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Abstract

Context Landscape science relies on foundational

concepts of landscape ecology and seeks to understand

the physical, biological, and human components of

ecosystems to support land management decision-

making. Incorporating landscape science into land

management decisions, however, remains challeng-

ing. Many lands in the western United States are

federally owned and managed for multiple uses,

including recreation, conservation, and energy

development.

Objective We argue for stronger integration of

landscape science into the management of these public

lands.

Methods We open by outlining the relevance of

landscape science for public land planning, manage-

ment, and environmental effects analysis, including

pertinent laws and policies. We identify challenges to

integrating landscape science into public land
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management, including the multijurisdictional nature

and complicated spatial pattern of public lands, the

capacity of agencies to identify and fill landscape

science needs, and perceptions about the meaning of

landscape approaches to management.

Results We provide several recent examples related

to landscape monitoring, restoration, reclamation, and

conservation in which landscape science products

were developed specifically to support decision-

making.

Conclusions We close by highlighting three

actions—elevating the importance of science-man-

agement partnerships dedicated to coproducing

actionable landscape science products, identifying

where landscape science could foster efficiencies in

the land-use planning process, and developing scenar-

io-based landscape models for shrublands—that could

improve landscape science support for public land

planners and managers.

Introduction

Landscape science relies on foundational concepts of

landscape ecology (Wu 2013) and seeks to understand

the physical, biological, and human components of

ecosystems to support the decision-making needs of

land managers (Robinson and Carson 2013). Land use

planning requires the ability to put large quantities of

disparate information into context in order to make

durable management decisions. Landscape science

can provide needed context for the often abundant site-

specific data available to land managers. Recent

reviews of resource management plans for public

lands suggest that foundational concepts in landscape

ecology are present in plans, but that public lands

planning, management, and monitoring could benefit

from more explicit incorporation of landscape science,

data, and objectives (Trammell et al. 2018).

Such gaps between research and management have

been documented in many fields, including ecology

and conservation (Turner et al. 2002; Darling 2015;

Walsh et al. 2015; Toomey et al. 2017). Researchers

may not focus studies on the questions managers most

need answered (Fazey et al. 2005), and managers may

not use available research in their decisions (Pullin and

Knight 2005; Cook et al. 2010; Cvitanovic et al. 2014;

Kemp et al. 2015). Research that is not readily

accessible, that is complex or technical and not

translated into decision-relevant terms so that it can

be readily applied by managers, or that is conducted at

scales inappropriate to the decision at hand, all pose

challenges to managers.

We argue for efforts to more strongly incorporate

landscape science into public land management. We

begin by outlining the relevance of landscape science

for public land management and known challenges

facing such an effort. We then present examples of

several recent attempts to bridge the landscape

science-management gap on public lands. Our exam-

ples focus primarily on landscape level applications of

research to management of grasslands and shrublands,

which comprise many public lands in the western U.S.

We close by proposing three actions that could further

the integration and use of landscape science in public

land management.

The relevance of landscape science for public land

management in the U.S.

In the western U.S., public lands constitute the

backbone of many conservation efforts, are home to

significant historical and cultural sites, provide diverse

recreation opportunities, and furnish important renew-

able and non-renewable sources of energy, among

many other uses and values (e.g., Aycrigg et al. 2013;

Copeland et al. 2017a). Management mandates, envi-

ronmental laws, and agency policies that govern

public lands clearly reference landscape concepts,

and the vast and disconnected area of U.S. public lands

underscores the need for landscape science and

perspectives to inform public land management.
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The high-level management objectives and

resource uses allowed on federal public lands vary

by management agency and land designation, often

including energy and resource extraction, water pro-

vision, recreation, wildlife conservation, and livestock

grazing (e.g., Federal Land Policy and Management

Act of 1976 [43 USC §1701], Multiple-Use Sustained-

Yield Act of 1960 [16 USC §528], National Park

Service Organic Act of 1916 [54 USC §100101]).

Some uses are incompatible with each other and with

mandates to maintain and restore renewable natural

resources and values. Specific land uses, therefore, are

best targeted across heterogeneous landscapes accord-

ing to inherent suitability, compatibility with other

uses and values, demand from stakeholders, and

resource sustainability goals. Such targeting can be

informed by spatial mapping and analysis of sensitive

resources and of restoration and reclamation potential

across landscapes.

Foundational environmental laws support inclusion

of multi-scale and cross-jurisdictional data and anal-

yses in public lands decision-making. The National

Environmental Policy Act (NEPA) of 1969 requires

federal agencies to examine all proposed actions on

federal lands that may significantly affect the envi-

ronment. Evaluating potential indirect and cumulative

effects of development, in particular, involves con-

sidering potential environmental effects at spatial and

temporal scales beyond those of individual actions (40

CFR 1508.7). The Endangered Species Act of 1973

(ESA) is a second foundational environmental law that

often applies to proposed development actions on

public lands. The ESA was intended to conserve

ecosystems upon which listed species depend and

usually requires designation of critical habitat regard-

less of the entity with jurisdiction over the land being

designated (50 CFR 424). Such designations need to

rely on landscape level analyses and data to adequately

protect many species. Conservation efforts may also

seek to protect species and their habitats before

reaching the point at which listing under the ESA is

warranted. For example, landscape-level analyses

were a critical component of a recent multi-stake-

holder effort to protect greater sage-grouse (Centro-

cercus urophasianus) and sagebrush habitats across

the western U.S. (Bureau of Land Management and

U.S. Forest Service 2014; Bureau of Land Manage-

ment 2015; Stiver et al. 2015).

Landscape perspectives feature prominently in

public land policies and guidance as well. The U.S.

Department of the Interior (DOI) seeks to ‘Enhance

conservation stewardship whereby all levels of gov-

ernment and private landowners work cooperatively

together in an atmosphere of mutual respect to achieve

shared natural resource management goals across

landscapes’ (DOI undated). The Bureau of Land

Management (BLM) has directed its staff to ‘‘incor-

porate appropriately-scaled metrics in monitoring

plans that clearly indicate if landscape and habitat

conditions are trending toward, or away from, desired

outcomes’’ (BLM 2018). The National Park Service

and U.S. Forest Service now organize their monitoring

and, in the case of the U.S. Forest Service, their

planning (36 CFR 219 [2012]), around the concept of

ecological integrity, which requires identifying the

natural range of variability of multiple ecological

indicators across large spatial and temporal extents

(Wurtzebach and Schultz 2016; Carter et al. 2019).

Finally, the large extent and complicated mosaic of

public lands in the West showcase the need for broad

spatial and temporal perspectives in planning and

management. About 60% of the western U.S. is public

land managed by federal, state, and local agencies

(Fig. 1), and the spatial configuration of these lands

varies. Some are large, clearly defined blocks (e.g.,

many national parks and forests), whereas others

(notably lands managed by BLM) consist of many

non-contiguous small blocks interspersed with other

public and private lands (e.g., the checkerboard land

ownership pattern that resulted from federal land

grants to railroad companies). Management decisions

made at the level of individual sites (e.g., permitting of

individual well pads) that do not consider the size and

location of other developments and resources present

across the landscape (e.g., roads, well pads, pipelines,

wildlife migration corridors) can fragment and

degrade large areas of wildlife habitat on public lands.

The landscapes surrounding public lands provide the

social, political, and ecological contexts in which

those lands are managed, constraining both the ability

of managers to implement actions and the potential of

those actions to achieve desired outcomes (e.g.,

Hansen and DeFries 2007, Radeloff et al 2010). For

example, efforts to manage wildfires and control

invasive species across checkerboard areas of feder-

ally managed rangelands must include the support of

123

Landscape Ecol (2020) 35:545–560 547



and actions by other private and public landowners to

be successful (DOI 2015).

Challenges to integrating landscape science

and landscape management on public lands

Public land managers face challenges in managing at

landscape levels and using landscape science despite

the legal and policy foundation for both. Challenges

include the multijurisdictional nature of public lands,

agency capacity to identify and scientists’ ability to

address landscape science needs for public lands

decision-making, and public perceptions about land-

scape approaches to resource management. Land-

scapes often include multiple jurisdictions whose

agencies have divergent missions, priorities, and data

sources. Agencies may also differ in their processes

for implementing different environmental laws. All of

these differences can lead to conflicts when public

lands managed by different agencies with different

mandates occur in close proximity.

Managers may also have difficulty identifying,

funding, and using landscape science. Resource man-

agement agencies may focus on hiring staff with the

specific expertise needed to support field operations

(e.g., processing grazing permits), potentially leading

to few field staff that have a background in landscape

ecology (Trammell et al. 2018). Resource managers in

some fields may perceive landscape science as only

peripherally relevant to the resources they manage

(e.g., cultural or historical sites). Resource managers

also may not receive approval to attend training and

conferences to maintain their professional literacy in

emerging science topics. As a result, managers who

received their education and training prior to the

emergence of landscape science as a field of study may

not have the training, or see the need, to identify and

prioritize landscape science needs. When science

needs for informing management decisions are

Fig. 1 Distribution and jurisdiction of public lands in the contiguous United States and in Alaska (inset, BLM 2019). In this paper, we

refer to the states outlined in the thick black line (including Alaska) as the Western U.S
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identified, they may not be novel enough to generate

significant interest from major science funders. Man-

agement agencies may not prioritize funding for filling

landscape science and data gaps or may favor site-

based projects that can be completed in a single year

over landscape-level projects that require multiple

years of funding for implementation. Agency decision

processes may also be less established for landscape-

level projects. Agencies may lack mechanisms for

helping scientists understand the types and topics of

science that could be readily incorporated into existing

agency decision processes, the degree of certainty in

science products needed to reduce management risks

to acceptable levels, and the time frame in which

science information is needed to improve decision

outcomes; and scientists may be unable to produce the

desired products in the necessary timeframe. Further,

time spent by scientific staff engaging with public land

managers to understand these issues and assist with

efforts like land-use planning is often undervalued in

performance evaluations (Dilling and Lemos 2011;

Beier et al. 2017). These challenges, coupled with a

long tradition of and political emphasis on site-specific

data, often lead to agencies that lack experience and

motivation to use landscape science and data.

The application of landscape science in land use

planning may also be challenged by perceptions about

how landscape level land management may poten-

tially conflict with local land uses and priorities. For

example, in 2016 BLM worked to update its land-use

planning process to include, among many other things,

a requirement to consider landscape level information

in the planning process (81 FR 89,580). More than two

hundred of the comments submitted in response to the

proposed regulation by various organizations, busi-

nesses, local and state governments, individuals, and

members of Congress (Regulations.gov 2016, two

excerpts from these comments are included below)

addressed landscapes specifically and illustrate several

key challenges that contributed to the regulation being

nullified (131 STAT. 76). First is the lack of a clear

understanding of the definition of landscape, whether

there can be multiple landscapes and scales consid-

ered, and the potential implications of both for

increasing the size of land-use planning areas such

that they might cross field office, district office, or

even state boundaries. Second is a perception that

landscape-level data and analyses may preclude or

override the use of local and site-specific information

and plans and devalue the expertise of local land

managers and members of the public. Third is a

concern that landscape level analyses will complicate

and delay the planning process and fail to provide the

detailed information that local planners need. These

Fig. 2 Conceptualization of the work of science-management

partnerships to address problems or challenges (represented by

the large ovals) relevant to both scientists and resource

managers over time. The dashed line represents the conceptual

boundary between science and resource management. Moving

from left to right across the figure illustrates increasingly close

collaborative problem solving efforts that can occur over time

accompanied by greater communication, collaboration, and

understanding. Ferguson et al. (2014), used with permission
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perceptions and concerns are embodied in comment

excerpts such as ‘‘… it is unclear how moving to a

landscape approach will allow for the detailed plan-

ning on the land that is required to inform local

managers for adequate decision making.’’ Fourth is a

perception that consideration of landscape perspec-

tives and data ‘‘… strips away the authority and

expertise of local land managers’’. Such challenges

can influence managers and subsequently prevent

planners from using landscape science and data,

potentially resulting in isolated planning decisions

that do not adequately consider or quantify potential

environmental impacts across the landscape.

Applying landscape science to public land

management

Despite the challenges described above, the impor-

tance of landscape-level management has been rec-

ognized by resource managers for years (Lidicker

1995; Liu and Taylor 2002). We present below several

examples of landscape science products designed to

support management needs on western public lands.

For each example, we outline the problem identified

by public land managers, the research conducted and

science or data products produced, and the ways in

which the products have been or could be used to

inform public land management.

Example 1: monitoring landscapes, hydrology,

and climate around national parks

Problem

The NPS Inventory and Monitoring Program facili-

tates integration of natural resource monitoring into

park management by applying standardized monitor-

ing protocols (Oakley et al. 2003; Fancy et al. 2009)

across 32 regional monitoring networks. Most net-

works identified land cover, vegetation, surface

hydrology, and weather and climate as key ecosystem

drivers that affect park resource conditions. However,

designing and implementing monitoring protocols

within each network was determined to be unsustain-

able within the program’s resources, and a nationally

standardized approach to meeting local monitoring

objectives related to park environmental settings was

implemented instead. Challenges to landscape

monitoring in NPS include balancing similar data

needs across parks of varying sizes (0.3–534,000 ha),

the diversity of management priorities and jurisdic-

tions around parks, and the many ways in which parks

want to use landscape data to support their scientific,

planning, and civic engagement efforts.

Research and products

In 2018, the NPS Inventory and Monitoring Program

identified a suite of metrics that act as surrogates for

ecological drivers that influence park resource condi-

tion, ecological processes, and conservation context.

In 2019, NPS began implementation of a Park

Environmental Settings monitoring protocol to calcu-

late and report on these metrics (DeVivo et al. 2018).

This effort evolved from the NPScape program which

delivered landscape-level data, standardized analyti-

cal methods, visualization tools, guidance on inter-

preting results, and park example case studies to assist

NPS Inventory and Monitoring networks with inte-

grating landscape dynamics information into park

management and planning (Bennetts et al. 2012;

Monahan et al. 2012; Monahan et al. 2013; NPS 2013).

The nationwide Environmental Settings Monitoring

Protocol expands the scope of the original NPScape

program to include analyzing other significant drivers

of park resources, reporting data at additional scales

(such as watersheds), defining monitoring objectives

to assess changes in parameters over time, and

establishing a framework to integrate landscape

dynamics data into planning and management.

Informing management

Successful implementation of the nationwide moni-

toring protocol will require close coordination and

partnerships among many units within NPS. To

facilitate use of landscape dynamics data by park

staff, the metrics will be calculated centrally and made

available to all staff via existing NPS planning tools

already used by park managers. Integration of land-

scape dynamics data into resource management and

planning will be facilitated or assisted by monitoring

staff who conduct other monitoring efforts at the scale

of four to seventeen parks, have an understanding of

park management issues and technical capacity, have

access to other local monitoring data, and have

responsibility for assisting with the integration of
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inventory and monitoring data into park decision-

making. Application examples may include trans-

portation planning, identifying linkages between

habitats fragmented by forest change or road devel-

opment, exploring relationships between fluctuations

in daily streamflow and changes in fish diversity,

stream bank erosion, or riparian health observed by

park staff, and the use of historical and forecasted

climate data to inform controlled burns and invasive

species treatments. A science collaboration between

an NPS monitoring network and the U.S. Geological

Survey (Andrews et al. 2018) used similar landscape

and historic climate data to help managers better

understand climate-driven effects on water availabil-

ity in their park. As the nationwide protocol proceeds,

the audience for the metrics may expand to other

stakeholders like state and local governments, tribes,

and non-governmental organizations.

Example 2: restoring arid and semi-arid landscapes

Problem

Ecological restoration across large landscapes in

dryland regions is a recognized challenge (Oldfield

and Olwell 2015). The prevailing dry conditions of

western public lands often do not support plant

establishment, and restoration succeeds primarily

during unusual wet periods or in portions of a

landscape with suitable soils and microclimates

(Brabec et al. 2016; Copeland et al. 2017b; Shriver

et al. 2018). As temperatures rise and weather

variability increases, the frequency of these unusual

favorable events supporting dryland plant establish-

ment may decline (Petrie et al. 2017). Anticipating

shifts in suitability for any given location is further

complicated by variable projections for long-term

precipitation patterns, which introduce uncertainty in

identifying appropriate species or genotypes for future

restoration projects.

Research and products

Research into contemporary drought patterns and

twenty-first century drought trajectories can help

inform restoration strategies that minimize drought

constraints and maximize long-term suitability (Brad-

ford et al. 2018). Results suggest that adaptive and

flexible seeding strategies may help address the high

variability in plant establishment and that long-lead

(e.g., multi-month) forecasts currently have sufficient

skill to provide useful resource management informa-

tion (Hardegree et al. 2018; Hagger et al. 2018). For

example, in big sagebrush ecosystems where plant

establishment is related to short-term temperature,

snowpack, and spring soil moisture conditions, the

probability of successful big sagebrush establishment

can be enhanced by seeding in multiple consecutive

years (Shriver et al. 2018) or by leveraging seasonal

weather forecasts (e.g., forecasts of snowpack, Kap-

nick et al. 2018) to target seeding during favorable

years. Long-term restoration success may be maxi-

mized by using propagules from species or genotypes

that are adapted to establish and survive in hotter, drier

conditions (Butterfield et al. 2016).

Informing management

Current work is focused on improving landscape-level

assessments of dryland resistance and resilience

(Bradford et al. 2019) and integrating results into

decision support tools for managers. Several tools

have emerged that help managers identify appropriate

seed sources by assessing the long-term climate

trajectories within seed zones [e.g., the Seedlot

Selection Tool designed to help forest managers

match seedlots with planting sites based on climate

information (https://seedlotselectiontool.org/sst/), the

Climate Distance Mapper tool designed to help

resource managers match seed sources with restora-

tion sites (https://usgs-werc-shinytools.shinyapps.io/

Climate_Distance_Mapper/), and a tool to aid sam-

pling efforts along climate gradients for an area of

interest (https://seedmapper.shinyapps.io/climpart/)].

Additional tools in development will quantify future

ecological drought at a given location (Bradford and

Andrews 2018) and assess the probability of a planned

restoration treatment avoiding drought-induced mor-

tality. The Land Treatment Exploration Tool (Pilliod

et al. 2018) identifies past land uses, disturbances, and

treatments near proposed restoration projects to help

managers understand what restoration methods and

seed mixes are more likely to be successful. In com-

bination, these findings and tools can help resource

managers maximize the efficacy and long-term

effectiveness of restoration efforts across heteroge-

neous landscapes.
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Example 3: landscape considerations

for reclamation

Problem

Reclamation of severely disturbed land is usually

confined to specific sites, but the cumulative effects of

some actions have landscape level implications.

Energy development on U.S. public lands is a good

example. About 3 million hectares of land was cleared

for oil and gas development between 2000 and 2012 in

the central U.S. and Canada (Allred et al. 2015). This

development, particularly where highly concentrated,

has led to concerns about cumulative effects on other

resources, notably wildlife habitat, air quality, and

aesthetics (Allred et al. 2015; Buse et al. 2019). The

type and scale of information needed to inform

mitigation of such impacts vary. Broad-scale infor-

mation is needed during larger planning processes

(e.g., development of land-use plans for BLM field

offices), whereas very fine scale spatial data on

specific resources is needed at the implementation

level to minimize construction and operational

impacts and increase the likelihood of subsequent

reclamation succeeding.

Research and products

New tools and data products have been developed to

address some of these information needs, including an

analysis of reclamation success across spatial and

temporal scales (Nauman et al. 2017), fine scale

information on soils that can be used to predict soil

vulnerability to erosion and challenges to reclamation

(Nauman et al. accepted), and new land classification

concepts suitable for organizing and spatially convey-

ing reclamation potential and best management prac-

tices (Duniway et al. 2016) that can be mapped with

greater spatial resolution and in places without current

soil surveys (Maynard et al. 2019).

Informing management

Planning for energy exploration and development

currently relies on Natural Resources Conservation

Service soil survey maps, which often have limited

spatial and thematic detail. USGS and others have

developed new predictive soil maps that can facilitate

a more informed decision process at both broad and

fine scales. For example, better spatial information on

soil types that are more difficult to reclaim and pose

high risk of accelerated erosion by wind or water if

reclamation fails can be used in planning and siting

processes to minimize some deleterious impacts of

energy exploration and development through avoid-

ance. These same maps can also be used in planning

reclamation actions, including estimating reclamation

costs based on the occurrence of challenging soil

properties (e.g., salinity). New online tools will also

allow agency and industry staff to conduct initial

assessments of the status of reclaimed well pads based

on remote sensing indicators and machine-learning

selected reference sites (Nauman et al. 2017). The

ultimate goal is to capture and synthesize information

on potential development impacts to resources, effects

on other users, and where and how reclamation has

succeeded, and to make this information available in a

spatially explicit framework to inform future planning

and reclamation actions (Duniway et al. 2016).

Example 4: multi-scale management of sage-

grouse

Problem

Animals select for resources across spatial scales, with

choices first made at broader scales (Boyce 2006;

Aldridge et al. 2012). Often we understand local niche

conditions required by species (e.g., nesting habitat for

sage-grouse [Centrocercus spp.], Hagen et al. 2007),

but research over the past decade has recognized the

importance of assessing landscape-level resource

requirements as well (Aldridge and Boyce 2007; Fedy

et al. 2014; Kirol et al. 2015). Considering how

resource availability affects individual fitness is par-

ticularly important when landscapes are modified at

faster rates than species can respond, such as with

energy development and sage-grouse, resulting in

ecological traps and population declines (Aldridge and

Boyce 2007; Kirol et al. 2015).

Research and products

Recent studies have focused on sagebrush restoration

that benefits sage-grouse, identifying patch sizes of

sagebrush to plant, how and where to plant them (Pyke

et al. 2015), and broader landscape configurations that

may be required before birds will use restored systems
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(Aldridge and Boyce 2007; Kirol et al. 2015). Other

studies have elucidated differences in resource selec-

tion across scales for Gunnison sage-grouse (C.

minimus, Aldridge et al. 2012): hens with broods

initially select habitats that contain large landscapes of

moderate sagebrush cover for protection, but within

those landscapes select for smaller patches of lower

sagebrush cover that provide access to forage forbs

(C.L. Aldridge, unpublished data).

Informing management

Scientists and managers have leveraged insights from

this research to develop a hierarchical framework that

agencies can use to monitor greater sage-grouse (BLM

and U.S. Forest Service 2014) that addresses broad-

and mid-scales, and a framework that agencies can use

to assess sage-grouse habitat (Stiver et al. 2015) which

identifies specific assessment methods and metrics at

scales from rangewide to individual sites. These

products and approaches are being applied rangewide

to assess population changes (Coates et al. 2017;

Edmunds et al 2018a, b; O’Donnell et al. 2019), and to

evaluate sage-grouse population responses to tempo-

rally varying vegetation characteristics (see Rigge

et al. 2019), climate, fire, cheatgrass invasion, and

energy development to inform future management

actions within the sage-grouse range.

Example 5: identifying and protecting migratory

corridors for big game

Problem

Significant areas of big game summer range, critical

winter range, and seasonal migration corridors occur

on public lands, where there is increasing pressure to

develop energy sources and expand recreational

opportunities (Lendrum et al. 2012; BLM 2018).

Population declines in some species and locations

further contribute to the need to understand how

energy development affects big game and to map big

game migration corridors to inform future permitting

and mitigation actions.

Research and products

Recent research documented that mule deer avoid

winter habitat and alter their behavior in areas with

more intense drilling activities and infrastructure by

detouring from established migration routes, increas-

ing movement rates, and reducing time spent at

stopover sites to rest and feed (Sawyer et al. 2013;

Wyckoff et al. 2018). These behavioral changes may

reduce their ability to track peak plant nutrition during

spring migration (Lendrum et al. 2012). New

approaches for identifying migration corridors (Saw-

yer et al. 2009) have been developed into an online

mapping tool (Gage Cartographics LLC and Wyoming

Migration Initiative 2017) that is now being taught to

state and federal wildlife managers in workshops

across the west.

Informing management

As a result of these findings and tools, new energy

fields are being designed to include lower densities of

well pads and roads, and agencies are requiring

reduced disturbance within seasonal big game ranges

and migration routes on public lands. Managers are

using migration data to identify locations where

movements are being impeded by fences and roads,

so that those fences can be removed or modified, and

problematic road locations can be prioritized for

underpass or overpass construction. Managers are

also targeting herbicide treatments and other habitat

improvement projects to increase the nutritional value

of forage at stopover sites.

In addition to these management applications, the

recent increase in research on big game migration

(e.g., an average of 1, 4, and 8 articles were published

annually in the 1990s, 2000s, and 2010s, respectively,

on mule deer migration according to a Web of Science

topic search conducted 12/31/2019) has also corre-

sponded with key policy and funding actions on the

topic. In 2018, DOI directed its bureaus to work with

western states to improve the quality of big-game

winter range and migration corridor habitat (DOI

2018), and subsequently awarded $2.1 million in

grants to state and local partners for projects protecting

migration corridors (Streater 2019). Congress then

introduced bills (H.R. 2795 and S. 1499) in May 2019

to establish a National Wildlife Corridor System on

federal lands and create a grant program to fund

conservation projects on state, tribal and private lands

to facilitate wildlife movement. The corridor move-

ment continues to gain political momentum with a

Senate transportation bill (S. 2302) introduced in July
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2019 that would provide $250 million for a nationwide

pilot program to reduce wildlife-vehicle collisions and

build wildlife crossings.

Strengthening integration of landscape science

and management on western public lands

Public land managers often must balance competing

goals for resource protection and use, insufficient or

conflicting local information, uncertainty in the qual-

ity or interpretation of information, and variable time

frames in which decisions (and their consequences)

occur (Bennetts et al. 2016). While there is a strong

legal and policy foundation for considering landscape

science in public land management, managers face

key challenges in attempting to use landscape science

and perspectives in their decisions. We acknowledge

that these challenges, particularly public perceptions,

are hard to overcome. Adding to these challenges are

timing and political factors that can result in limited

windows of opportunity for integrating science into

policy and management (Brunckhorst et al. 2017;

Rose et al. 2017). However, we contend, based on our

collective experience and the examples above, that

tangible steps can be taken now to promote the

integration of landscape science into public lands

decision-making, including providing stronger sup-

port for long term science-management partnerships,

analyzing land use planning processes for places

where landscape science is currently missing and

could enable efficiencies in the process, and develop-

ing models for non-forested landscapes that facilitate

comprehensive and repeatable NEPA analyses.

Elevating the importance of science-management

partnerships dedicated to producing actionable

landscape science products

We suggest that agencies work to elevate the role of

partnerships among landscape scientists and land

managers, boundary organizations, and knowledge

brokers in public lands planning and management.

Managing data across different spatial scales or

organizational levels will require intentionally creat-

ing new positions and processes within administrative

agencies for effective knowledge management and

integration (Wurtzebach et al. 2019). Individuals will

need to be hired into positions specifically designed to

share knowledge and translate it for management

application within and among agencies. Boundary

organizations—groups that specifically work to con-

nect science and management communities—also

play a critical role (Cash et al. 2006). For a better

chance of success, science-management teams should

be comprised of management agency representatives

and researchers with dedicated funding to design and

carry out research programs that address the long-

term, multi-scale problems that increasingly confront

public land managers. Partnerships can occur at the

level of agencies (e.g., USGS contributes scientific

expertise to resource management agencies within

DOI) or much smaller units. Partnerships can also span

public–private interests, such as the Landscape Con-

servation Cooperatives that provide science capacity

for meeting shared natural and cultural resource

priorities across public and private lands (Jacobson

and Haubold 2014). Long-term commitment and

ongoing investment are required for such efforts to

succeed (Prager 2010). Relationships need to be

established, impediments to working together identi-

fied and addressed, and agency decision-processes

evaluated for landscape science integration opportu-

nities. While multi-year funding opportunities that

require collaboration between managers and scientists

can facilitate the formation and success of such

partnerships (Cash et al. 2006; Schultz et al. 2019),

the short time period within which many planning and

management decisions must be made will continue to

pose challenges for science-management partnerships

that seek to provide landscape science that is used to

inform land-use planning and management actions.

Long-term partnerships enable ongoing commit-

ments to coproducing landscape science products that

meet the needs of public land managers. Coproduc-

tion, in which scientists and managers collaborate to

produce actionable science products (Meadows et al.

2015; Beier et al. 2017), holds strong promise as a

mechanism for increasing manager understanding and

ownership of science products, and for producing

science that is tailored to existing decision processes

and used to inform policy and management actions

(Jasanoff and Wynne 1998; Lemos and Morehouse

2005; Cook et al. 2013; van Kerkhoff and Lebel 2015).

Ongoing communication and shared learning between

scientists and managers are crucial to coproduction,

and usually continue throughout the life of projects.

Coproduction partnerships that span multiple tasks
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and projects can enable more integrated, collaborative

problem solving over time by researchers and man-

agers (Fig. 2, Ferguson et al. 2014).

Identifying where landscape science use could

create efficiencies in land-use planning

A critical next step is for public land planners and

managers to work with landscape scientists to evaluate

their decision processes and identify specific places

where landscape information may be lacking and

could create efficiencies or strengthen decisions. We

suggest three starting points. (1) Increasing the

availability of data on species, resources, and uses

that are collected and mapped consistently across

broad extents could provide stakeholders with a

clearer understanding of current patterns of resources,

uses, and concerns across a landscape. For example,

BLM and NRCS now use similar methods and metrics

to monitor public and private rangelands across the

U.S. (Herrick et al. 2010; Toevs et al. 2011). Such data

can help promote stronger stakeholder engagement,

inform agency planning timelines, and establish a

foundation of public trust in the planning process. (2)

Landscape analyses that map locations across broad

areas where reclamation success might be maximized

(see Example 3), or where conflicts between potential

land uses and sensitive natural or cultural resources

could be minimized, can help developers target

subsequent individual proposed actions and enable

efficiencies in those individual permitting decisions.

For example, the Desert Renewable Energy Conser-

vation Plan established focus areas for siting renew-

able energy development across the southern

California desert by identifying where renewable

energy potential was high and conservation concerns

could be minimized (BLM 2016). This analysis

provided a framework for streamlining subsequent

permitting decisions for individual energy projects.

Non-regulatory landscape strategies such as the

Southeast Conservation Adaptation Strategy (South-

east Conservation Adaptation Strategy 2019) and

West-wide Crucial Habitat Assessment Tool (State

Wildlife Agencies of the Western United States 2019)

could similarly help target individual conservation

projects. (3) Periodically quantifying landscape met-

rics for planning areas could enable monitoring of the

effects of management actions at the scales at which

those actions are conducted (e.g., field offices, states).

For example, BLM uses mid-scale indicators for

monitoring the effects of land-use decisions on greater

sage-grouse habitat, and is developing indicators for

the amount and distribution of priority vegetation

types to help quantify existing Land Health Standards

(43 CFR §4180.1), set vegetation management objec-

tives in land-use plans, and monitor progress toward

meeting those objectives over time.

Developing and using landscape models to support

NEPA analyses

Developing and regularly using landscape models in

NEPA analyses could greatly advance the trans-

parency and defensibility of agency analyses of

potential indirect and cumulative effects of different

development scenarios. Models such as LANDIS II

allow users to simulate scenarios of forest disturbance

and harvest and to visualize the impacts on forest

resources (Scheller et al. 2007). Developing similar

models for grassland and shrubland landscapes that

can accommodate the variety of disturbance types

commonly permitted on public lands could help

inform planning in many western landscapes. State-

and-transition simulation models are moving us in that

direction (Ford et al. 2019) and RMLANDS has been

used to simulate the dynamics of non-forested systems

(Cushman and McGarigal 2019). Considering multi-

ple affected resources in these models would help

public land managers better understand the vulnera-

bility of human communities to different management

scenarios. USGS has piloted methods for conducting

such assessments (Jenni et al. 2018), which could

serve as a starting point. Visualization of modeled

scenarios and outcomes could help managers better

engage and work with stakeholders, through truly

collaborative public meetings, to develop a shared

understanding of the potential impacts of alternative

management decisions on public lands. Static maps,

lengthy written analysis, and encyclopedic appendices

which are currently common in public lands planning

documents do little to help the average stakeholder

understand the complexity of land-use decisions.

Primary considerations in developing landscape

models for informing public land management include

developing new datasets and indices to quantify how

the American public uses lands and how stakeholders

may be affected by changes in public land manage-

ment prescriptions. Public Participatory Geographic
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Information System methods coupled with social

science survey research have the potential to create

geospatial data that reflect current human use and

value of public lands (Brown and Weber 2011) and

can be easily integrated into landscape models to

better understand how behavioral use of public lands

would change under different management scenarios.

Social vulnerability indices (Flanagan et al. 2011) use

socioeconomic, demographic, and public health data

to identify sensitive human populations that may be

less likely to respond to and recover from changes on

the natural landscape resulting from human caused

events including energy development, mineral extrac-

tion, or grazing; or from natural events such as

hurricanes, wildfires, and earthquakes (Cutter and

Finch 2008).

Benefits that may be achieved through these three

actions include improving the transparency and dura-

bility of public lands decisions and minimizing the

legal risks that can arise when agencies do not

coordinate across boundaries to consider the cumula-

tive effects of proposed actions or make different

decisions solely because of political boundaries. The

examples above, and numerous others, illustrate the

successes that can be achieved when scientists and

managers commit to working together to produce and

use actionable landscape science and data. We believe

that these benefits warrant continued efforts to more

strongly integrate landscape science into public lands

decision-making.
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