 500 t were plotted using the
minimum circle size corresponding to 500 t. B Total carbon monoxide (CO)
emissions (in grams, g) from structure fires in 2020. C Gridded to 0.25 ×0.25

degrees, CO emissions (g/m²) in 2020 from vegetation fires occurring in the
wildland–urban interface (WUI) area derived from a previous study71. D Gridded
total vegetationburningCOemissions (g/m²) in 2020, includingbothWUI andnon-
WUI areas. CO emission data in (C) and (D) are from the Fire Inventory from NCAR
version 2.5 (FINNv2.5).
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August–September (2011–2020), indicating a trend toward earlier
occurrence of most destructive events (Fig. S4). This seasonal asym-
metry is consistent with the possibility that the largest structure-loss
incidents occur later in the fire season—when fuels are drier and epi-
sodic offshore wind events (e.g., Santa Ana/Diablo) could promote
rapid WUI fire spread—conditions that may differ from those govern-
ing typical summer wildland-fire activity35,36.

Structure burning emissions of toxics can exceed anthro-
pogenic emissions
Structure fires contribute substantially to atmospheric pollutant bur-
dens across the conterminous U.S. Averaged over 2000–2020, struc-
ture burning emits a broad suite of pollutants (Fig. 4A), including CO
(up to 8 × 10⁹ g/year), total hydrocarbons, particulate elemental car-
bon, and a diverse range of hazardous air pollutants (e.g., PAHs, VOCs,
and trace metals). These emissions, which are largely unaccounted for
in current national inventories, can rival or exceed known anthro-
pogenic sources in specific states. To illustrate this, we compare
structure burning emissions of HCl and lead (Pb) in 2016–2020 with
anthropogenic estimates from the U.S. Environmental Protection
Agency (EPA) 2020 National Emissions Inventory (NEI). HCl and lead
(Pb) are critical pollutants due to their significant health risks. HCl is
classified as a respiratory irritant with both acute and chronic health
risks upon inhalation by NIOSH37,38. Pb exposure can affect almost
every organ and system in the body, especially for children38–40. In
California and Tennessee, average annual HCl emissions from struc-
ture burning in wildfires during 2016–2020 exceed those from
anthropogenic sources (Fig. 4B). Moreover, in California, Tennessee,
Colorado, and Oregon, structure fire HCl emissions surpass anthro-
pogenic sources in at least one year within that period (Table S1).
Notably, in 2018, HCl emissions from structure burning in California
were approximately 23 times higher than anthropogenic emissions. Pb
emissions from structure burning are also substantial in several states

(Fig. 4C). In Tennessee, average annual Pb emissions from structure
burning in wildfires during 2016–2020 are roughly three times greater
than those from anthropogenic sources. In 2016, Pb emissions from
structure burning in Tennessee reached nearly 14 times the anthro-
pogenic total (Table S2). In California, 2018 structure fire Pb emissions
are equivalent to 54% of the state’s anthropogenic Pb emissions. In
Washington in 2020, Pb emissions from structure burning are
equivalent to 28% of anthropogenic emissions, while in Oregon in
2020, they represent 21% (Fig. 4C). More recent wind-driven WUI fire
events, such as the 2021Marshall fire in Colorado, 2023 Lahaina fire on
Maui, Hawaii, and the 2025 Los Angeles fire, may have produced even
greater emissions, highlighting the growing importance of structure
fires as a pollution source, particularly for Pb and HCl.

Drivers of structure-burning emissions
We analyze the land cover type for wildfires involving structure burning
(Fig. 5). Fires are first grouped into five categories based on the number
of structures impacted. The number of structures impacted is defined as
the number of structures destroyed plus 30% of the number of struc-
tures damaged, to approximate the partial contribution of damaged
structures to overall fuel loss (uncertainties discussed in the Methods
section). For each fire in each category, we then overlay the fire peri-
meter with the Moderate Resolution Imaging Spectroradiometer
(MODIS) land-cover type data (MCD12Q1, 500m resolution) and count
the pixels in each land-cover class. Summing the pixel counts across all
fires within a category yields the overall fractional land-cover composi-
tion shown inFig. 5.Across all groups, themajorityofburnedareaoccurs
in shrublands, grasslands, and savannas, regardless of the number of
structures impacted. This can be partially explained in that fire can
propagate much faster in these types of ecosystems5. However, the
fraction of forested land cover tends to increase with the number of
structures impacted. For fires that affect more than 100 structures,
forests account for 34.5% of the burned area—substantially higher than
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Fig. 2 | State-level and event-specific contributions to carbon monoxide (CO)
emissions from vegetation and structure fires in the conterminous U.S.
A Average CO emissions (g/year) from vegetation burning (2002–2020) by state.
B Average CO emissions (g/year) from structure burning (2000–2020) by state.
C Ratio of CO emissions from structure burning in wildfires to total burned area of
wildfires by state (2002–2020 average). State order follows (B). D Top 20 most

destructive fires in terms of structure fuel loss from 2000 to 2020 across the
conterminous U.S., with structure fire CO emissions (bars, left y-axis) and number
of structures destroyed (line, right y-axis). Each x-axis label shows the state, year-
month, and fire name. Bar colors indicate theU.S. state: CA (yellow), TN (darkblue),
TX (orange), CO (green), OR (pink), NM (sky blue).
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the 8.4% to 20.1% range observed in fires with 100 or fewer impacted
structures. Based on data from 2000–2020, fires occurring in forested
landscapes are more frequently associated with higher numbers of
structures impacted, which is consistent with a previous study41. How-
ever, recent events such as the 2021 Marshall Fire and the 2025 Los
Angeles fires—primarily grassland and shrubland fires—highlight that
extensive structural losses can also occur in non-forested areas. Another
notable pattern is the shift in cropland and urban land fractions. Fires
that impact more than 100 structures tend to occur in areas with less
cropland and cropland/natural vegetation mosaics (0.24%) and more
urban and built-up lands (0.49%) compared to those that impact fewer
structures (0.45–2.25% for croplands; 0.11–0.28% for urban areas). Fire
size is an important driver of structure loss, as larger fires—often more
difficult to suppress—have a greater potential to intersect developed
areas and affect more structures than smaller, more easily contained
fires. At the same time, the disproportionately high emissions from
certain states (e.g., Colorado, New York, Michigan) indicate that factors
beyond fire size, such as land use patterns and structure density also
influence structure fire emissions.

We also analyze the influence of fire weather conditions—repre-
sented by the Fire Weather Index (FWI), calculated from the Canadian
Forest Fire Danger Rating System (CFFDRS)42—on structure-involved
fire activity and emissions. The FWI is a widely used proxy for potential
fire intensity that combines the influence of temperature, relative
humidity, precipitation, and wind speed on fuel availability for com-
bustion across different fuel classes, along with a proxy for fire spread
rate (see the Methods section for details). Fire weather conditions
show a significant impact on both the burned area and emissions
associated with structure fires over the western and eastern U.S.
(western and eastern U.S. is separated by -104° longitude).

Correlations are notably higher in the West (Spearman rank correla-
tion coefficient (ρ) = 0.75 for burned area; ρ =0.67 for emissions)
compared to the eastern U.S. (ρ =0.22 for burned area; ρ =0.18 for
emissions) (Fig. 6), indicating that structure fires in the West are more
strongly influenced by fire-conducive weather conditions. In contrast,
the weaker correlations in the East suggest that other factors—such as
land use, local fuel structure, land management, or human activities—
may play a more prominent role in regional-scale WUI fire hazard than
fire weather. The correlation between FWI and the burned area of
wildfires involving structure burning is consistently stronger than that
between FWI and emissions. This is partially because fire weather
directly influences fire spread, which governs burned area, whereas
emissions are additionally affected by the amount and type of struc-
ture fuel burned and fire suppression practices. These findings rein-
force the roleoffireweather as a keydriver of structurefirebehavior in
the western U.S., while also pointing to the need for broader con-
sideration of landscape and human factors in the eastern U.S.
Structure-involved fires also exhibit a strong seasonal pattern. For the
majority of events—excluding a few highly destructive outliers shown
in Fig. 1C—larger burned areas and higher emissions tend to occur in
late summer (August–September), coinciding with peak fire weather
conditions as indicated by FWI. FWI is a function of the Initial Spread
Index (ISI) that represents the potential fire spread rate based on daily
weather fluctuations, and a buildup index that represents antecedent
conditions from prior months. To assess the sensitivity of our results,
we repeat the analysis using ISI alone. While specific correlation values
differ slightly, the overall patterns and conclusions remain consistent
for FWI and ISI (Fig. S6). This similarity suggests that structure burning
in wildfires is primarily influenced by daily weather fluctuations rather
than longer-term antecedent conditions.
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Fig. 3 | Temporal patterns of carbonmonoxide (CO) emissions and fire activity.
A Annual CO emissions (in grams, g) from structure burning in wildfires (blue, left
axis) and vegetation fires (orange, right axis) across the conterminous U.S. from
2000 to 2020. B Monthly distribution of fire counts expressed as a percentage of

total annual fire counts. Lines represent all fire incidents from the all-hazards
dataset mined from the US National Incident Management System (ICS-209-PLUS)
(green), those involving structure burning (yellow), and the 20 most destructive
structure fires (pink).
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Discussion
This study presents a comprehensive assessment of emissions from
burned structures in wildfires across the conterminous U.S., revealing
amajorbut previously unaccounted source of hazardous air pollutants
with implications for air quality and public health.

Temporal and spatial patterns of structure fires
The interannual variability and the seasonality together show that
temporal patterns of structure and vegetation fires are becoming
increasinglydecoupled, even though they historically seem to respond
to similar large-scale environmental conditions (Fig. 3A; 2002–2015).

This suggests the potential for a growing influence of distinct drivers
behind high-impact structure fires. Unlike vegetation fires, which are
often governed by broad-scale climatic patterns20, destructive struc-
ture fires may be more sensitive to localized factors such as land-use
change andWUI expansion. ref. 5. analyzed annual wildfire data across
the contiguous U.S. for 2001–2020 and found that fast-spreading fires
—those growing more than 1620ha ( ≈ 4000 acres) within a single day
—accounted for 78% of structures destroyed and 61% of suppression
costs. These differences underscore the need for targeted strategies in
forecasting, emission modeling, and risk mitigation that take into
account the unique dynamics of structure fire behavior.

Fig. 4 | Structure fire emissions over the conterminous U.S. A Averaged annual
structure burning emissions from 2000–2020 across a range of pollutants, dis-
played with separate y-axes to accommodate wide dynamic ranges. Comparison of
2016–2020 B hydrochloric acid (HCl) emissions and C lead (Pb) emissions from
structure fires (green) versus anthropogenic sources reported in the U.S. Envir-
onmental Protection Agency (EPA) 2020 National Emissions Inventory (NEI) (pink),

by state. Structure fire emissions represent annual averages over 2016–2020, with
vertical whiskers showing the minimum and maximum across the five years.
Abbreviations: THC = total hydrocarbons, PM = particulate matter, Cl = chlorine,
H₂S = hydrogen sulfide, HCN = hydrogen cyanide, NH₃ = ammonia, NOₓ = nitrogen
oxides, HBr = hydrogen bromide, SO₂ = sulfur dioxide, Sb = antimony, FCDF = furan
chlorinated dibenzo furans, and PCDD = polychlorinated dibenzo-p-dioxins.
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Overall, the results indicate that large destructive fires are more
likely to occur in forested zones with higher urban and built-up land
areas from 2000 to 2020. This shift toward higher proportions of
developed and forested land covers within the perimeters of more
destructive fires highlights that landscape context plays a critical role
in the level of destructiveness of structure fires, and that structure fire
risk could be amplified in those land cover types and/or the ability to
manage/suppress fires in forested regions may be challenged, even
though savanna, shrubland, and grasslands are still the dominant land
cover affected. These findings contribute additional knowledge to the
conclusions of ref. 11, who suggested annual structurenumber losswas
well explained by area burned from human-ignited fires, while the
decadalnumberof structure losswasexplainedby state-level structure
abundance in flammable vegetation.

In theWest, structure-involved fire activity aligns closely with fire-
conducive weather (higher FWI–burned-area/emissions correlations),
underscoring the roleofmeteorology and fast-spreading events. In the
East, weaker weather–fire relationships point to land-use configura-
tion, local fuel structure, and human activities as relatively stronger
determinants of structure losses and emissions.

High-impact events and regional outliers
Four states—California, Colorado, Oregon, and Tennessee—each have
at least one year during 2016–2020 in which structure-fire HCl
exceeded the state’s anthropogenic total (NEI). Elsewhere, structure-
fireHCl is generally lower than anthropogenic totals.Whilemost states
remain below anthropogenic totals, structure-involved wildfires occur
acrossmost states of the country (Fig. 1A), and severe events canoccur
outside the West (e.g., the 2016 Tennessee fires). Tennessee does not
appear to have a distinctly elevated baseline climate, land cover, or
WUI extent relative to neighboring states43,44. Its exceedance is domi-
nated by a single late-season, wind-driven incident with extensive
structure loss45,46, indicating that it is possible that similar fire events

could occur in other states given similar fuels, weather, and WUI
exposure, even if such events are not observed during our analysis
period. A small number of such rare, high-impact incidents contribute
disproportionately to annual structure fire emissions, highlighting the
importance of preparedness and rapid response capacity for tail-risk
events.

Air quality and health implications
This study reveals structure fires as a previously under-quantified but
significant source of air pollution, with important implications for
regional air quality and public health assessments. Beyond the sub-
stantial air pollutant emissions they produce, structure fires may have
disproportionately greater health impacts compared to other anthro-
pogenic emissions due to the potential for greater exposure to
hazardous air pollutants. Because structure-burning emissions are
often driven by extreme events, they are intensely concentrated both
in time and space and can produce exceptionally high local pollutant
concentrations that, depending upon atmospheric dispersion and
wind direction, may be more likely to directly impact urban areas.
Furthermore, populated locations adjacent to structure fires do not
always evacuate if not at immediate risk of fire. This was exemplified in
the Eaton fire where the concentrated smoke plume impacted parts of
Pasadena that were not evacuated and less than twomiles from active
fire47. In addition, NEI anthropogenic emissions are annual totals,
which may be emitted at low concentrations throughout the year,
while structure fire emissions are typically concentrated over much
shorter timeframes—often lasting only hours to days. As a result, the
pollutant concentrations during structure fires can be substantially
higher, leading to more acute exposures in areas impacted by the
smokeplume. Thepotentially greater short-termexposuremay lead to
increased health risks for nearby populations23, although this is still an
active area of research. While direct comparisons remain limited,
existing evidence suggests that structure fire smoke contains higher

Fig. 5 | Land cover type for fires involving structure burning (2001 to 2020).
A Fraction of land cover categories across structure fire events grouped by the
number of impacted structures. Land cover classification is based on the MODIS
Land Cover Type dataset68. The Forests category includes classes 1–5. Shrublands,
Savannas, and Grasslands includes classes 6–10. Croplands & Cropland/Natural
Vegetation Mosaics includes classes 12 and 14. Urban and Built-up Lands

corresponds to class 13. Other MODIS land cover types not shown—such as Per-
manent Wetlands, Barren, Water Bodies, and Permanent Snow and Ice (classes 11,
15–17)—are excluded due to negligible representation in the fire footprints.
B Zoomed-in view of the top 3% of the y-axis (97–100%) from (A), highlighting
minor land cover categories. A year-by-year land-cover composition within
structure-involved fires can be found in Fig. S5.
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proportions of certain toxicants, potentially increasing risk14,23. These
features of structure-burning emissions further emphasize the
importance of accounting for structure fires in both emissions inven-
tories and public health evaluations.

Limitations, uncertainties, and future directions
While our estimates provide a nationwide assessment of structure fire
emissions, several limitations should be noted. These include uncer-
tainties in structure fuel load estimates, the fraction of fuel burned in
damaged structures, hindcasting of historical building counts, and EFs
for certain pollutants. Additional limitations, along with quantitative
sensitivity analyses, are discussed in detail in the Uncertainty section.

Human activities are responsible for approximately 97% of wild-
fire ignitions that threaten homes (that are within 1 km of the fire
perimeter)48. Our findings further demonstrate that these structure-
involved wildfires can emit substantial quantities of hazardous air
pollutants that can impact air quality and human health. This study
provides a nationwide estimate of emissions fromburned structures in
wildfires across the conterminous U.S., offering insights into their
magnitude, spatial and temporal characteristics, and potential drivers.
Our findings highlight that while structure fires contribute a smaller
share of total fire emissions than vegetation fires, they can emit high
levels of hazardous air pollutants. The growing frequency of large,
high-emission structure fires—often occurring in WUI landscapes—
emphasizes the need for targeted fire management strategies that
consider both land use and fire weather influences.

These results call for greater integration of structure fire emis-
sions into national emission inventories, health impact assessments,

and air quality modeling. Mitigation strategies should account for the
distinct spatial patterns, potential drivers, and types and quantities of
air pollutants emitted by structure fires relative to wildland fires. We
note that several uncertainty factors are involved in our estimates of
structure fire emissions. Future work should focus on reducing these
uncertainties by further improving the characterization of EFs and
refining estimates of burned structure fuel. Additional studies should
also explore expanding FINN-WUI to understand global WUI fire
emissions when relevant information becomes available. From
1992–2015, there were 59 million homes within one kilometer of a
wildfire perimeter48. Given documented increases in WUI extent and
housing4, the potential for structure-involved wildfires and associated
toxic emissions is likely to grow, highlighting the importance of inte-
grating these findings into both mitigation planning and air quality
management strategies. It is likely that the confluence of warming and
continued development in the WUI to increase future home losses--
making quantification of wildfire risk to buildings and their potential
emissions critical.

Methods
This study combines geospatial estimates of combustible material
(Combustible mass of the building stock in the conterminous United
States (COMBUST)31 and high-resolution building count data to
reconstruct structure fuel loads over two decades. Fire incident data
from the all-hazards dataset mined from the US NIMS (ICS-209-PLUS),
paired with fire perimeters from the Monitoring Trends in Burn
Severity (MTBS) database of large fires, enable event-level attribution
of structure loss (including structures destroyed and damaged). These
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Fig. 6 | Relationship between Fire Weather Index (FWI) and monthly fire
activity across the conterminous U.S.Monthly total burned area of wildfires that
involved structure burning (top row) and CO emissions from burned structures
(bottom row) are plotted against monthly mean FWI, with each point representing
a month during the 2000–2020 time period. Results are shown for the con-
terminousU.S. (A,D), thewesternU.S. (B, E), and the easternU.S. (C, F). Point color
indicates calendar month. Points are colored by month using a continuous color

scale arranged to reflect the progression of the annual cycle, with the color of
December and January appearing near close to each other. Spearman rank corre-
lation coefficients (ρ) and p-values (p) quantify the strength and significance of the
associations between FWI and fire outcomes. Spearman rank correlation is used
due to non-linear relationships between compared variables and its robustness to
outliers. All y-axes are log-scaled. Analysis is restricted to events with non-zero
structure burning numbers.
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structural parameters are linked with EFs compiled by ref. 14 to esti-
mate pollutant release. A flowchart for estimating emissions from
structure burning in WUI fires using the ICS-209-PLUS, COMBUST,
MTBS, built-up property locations (BUPL), and Microsoft Building
Footprints (MSBF) datasets can be found in Fig. S7. For comparison
and validation, we leverage the FINNv2.5 dataset to assess vegetation
fire emissions and the EPA NEI to benchmark structure fire emissions
against traditional anthropogenic sources. Together, this integrated
framework allows us to generate a national structure fire emissions
inventory for the 2000–2020 time period, analyze spatial and tem-
poral patterns, and examine potential key environmental drivers.
MODIS land cover data and FWI data are used to assist analysis.

COMBUST
The structure fuel in a WUI fire is all the combustible material that is
consumed in the fire, which can be wooden structures, furnishings,
personal items, etc. The COMBUST dataset31 estimates the structure
fuel load, by estimating the combustible mass of the building stock,
enumerated in grid cells of 250 × 250m, including building material,
building contents, gas stations, and refineries. The combustible mass
of building material is derived from remote-sensing-based data on
building volume and building mass, disaggregated by building mate-
rial components, available for the conterminous U.S. at 10m spatial
resolution for the year 201849. For the production of COMBUST, non-
flammable materials from the ref. 49 data were excluded, and mass
estimates were resampled to a 250m grid. The combustible mass of
building contents in COMBUST was derived using a method proposed
by ref. 50, estimating the mass of flammable building contents based
on building indoor area and building function derived from the Zillow
Transaction and Assessment Dataset (ZTRAX), a property dataset
commonlyused in environmental research51.Moredetails areprovided
in the supplement (Text S1).

MSBF building counts
The MSBF building counts dataset is a derived product from Micro-
soft’s USBuildingFootprints geospatial vector dataset52. While USBuil-
dingFootprints vector data have been extracted from overhead
imagery using deep learning, the MSBF dataset represents an aggre-
gated version of the USBuildingFootprints dataset, aggregated into
grid cells of 250 × 250m, aligned to the COMBUST grid, reporting the
number of buildings per grid cell across the conterminous United
States. The MSBF building counts are available as part of the COM-
BUST Plus dataset, accompanying the COMBUST combustible mass
estimates, reflecting the approximate U.S. building stock in the
year 2020.

Historical settlement data compilation for theU. S. (HISDAC-US)
BUPL dataset
HISDAC-US is a collection of gridded datasets measuring different
components (building density, building indoor area, settlement age,
and building function) over long time periods (i.e., 1810–2020), using
large amounts of geocoded building construction year information
and other property-level attributes from the ZTRAX dataset53,54. One
component of HISDAC-US is the BUPL dataset55, providing semi-dec-
adal, gridded estimates of building densities across the conterminous
U.S. from 1810 to 2020 at 250-mgrid resolution. HISDAC-USBUPL data
captures urbanization processes such as land development, densifi-
cation and expansion of the built environment56 and is enumerated in
the same 250-m grid as the COMBUST dataset.

Incident status summary form plus (ICS-209-PLUS) dataset
The ICS-209-PLUS dataset3 is based on publicly available ICS-209
forms fromtheU.S. NIMS, comprising daily reports for 34,478wildland
fire incidents from 1999 to 2020. ICS-209 reports are completed for
significant incidents and include fields for structures threatened,

damaged, and destroyed57. Although only ~1–2% of wildfires become
large incidents, they account for ≈95%of the nation’s burned area each
year3; consequently, ICS-209-PLUS covers the events responsible for
most area burned and underpins NICC’s published ‘structures
destroyed’ statistics58. ICS-209-PLUS provides various information on
fires, including the number of structures destroyed and the number of
structures damaged during a specific fire. In addition, ICS-209-PLUS
also provides fire ID, fire source ignition type, and fire point of origin
and discovery date. Note that the ICS-209-PLUS dataset only includes
burned structures in wildfires and does not include municipal fires.

Fire perimeters
For fire perimeters, we use data from the MTBS Burned Areas
Boundaries for 1984–2024dataset from theUSDAForest Service59. Fire
shape for a fire is matched with fires from the ICS-209-PLUS dataset
using the fire identifier. MTBS provides consistent assessments of fire
size and severity across the conterminous U.S., Alaska, Hawaii, and
Puerto Rico. The dataset includes wildfires and prescribed burns that
exceed 1,000 acres in the western U.S. and 500 acres in the eastern
U.S., covering all land ownership types.

EFs for structure burning
We estimate pollutant emissions by multiplying burned structure fuel
with median EFs from a previous study14. We use EFs in units of g kg⁻¹
of structure fuel burned. ref. 14. compiled twenty-eight (28) of the 92
references reported EFs for a total of 346 test conditions covering a
range of chemical species that were included in the urban fuel emis-
sion factor compilation. We use themedian values of the structure fire
EFs in our estimation. A concise summary of the EFs used in this study
is provided in Table S3.

Fire Inventory from NCAR version 2.5 (FINNv2.5)
FINN provides daily global estimates of pollutant emissions fromopen
fires with a high spatial and temporal resolution for use in air quality,
atmospheric composition, and climate modeling applications26.
FINNv2.5 uses active fire detections from both MODIS at 1 km resolu-
tion and the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375-m
spatial resolution for the calculation of fire emissions. We use gridded
FINNv2.5 data during 2002–202060 with resolution of 0.1 degree × 0.1
degree for analysis. In addition, specifically for the year 2020, we also
use processed data from our previous study10 which separate FINN
vegetation fire emissions to WUI vegetation fire emissions and wild-
land vegetation fire emissions.

EPA NEI anthropogenic emissions
The U.S. EPANEI is themost comprehensive andwidely used dataset for
characterizing anthropogenic emissions in the U.S61. It provides detailed
estimates of a broad range of pollutants, including greenhouse gases,
criteria air pollutants, and hazardous air pollutants, frommajor human-
related sources such as transportation, industrial processes, power
generation, and residential fuel use. TheNEI is updated every three years
and integrates reported emissions data, activity-based estimates, and
standardized modeling techniques. Emissions are typically reported at
the county level, enabling spatially resolved analyses. Owing to its con-
sistency and scope, the NEI serves as a critical resource for air quality
modeling, regulatory planning, and tracking emissions trends. In this
study, we compare structure burning emissions of selected pollutants—
specifically HCl and Pb—to NEI anthropogenic emissions for 2020 from
the 2020 Air Toxics Screening Assessment (AirToxScreen)62, high-
lighting the magnitude and relevance of structure burning as a pre-
viously unaccounted source of pollution.

FWI and Initial Spread Index (ISI)
FWI from CFFDRS is used in this study due to its widespread use in
both operational and research communities, its representation of
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potential fire hazard as a function of fuel aridity and fire weather—
including sensitivities to temperature, precipitation, humidity, and
wind speed—and its demonstrated empirical relationshipswith burned
area and extreme fire events across diverse global regions42,63–66. The
FWI integrates the effects of fuel availability through a buildup index
that combines three different classes of fuel moisture with the
potential rate of fire spread (i.e., ISI). The buildup index incorporates
information (e.g., from antecedent precipitation and temperature) on
time scales of a couple months to the previous day, and ISI represents
daily fluctuations in weather. We calculated daily FWI using the 1/24°
gridMET dataset on its native grid67, following the methodology of
previous studies65,66. Inputs include daily total precipitation,maximum
temperature, minimum relative humidity, and mean wind speed, in
place of traditional local noon values, as in prior studies. Calculated
FWI is then spatially averaged for regional scale comparisons withWUI
fire burn area and CO emissions. We additionally considered ISI from
theCFFDRS that is a proxy forfire spread rate basedonwind speed and
fine-fuel moisture that responds more quickly to meteorological
variability.

MODIS Land Cover Type dataset
Land cover type yearly data from 2001 to 2020 from MODIS/Terra
+Aqua (MCD12Q1 v6.1)68 are used for land cover type analysis (Fig. 5)
across the conterminous U.S. The original resolution of these data is
approximately 500m.

Obtaining structure numbers for previous years
The fuel load dataset COMBUST provides coverage for all years;
however, MSBF and the derived gridded MSBF data are only available
for 2020, approximately. To estimate historical building counts for the
years 2000, 2005, 2010, and 2015, we used the 2020MSBFdataset as a
baseline and applied scaling factors derived from historical HISDAC-
US BUPL datasets. For each U.S. state, we identified grid cells within
state boundaries and computed year-specific scaling factors as the
ratio of total BUPL values in the target year to those in 2020. These
factors were then used to scale the 2020 MSBF building counts and
generate proxy estimates for earlier years. This method assumes that
temporal changes in BUPL are proportional to changes in building
density, enabling reconstruction of historical building distributions
where direct data are lacking. For intermediate years (2001–2004,
2006–2009, 2011–2014, and 2016–2019), we performed linear inter-
polation at the pixel level using the nearest available years. For
example, the estimated structure count for 2002 was derived by
interpolating between the 2000 and 2005 values.

Structure burning emission estimates
Structure burning emissions are calculated individually for each fire
event recorded in the ICS-209-PLUS dataset. We first filter the dataset
to identify fires that involved structural damage or destruction. For
each fire, the number of structures destroyed and/or damaged is
extracted directly from ICS-209-PLUS. We assume that 100% of the
structural fuel is consumed for destroyed structures, and 30% is con-
sumed for damaged structures—an empirically chosen value, with
associated uncertainties discussed later.

The total structure fuel burned in each fire is calculated as the
number of structures affectedmultiplied by the fuel loadper structure
within thefireperimeter and the corresponding burn fraction (100%or
30%). Fuel load per structure is estimated by dividing the total struc-
tural fuel load from the COMBUST dataset within the fire boundary by
the total number of structures from the MSBF dataset within the
same area.

For fires with available fire perimeters from the MTBS dataset—
primarily large-scale fires—we use the provided fire shapes (see Fig-
ure S8). For smallerfires or thosewithoutMTBS coverage, we assumea
circular fire footprint centered on the point of origin reported in ICS-

209-PLUS (also shown in Figure S8). The area of the circular equals to
the reported burned area of the fire reported in ICS-209-PLUS.

In cases where there is a mismatch among ICS-209-PLUS, COM-
BUST, and MTBS—such as when ICS-209-PLUS reports structure
involvement but no structural fuel or building count is found in
COMBUST or MSBF—we estimate an average fuel load per structure
using an expanding search window centered on the fire’s point of
origin. We first attempt to calculate this ratio at a 0.01 degree × 0.01
degree resolution. If either the fuel load or structure count is zero at
that scale, we expand to 0.1 degree ×0.1 degree, and if still unavailable,
to 1° × 1°. This adaptive method ensures that a fuel load per structure
can be estimated for all structure-involved fires in the ICS-209-PLUS
dataset. This approachwasapplied in approximately 10%offire events,
though these account for only less than 1% of the total number of
structures impacted.

Uncertainty discussion
The estimation of structure burning emissions and the interpretation
of the potential impacts of those emissions involves inherent uncer-
tainties. Health risks from structure burning emissions depend on
exposure concentrations, which depend on atmospheric dispersion
varying for each fire. We address and quantify uncertainties of the
emissions where possible at each step of the estimation process. One
potential sourceof uncertainty arises from the relianceon the ICS-209-
PLUS dataset, which serves as the basis for identifying structure fires.
While this dataset is expected to capture most wildfires involving
structural losses, some events—particularly smaller ones—may be
missing. However, ICS-209-PLUS is considered comprehensive for
large-scale wildfires, which, as discussed earlier, are the primary dri-
vers of emissions. Therefore, any possible missing small fires are
unlikely to contribute significantly to total emissions, and we do not
consider this a major source of uncertainty.

Structure fuel load is another potential source of uncertainty. The
COMBUST dataset provides lower and upper bounds for the com-
bustiblemass of the building stock, whichwe use to estimate the range
of possible emissions. Using 2020 as an example, the central estimate
of structure fuel burned is 3.10 × 10⁵ metric tons, resulting in 2.14 ×
10¹⁰ g of CO emissions. When applying the lower bound of combus-
tiblemass, the estimated fuel burned is 2.63 × 10⁵metric tonswith 1.82
× 10¹⁰ g of CO emissions. Using the upper bound, the estimates
increase to 3.78 × 10⁵ metric tons and 2.61 × 10¹⁰ g of CO emissions
(Figure S9). These bounds represent a decrease of approximately 15%
and an increase of 22% relative to the central estimate. Figure S9 also
illustrates the sensitivity of estimates to the method used for calcu-
lating fuel load per structure. When using a 0.1° × 0.1° ( ~ 10 km) box
around each fire’s center instead of detailed fire perimeters, the esti-
mated total structure fuel burned in 2020 increases from 3.10 × 10⁵ to
3.42 × 10⁵ metric tons—a 10% increase, which remains within the
uncertainty range defined by the upper and lower bounds. However,
applying coarser approaches such as a 1° × 1° boxor state-level average
fuel loads leads to much larger increases in estimated fuel burned—
49% and 55%, respectively. The similarity between the 1° × 1° and state-
average results suggests that the 1° resolution is too coarse to capture
local variation. These findings indicate that structures burned in
wildfires tend to have lower fuel loads than the overall average. A likely
explanation is that the COMBUST dataset includes both commercial
and residential buildings, while residential structures are more com-
monly affected by fires. According to ICS-209-PLUS data from
2000–2020, the number of residential structures destroyed is 20.5
times greater than that of commercial structures.When fire shape data
or a 0.1° box is used, the selected burned structures more accurately
represent real-world situation and their inherent spatial variation. In
contrast, broader averaging approaches overrepresent commercial
structures, leading to overestimation of fuel load. Using a con-
terminous U.S.-wide average fuel load per building yields a higher
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estimated structure fuel burned (5.68×10⁵ metric tons) compared to
using state-level averages (4.79×10⁵ metric tons). This is because
structure burning emissions are primarily driven by fires in a few key
states. For instance, the average fuel load per building in California is
46 metric tons per structure, which is lower than the national average
of 51 metric tons per structure.

We approximate 30% of the structure fuel is burned if a structure
is reported to be damaged. We do not expect this assumption will
significantly change the results because overall the number of
damaged structures is not a large fraction. ICS-209-PLUS reported
structures destroyed to be 7.7 times more than the number of struc-
tures damaged. To evaluate the sensitivity of this assumption on the
emission estimates, we calculate structure burning CO emissions for
2020 assuming 10% and 50% of the structure fuel is burned instead of
30% if a structure is reported to be damaged. The resulting estimates
are 2.08 × 10¹⁰ and 2.2 × 10¹⁰ g, which are within a range of ±3% of the
annual total.

Another potential source of uncertainty arises from the hind-
casting of structure fuel loads for years prior to 2020.While COMBUST
provides historical fuel load estimates, the MSBF building count data
are only available for 2020. As described earlier, we use the BUPL
dataset to derive state-level scaling factors and interpolate building
counts at five-year intervals. This step is essential for estimating his-
torical structure fuel loads. Here, we assess the differences that would
arise if 2020COMBUST andMSBF data were used for all years, without
applying hindcasting of structure fuel loads. While this does not
directly quantify the uncertainty introduced by our hindcasting
approach, it provides insight into how changes in structure fuel loads
over time can affect emission estimates. As shown in Figure S10, using
2020 structure fuel loads for all the years results in a modest increase
in total CO emissions from structure burning over 2000–2020—from
2.25×10⁶ to 2.37×10⁶ metric tons, a 5.5% increase. At the annual level,
differences are generally under 20%, except for 2000, 2002, and 2005,
which have relatively low total emissions and thus limited influence on
the overall total. The largest relative difference occurs in 2000 (35%),
with the discrepancy declining over time to 0.25% by 2019. Impor-
tantly, HISDAC-US BUPL data model historical building density dis-
tribution based on the age of the 2020 building stock suffers from a
survivorship bias, as buildings that existed in the past and were
destroyed and not rebuilt are not reflected in the data. Hence, struc-
ture emissions towards the year 2000 may have been slightly higher
than our estimates, thus representing a lower boundary of historical
emissions in this regard.

A final source of uncertainty lies in the EFs used to convert
structure fuel burned into pollutant emissions. In this study, we adopt
the median EF values reported by a previous study14, which represent
the most comprehensive and up-to-date synthesis currently available.
Among all uncertainty sources, EFs may contribute a substantial share
to the overall uncertainty in emissions, as they reflect complex com-
bustion processes that vary across structure types,materials, and burn
conditions. Given the diversity of buildings and the impracticality of
characterizing EFs at the level of individual structures, the use of
representative median values is a necessary simplification for regional
to national-scale estimation. While this introduces uncertainty, it
reflects the best available approach at present. Further refinement of
EFs will depend on the availability of more targeted field and labora-
tory measurements, especially for a wider range of air pollutants and
structure types.

This study focuses exclusively on structure-burning emissions
from wildfires; emissions from municipal fires are not included.
Additionally, emissions from vehicles burned during wildfires are not
accounted for, though they may also represent a significant source of
hazardous air pollutants. Future research will aim to quantify emis-
sions fromburned vehicles to better capture the full spectrumof toxic
releases associated with WUI fires.

Data availability
All data supporting the findings of this study are publicly available
without restriction. Source Source Data are provided with this paper
and include the numerical values underlying all main and Supple-
mentary Figs. and tables. COMBUST and MSBF building counts data
are available at https://zenodo.org/records/1561196431. BUPL is avail-
able at https://dataverse.harvard.edu/dataverse/hisdacus. ICS-209-
PLUS is available at https://doi.org/10.6084/m9.figshare.19858927.
v369. The MTBS data is available at https://www.mtbs.gov. FINNv2.5 is
available at https://rda.ucar.edu/datasets/d312009/60. EPA NEI
anthropogenic emissions are available at https://www.epa.gov/air-
emissions-inventories/national-emissions-inventory-nei. gridMET for
FWI and ISI is available at https://www.climatologylab.org/gridmet.
html. MODIS Land Cover Type dataset is available at https://www.
earthdata.nasa.gov/. The FINN-WUI product is available at: https://
zenodo.org/uploads/1700919532.

Code availability
Code used for analysis in this paper (along with relevant data) can be
accessed through: https://zenodo.org/records/1699791970. Code to
calculate FWI and ISI can be found on Github (https://github.com/
NCAR/fire-indices).
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