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Abstract
Wildfire’s destruction of homes is an increasingly serious global problem. Research indi-
cates that characterizing home hardening and defensible space at the individual structure 
level may reduce loss through enriched understanding of structure susceptibility in the 
built environment. However, improved data and methods are required to accurately char-
acterize these features at scale. This paper does three things: (1) Identifies features corre-
lated with structure loss. (2) Compares methods of characterizing structure susceptibility, 
including home assessments and emerging fire spread models. (3) Evaluates methods and 
open data sources used to measure these features. We find that relative feature importance 
varies widely among studies due to data limitations and scale issues. Built-environment 
fire spread models show limited inclusion of structure-level features. Additional research, 
model validation, improved data, and improved data collection methods are needed to 
bridge the gaps between primary research, susceptibility indices, and built-environment 
fire spread models. Advancing scalable methods for characterizing built-environment fuels 
and susceptibility will refine risk mitigation efforts globally.

Keywords Wildland urban interface · Wildfire · Vulnerability · Structure loss · 
Mitigation

1 Introduction

Over 38,000 homes and over 200 lives in the US have been lost to just 4 tragic wildfire 
events since 2018: The Camp Fire (2018), the Marshall Fire (2021), the Lahaina Fires 
(2023), and the Los Angeles Fires (2025) [1, 2]. US insurance companies have paid over 
$18 billion in wildfire damages in the 6 years from 2018 to 2023, exclusive of the LA Fires 
[3, 4], and the broader socioeconomic cost is much greater ($5.5 billion in the 2023 Lahaina 
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fires) [5, 6]. Nearly all of these losses occur in areas known as the wildland-urban interface 
(WUI), where urban environments interface or intermix with natural landscapes [7, 8]. As 
destructive fires are expected to increase, and as homes continue to be built and rebuilt in 
wildfire-prone areas, the importance of protecting the WUI is at an historical inflection point 
[9–11].

Landscape-scale wildfire risk models have been making incremental progress in better 
characterizing the built environment, but remain focused on hazard and exposure with lim-
ited inclusion of individual structure attributes [12–16]. Managing forests for WUI exposure 
competes with other forest management objectives including timber production [17, 18]. 
Even if objectives were to be aligned, research indicates that wildfires will continue to burn 
into the WUI regardless of landscape management efforts [19, 20]. Therefore, focusing 
on hazard and exposure from natural landscapes without attention to the specific parcel-
level features that influence the susceptibility of individual homes is likely insufficient for 
creating fire-adapted communities [1]. Because a comprehensive definition of wildfire risk 
entails susceptibility of highly valued resources and assets to wildfire [21], the specific fea-
tures of individual homes and their surroundings are fundamental to addressing parcel-level 
risk. Without this component, stakeholders in WUI protection face basic unanswered ques-
tions: which people and what assets are the most susceptible to wildfire disasters? What can 
we do to reduce susceptibility?

Post-fire investigations have sought to answer these questions by analyzing the outcomes 
of WUI fires. Investigators meticulously survey WUI disaster sites to identify how indi-
vidual homes ignited and were destroyed or survived [22–24]. These investigations have 
revealed that structure survival is often related to ‘home hardening:’ the degree to which a 
home’s construction materials, architecture, and material arrangement prevent penetration 
by embers and direct flame. In the Lahaina Fires, homes without a Class A rated roof cover-
ing were 3x more likely to be destroyed [25]. Survival is also related to a home’s ‘defensible 
space:’ the features of the environment immediately surrounding the home. In the Lahaina 
Fires, homes with greater than 60% fuel coverage within 5 ft of the structure were 3x more 
likely to be destroyed [25]. Home hardening and defensible space are passive fire defense 
strategies that do not substitute active firefighter intervention, but may lessen the growth rate 
and intensity of urban conflagrations such that emergent disasters are less overwhelming to 
active suppression efforts.

The findings of post-fire investigations are pursued in laboratory experimentation. Basic 
research seeks to measure the heat release rates, ember characteristics, and fire dynamics 
produced by and received by different WUI materials at various configurations in an effort 
to better understand structure-to-structure fire spread and develop improved codes and stan-
dards for community fire mitigation and structural engineering guidelines [26–34].

The features discovered by post-fire investigations to be important and quantified by 
their physical properties in laboratory settings have limited presence in open-access struc-
ture loss databases [35, 36]. Databases such as CAL FIRE Damage Inspection Data (DINS) 
[37] are often reported as being limited to California, and are biased towards structure loss 
without including complimentary information on survived structures or pre-fire conditions. 
This is noteworthy because statistical analyses often rely on these structure loss databases 
and other data [36, 38–40]. However, this seems to have improved since the referenced stud-
ies were published. The DINS Public View shapefile of the Palisades Fire (2025) includes 
6,831 destroyed structures, 4,262 no-damage structures, and 973 damaged structures. For 
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the Eaton Fire (2025), it includes 9,413 destroyed structures, 7,894 no-damage structures, 
and 1,114 damaged or inaccessible structures. The distribution of structures along a gradi-
ent of damage is better for training and testing unbiased descriptive and predictive models 
of structure loss in California. Because of the different data inputs between empirical and 
statistical post-fire analyses, the different scales at which risk is assessed, and a lack of 
information on the physical properties of fuels in the built environment, the responses to the 
aforementioned questions of WUI stakeholders remain uncertain. These gaps have not been 
systematically identified in the scientific literature.

To bridge these gaps, standard data-collection methods for characterizing burnable fea-
tures in the built environment are needed. The use of remote sensing and public property 
records shows promise in achieving both scalability and data accessibility, enabling com-
puter-driven assessments and urban fuel characterization across entire communities. Scal-
able and accessible methods are aligned with official recommendations to congress [41]. 
In the present paper, we identify the current status of methods and models that seek to 
understand and characterize the wildfire susceptibility of individual homes in the built envi-
ronment. First, we identify features of individual homes and their surroundings that have 
been shown to affect structure susceptibility. Second, we review how these features are 
integrated into whole-home vulnerability indices and assessments. Third, we examine how 
home susceptibility is incorporated into emerging WUI fire spread models. The intention of 
this investigation is to provide a common operating picture for researchers developing WUI 
fuels data for fire modeling and risk assessment, with a broader goal of identifying limita-
tions of current approaches and needs for future ones.

2 Methods

Of the 118 sources that are cited in this review, the majority (over 90%) were published in 
the last 15 years, with 80 sources published between 2020 and 2025. This recent surge in 
publications reflects rapid advances in this area, underscoring the need of a comprehensive 
review to consolidate emerging findings and highlight remaining knowledge gaps. The 118 
sources were categorized into 7 groups based on their function and approach (Table 1). 
While some sources overlapped categories, each was assigned to its primary focus for clar-
ity. Codes/Standards were cited for context and practical guidance on structure and defen-
sible space features. Review/Meta-Analysis, Empirical Evidence, and Simulation Model 
categories were cited for empirical support of features correlated with structure loss, with 
Simulation Models also encompassing both structure-to-structure fire propagation and 
physics-based simulations. Tool/Data Source were cited for their contribution to WUI data 

Category Count
Codes/standards 3
Review/meta-analysis 5
Tool/data source 19
Thematic context/evidence 21
Empirical evidence 22
Simulation model 22
Conceptual/applied framework 26
Grand total 118

Table 1 Categories of citations 
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acquisition and application. Thematic Context / Evidence supported conceptual arguments 
and framing. Conceptual/Applied Framework sources introduced or implemented methods 
of assessing susceptibility and risk in the built environment. With the exception of the The-
matic Context / Evidence category, sources were selected for their focus on single-structure 
characteristics and immediate surroundings, particularly features influencing structure sur-
vival or hazardous fire behavior, with priority given to US-based research.

Features of structures and defensible space are not common to different methods of 
describing or predicting structure susceptibility and structure loss. We therefore catego-
rized features in three groups: (1) Empirical features: Factors found to correlate with struc-
ture loss through Review/Meta-Analysis, statistical analysis of damage databases, post-fire 
observations, or laboratory experiments. These are features that have been observed to cor-
relate with structure loss, and that can describe how variations in each feature, such as the 
presence or absence of a protective screen on a vent, will influence the susceptibility of 
a structure to penetration by different fire attack mechanisms. (2) Predictive vulnerability 
indices: Features included in structure vulnerability assessments (a subset of Conceptual/
Applied Framework) designed to predict home survival and help with community wildfire 
preparedness. These are features that have been incorporated into a method that is designed 
to be used by either a homeowner or a community to prepare for and/or reduce community-
level or single-structure level wildfire susceptibility. Selected models (n = 5) must produce 
an index, have published methods, and incorporate parcel-level features. (3) WUI fire spread 
model inputs: Features used in WUI fire spread models to simulate structure-to-structure 
fire spread. These features are used to parameterize the susceptibility and the physical fire 
behavior of individual structures in landscape-scale computer simulations of wildfire in 
the built environment. Selected models (n = 3) must be under active use or development 
and explicitly model structure-to-structure fire spread at the whole-community scale using 
parcel-level features of the built environment.

Given the extensive research supporting the correlation of empirical features with struc-
ture loss, we hypothesized that the most important features that describe structure loss would 
be found in all three categories, including the categories seeking to predict structure loss.

Finally, we identified data sources used by researchers to characterize the built environ-
ment, evaluating their quality, availability, and application to single-structure feature char-
acterization and loss prediction. While data gaps still need to be filled, these sources provide 
additional context for characterizing the built environment.

3 Results

The body of literature often interchanges the terms risk, vulnerability, and susceptibility. 
In this research, we use the definitions provided in the widely-used quantitative wildfire 
risk assessment framework, where susceptibility describes the expected damage to an asset 
based on its physical characteristics [13]. Whether a structure is destroyed in an urban con-
flagration depends on the physical susceptibility of a structure and the intensity and duration 
of fire and embers it is exposed to [42]. Susceptibility is determined by the characteristics 
and arrangement of the construction materials of a home that make it more or less prone 
to ignition. This includes the physical properties of the materials themselves in addition to 
their size, assembly, and architectural design. Vegetation can be treated to reduce wildfire 
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hazard in a wildland environment while homes and infrastructure are fixed in place, requir-
ing a different approach for mitigating wildfire risk [43]. This approach involves two steps: 
(1) hardening homes by retrofitting them with less flammable construction materials, or 
adding protections such as vent screens and non-flammable window shutters [44] and (2) 
creating defensible space by managing anything burnable within the immediate proximity 
of the home.

3.1 Empirical Features

At the individual structure level, the features describing structure susceptibility can be 
parsed into two groups: (1) structure features and (2) defensible space features [45]. These 
features are used to determine the physical susceptibility of individual structures (Fig. 1).

In this section we describe the features of structures and defensible space that are suscep-
tible to various fire pathways and attack mechanisms where flames and embers may enter 
a structure. In the text, we highlight some of the more commonly studied features as an 
introductory overview. Table 2 includes ample citations that contain more comprehensive 
information including literature reviews, landowner studies, post-fire investigations, statisti-
cal analyses, simulations, and homeowner recommendations.

Structure features are components of the home including the roof and windows, as well 
as the size of the home, the arrangement of the materials, and its architecture style. Structure 
features are most commonly associated with home hardening actions, which involve using 
more fire-resistant building materials or adding protections on homes exposed to wildfire. 
As potential exposure to wildfire increases, home hardening levels should also increase [42].

Windows, vents, chimneys and eaves are common entry points of embers into structure 
interiors, and common protections include metal mesh screens to prevent ember entry [46]. 
Windows are particularly vulnerable to direct flame and radiation, which can shatter glass 
and allow embers and flames to enter the structure envelope [35, 47]. Eaves are also vul-
nerable to direct flame propagation from below. The choice of building materials used in a 
structure, and the condition of the materials themselves, may be correlated with structure 

Fig. 1 Conceptual diagram of an individual structure and its defensible space, which may include natural 
fuels such as trees and artificial fuels such as adjacent homes
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age, leading to age being a predictive factor of building loss in the Camp Fire [39], Marshall 
Fire [40], and other California fires [38].

The roof is often the largest area of the home for embers to accumulate and start fires, 
which may be exacerbated by complex roof architecture, poor roof maintenance, and the 
accumulation of dead organic matter [44, 48–50]. Statistical analysis suggests that a wooden 
roof increased the odds of destruction by 539% in the Camp Fire [36].

No single home hardening action is effective in isolation, and home hardening should 
be addressed systematically. A home is only as strong as its weakest link. Even full-system 
home hardening does not ensure the survival of a structure exposed to extreme intensities; 
therefore, reducing exposure is a necessary step in reducing overall risk [25].

Defensible space features are the fuels that exist within a structure’s home ignition zone 
– the area within approximately 100 feet of a structure’s outermost walls, according to the 
National Fire Protection Administration (NFPA) [51]. These features may include artificial 
fuels such as fences and adjacent homes, and natural fuels such as trees and grass [22, 42]. 
Treating defensible space with NFPA standards every 10 years can reduce flame lengths 
by 70% [52]. Fuel load in defensible space was correlated with structure destruction in the 
Camp, Marshall, and Lahaina Fires [25, 39, 40]. Defensible space is used by regulatory 
bodies to provide codes, standards, and guidelines for homeowners [51, 53, 54]. Although 
a homeowner’s control over defensible space ends at their property line, fuels beyond the 
property boundary may still ignite a home especially in dense housing arrangements [42]. 
Overlapping defensible space is depicted in Fig. 2.

Together, structure features and defensible space features determine a home’s suscepti-
bility to wildfire – the likely consequence should a fire reach the home or defensible space 
either through direct flame, radiation or embers. Table 2 shows a list of features found com-
monly in the literature along with references justifying the importance of each feature in 
structure susceptibility and fire dynamics. All studies that observed feature importance can 
be grouped into 4 categories of ‘observation type:’ (A) post-fire investigation, (B) statistical 
analysis of damage database, (C) laboratory experimentation, (D) simulation.

Feature Reference for feature importance 
and/or recommended practices

Observa-
tion type

Structure
 Windows [24, 36, 38, 39, 44, 48, 49, 55, 56] A, B, C
 Roof material [36, 38, 40, 42, 44, 48, 49, 55, 56] A, B, C
 Vents [36, 40, 42, 44, 48, 49, 55, 56] A, B, C
 Eaves [36, 42, 44, 48, 49, 55, 56] A, B, C
 Siding material [24, 36, 38–40, 42, 44, 48, 55, 56] A, B, C
 Architecture [24, 36, 38, 40, 44, 49, 55, 57] A, B, C
 Maintenance [42, 44, 49] C
Defensible space
 Artificial fuels [24, 39, 40, 42, 44, 48, 49, 56, 58] A, B, C
 Landscaping [22, 24, 40, 42, 44, 49] A, B, C
 Adjacent homes [8, 22–25, 32, 38, 40, 42, 43, 49, 50, 

52, 56, 57, 59]
A, B, C

 Canopy cover [36, 38, 39, 42, 49, 50, 52, 56] A, B, 
C, D

 Topography [38, 44, 50, 56, 59] A, B

Table 2 Features influencing 
structure vulnerability

4 categories of ‘observation 
type:’ (A) post-fire 
investigation, (B) statistical 
analysis of damage database, 
(C) laboratory experimentation, 
(D) simulation
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The number of references for each feature in Table 2 does not directly reflect its relative 
importance to home survivability. For instance, ‘Maintenance’ is discussed in only three (3) 
sources, while ‘Siding material’ appears in ten (10) sources. This discrepancy should not be 
interpreted as siding material being more critical than the condition of the siding. Instead, 
it highlights differences in how easily these features can be observed and measured. Sid-
ing material, which is often recorded in public property records, visible on both surviving 
and destroyed structures after a fire, and testable in laboratory settings, is more frequently 
included in analyses of structure survival. In contrast, maintenance levels constantly fluctu-
ate over time and space and are challenging to evaluate, both before and after a fire, limit-
ing references to studies conducted under controlled, laboratory conditions. Therefore, the 
features most frequently explored in the literature and included in practical applications are 
often those that are easier to observe and measure at scale. Other features that can influence 
susceptibility include skylights, rain gutters, siding patterns, fire-retardant treatments, exte-
rior caulking and sealing, and more [48, 49].

The relative importance of an individual feature is difficult to ascertain for many reasons. 
Firstly, a small change in any one of the features could result in a structure being destroyed 
[42]. Secondly, many studies examine feature importance in different geographies, at differ-
ent scales, using different methods, and answering different questions, making direct com-
parison challenging or impossible. For example, Syphard et al. [38] found that local-scale 
assessments determined construction materials and defensible space to be more predictive 
of loss, while landscape-scale analysis determined structure density to be more predictive 
of loss. In Australia, Blanchi et al. [55] examined common entry points of fire to individual 
structures (e.g. windows, vents, eaves etc.) while Price & Bradstock [59] examined the role 

Fig. 2 Clustered houses share defensible space and structures themselves may occupy the defensible 
space of other structures (Created using ArcGIS software by Esri)
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of wildlands and structure density while omitting individual structure features, so the rela-
tive importance of each is not comparable. Thirdly, post-fire investigations are not always 
able to determine the exact cause of home ignition. In the Camp Fire, over 40% of surviv-
ing but damaged structures showed window damage and over 50% exhibited siding dam-
age [39]. Destroyed structures provide less reliable data for identifying ignition sources. 
Fourthly, laboratory studies have not replicated the full suite of fuel assemblies and minute 
structure feature combinations required to unravel the complexity of structure susceptibility 
and structure-to-structure fire spread.

The set of features in Table 2 may be used to predict the susceptibility of individual 
homes to wildfire [25]. The standard way that the full suite of features in Table 2 can be col-
lected is through in-person assessments on a home-by-home basis. Researchers have identi-
fied that this method is not scalable, and have developed predictive vulnerability assessment 
methods to address this issue. The term ‘vulnerability’ is used here in place of ‘susceptibil-
ity’ because some indices include elements of exposure and fire resource response. These 
vulnerability assessments are discussed in Sect. 3.2.

3.2 Predictive Vulnerability Indices

Whole-home assessment methods integrate and normalize individual features of structures 
and their surroundings into an index to rate a home’s vulnerability. These types of assess-
ments and indices are often used for homeowner education, fire department preparedness, 
insurance underwriting, policy and standards development, evacuation planning, and com-
munity mitigation planning. Depending on the approach, assessment methodologies may 
assess features at the single-home level, the community level, or both. Table 3 shows the 
features that are included in five different structure vulnerability assessments and describes 
how these methods were developed and how the data were collected.

The feature weights are omitted from Table 3 due to the different methods of weighting in 
each index making comparison challenging. Vulnerability Assessment Tool (VAT) [47] and 
Physical Vulnerability Index (PVI) [60] both developed models that describe the outcome 
of a single destructive fire via in-person post-fire assessment. VAT used post-fire analysis in 
addition to expert fuzzy-logic questionnaires examining various structure features and fire 
pathways. The logic assigns probabilities of failure of different components of a structure 
and its defensible space, resulting in a set of weighted, predictive features (Table 3). How-
ever, some of the model’s features such as vents are difficult to assess without an in-person 
site visit. Additionally, the index omits the presence or proximity of other structures, a fea-
ture well-linked to structure-to-structure fire spread. PVI used Boruta feature selection to 
analyze post-fire data collected in the field and statistically weight the importance of each 
feature to home destruction. The primary issue with using post-fire features for pre-fire 
predictions is that some features from PVI such as distance to burned vegetation cannot be 
assessed pre-fire. Additionally, other post-fire investigators indicate difficulties in determin-
ing the precise pathway by which embers or fire reached and eventually entered a building 
that has been destroyed. VAT and PVI would both require further validation to be confi-
dently implemented in a predictive capacity by practitioners in other geographies.

The WiRē Rapid Risk Assessment method (WiRē) [61] weighted features depending on 
the state of each feature. For example, the Ingress/Egress feature receives a score of 0 if 
there is more than one way in and out of a residence, and 10 if there is only one. Roof mate-
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Table 3 Vulnerability assessments
Feature Source Data collection 

method
Model 
development 
method

Impact of the main flame front Structure Vul-
nerability Index 
(SVI; Vacca et 
al.  [62])

Land cover data 
and local GIS data 
with local expert 
consultation 
required for fire 
brigade response 
times

Expert opinion
Flash fuels coverage
WUI type
Complexity of topography
Global vegetation continuity
Global friction
Fire brigade response time
Water points
Fire breaks
Vulnerable infrastructure
Roof material WiRē Rapid 

Risk Assess-
ment (WiRē; 
Meldrum et al.  
[61])

Curbside in-
person rapid risk 
assessment

Expert opinion
Distance to nearest home
Defensible space (vegetation)
Attachments
Defensible space (other combustibles)
Siding material
Distance to hazardous topography
Adjacent fuels
Slope
Driveway clearance
Ingress / Egress
Address visibility
Roof material Physical Vul-

nerability Index 
(PVI; Papatho-
ma-Köhle et al.  
[60])

Post-fire on-site 
inspection

Statistical 
analysisStructure type

Terrain slope
Burnt vegetation
Roof (potential leaf accumulation)
Type of shutter
Main ground covering
Roof type
Window panes Wildfire Re-

sistance Index 
(WRI for Cali-
fornia; Dossi et 
al. [35])

DINS database Statistical 
analysisDeck material

Eave design
Vent screens
Roof material
Exterior wall material
Shutters Vulnerabil-

ity Assessment 
Tool (VAT; 
Àgueda et al. 
[47])

Post-fire site visits 
and homeowner 
interviews

Fuzzy logic 
from expert 
questionnaire

Glazing system
Roof material
Roof maintenance
Vents
Windows in semi-confined space (SCS)
Envelope type in SCS
Combustible material in SCS
Failure
Fuel management
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rial has the strongest possible influence on the overall score, with a score of 300 if wood 
shake shingles, and 0 otherwise. Weights were determined by expert judgement. WiRē uti-
lizes several features that are not well-linked to WUI fire behavior and home destruction, 
such as address visibility and driveway clearance. However, these features have a by-proxy 
effect on suppression efficacy and may provide valuable insights to homeowners and first 
responders that can help communities prepare for and respond to destructive wildfires. 
WiRē is the only method of the five to have compared a priori vulnerability assessments to 
the outcome of a destructive fire [61]. The WiRē method involves drive-by assessments of 
homes, and the results of their post-fire analysis indicate that a home is more likely to be 
destroyed if its features cannot be assessed from a vehicle. This conclusion warrants clarifi-
cation and further validation. The use of a rapid drive-by risk assessment greatly increases 
the pace and scale at which home assessments can be made, compared to more rigorous 
in-person assessments.

The Structure Vulnerability Index (SVI) [62] and Wildfire Resistance Index (WRI) [35] 
are the only two methods that obtained data from open sources not requiring in-person 
site visits. WRI uses the features included in the DINS database for validation purposes. 
Weights were equal among variables, but analysis was later performed to determine feature 
importance by comparing Cramèr’s V, Bayes Factor, and Boruta feature selection, which 
disagreed on relative feature importance. DINS is weighted towards destroyed structures 
rather than survived structures, leading to model bias and challenges in validation [35]. 
The structure features obtained from DINS for WRI were roof material, window panes, 
exterior wall material, deck material, eave enclosures, and vent screens. Additional research 
indicates that DINS can be combined with California’s Defensible Space database to obtain 
more attributes and a better balance between destroyed and damaged structures, albeit a 
smaller dataset [36].

There is not one feature that is used by all five assessment methodologies. The most 
common structure feature is the roof material, used by four of the five models. VAT and 
WRI classify roof material as either combustible or non-combustible. WiRē classifies roof 
material into two categories, one of which includes tile, metal, or asphalt shingles, and the 
other which includes wood shake shingles. PVI has five classes of roof material ranging 
from “concrete slab with tiles” (least flammable) to “wooden roof with metal tiles” (most 
flammable). The weight assigned to roof material differs among models.

The differences in roof material classification between these models demonstrate how 
localized these methods are. Localized fuel models may be necessary for prediction because 
of regional differences in housing construction materials, defensible space, road networks, 
and surrounding wildlands [38, 60], and because the insights from these assessments are 
intended to be applied at the local level.

SVI differs from the other 4 modes in that it incorporates features primarily at the WUI 
mesoscale, resulting in a whole-community assessment methodology that predicts where 
and how a wildland fire might become established in a community or neighborhood. 
Although parcel-level attributes have limited inclusion in SVI, the mesoscale approach is 
conceptually similar to explicitly modeling wildfire spread in the built environment (dis-
cussed in Sect. 3.3). WUI conflagrations are often carried by both structures and vegetation; 
capturing this interaction at both the single-structure and the community level is necessary 
for predicting structural damage [63]. Single-structure features are important because the 
disaster sequence may be interrupted by homes that are able to survive without firefighter 
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protection [64]. Therefore, because a vulnerability index is a summary of the home’s levels 
of home hardening and the maintenance of defensible space, vulnerability indices may be 
predictive of a structure’s role in whole-community disaster sequences.

3.3 WUI Fire Spread Model Inputs

Forests and grasslands can often be represented in wildland fire spread models as relatively 
homogenous fuelscapes. In contrast, the WUI presents a complex mosaic of structures, veg-
etation, and non-burnable surfaces, requiring a more detailed understanding of fuels and 
physical processes to accurately model fire pathways [65, 66]. In Sect. 3.1, we described the 
features of structures and defensible space that are susceptible to various fire pathways and 
attack mechanisms where flames and embers may enter a structure. In Sect. 3.2, we exam-
ined features of structures and defensible space that have been used to develop risk indices 
that predict parcel- and community-level structure loss. Here, we examine the role that these 
features play in the emerging field of structure-to-structure fire spread modeling. Currently, 
three primary WUI fire spread models are actively discussed in the scientific literature and 
remain under ongoing development: M1 [67], M2 [68], and M3 [69]. Additional models 
have contributed to the field but do not appear to be actively maintained [70, 71]. In this 
section, we provide a brief overview of M1, M2, and M3 with specific focus on the degree 
to which features of structures and defensible space (‘fuel features’) are incorporated into 
simulated fire spread mechanisms.

M1, M2 and M3 perform sequences of susceptibility, ignition, and hazard on structures 
and vegetation through physical proxies. These models have been validated retrospectively 
against urban conflagration events such as the Marshall Fire where success is evaluated by 
rate of spread and agreement of structure loss patterns [73, 78]. M1 quantifies community 
vulnerability by applying a graph model of wildfire inside a community. The directed graph 
incorporates different propagation modes that move across a community via ways - which 
represent different fuel classes such as ‘structure’ and ‘vegetation’ - and nodes which repre-
sent components of each way. Fire propagation occurs along edges between nodes, which 
can include both internal propagation (fire spread within a fuel object) or external propaga-
tion (fire spread between fuel objects). The probability of fire spread between nodes is depen-
dent on wind and specific structure features which the modelers maintain influence ember 
production and heat release rate. The susceptibility of a way is described as the probability 
of a fire reaching it. M2 uses cellular automata to spread fire on a grid-representation of a 
community, where each 30 m cell is a structure, vegetation, or non-burnable. M2 includes 
a time-step component in which a burning cell takes on three values across time: ignition, 
fully-developed with contribution to spread, and burnt. In each stage of fire development, a 
cell produces different rates of thermal output, flame, and embers, which are modified by a 
wind parameter. Adjacent and nearby cells can be ignited by flame and embers according to 
certain thresholds. M3 is a semi-physical, 2D representation of fire spread in a community. 
It includes time-stepped fire spread through embers, direct flame, and radiation, where each 
fuel object has different probabilities of ignition through time and space according to its dis-
tance to burning objects, the heat and ember release rates of those objects, the direction and 
velocity of wind, and the combustible fraction (susceptibility) of the target object. Table 4 
describes the structure features used in each model. All three models and the research and 
data that support them are in active development, and the current state of the models is likely 
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beyond what is reported here. Since initial publication, additional papers have been released 
for M1 [63, 72, 73], M2 [74–78] and M3 [79].

All three models parameterize the physics of fire spread and are therefore theoretically 
capable of capturing interactions of detailed features of the built environment across rel-
atively large geographies (i.e. whole-community). Compared to process-based computa-
tional fluid dynamics (CFD) models that represent complex and interactive physical fire 
processes [33, 80–84], current WUI fire spread models are simpler, more computationally 
efficient, and run in larger spatial domains [74]. The larger domain requires community fuel 
attributes to be simplified. To obtain simplified proxies in a way that makes WUI fire spread 
models predictive, the specific features of structures and defensible space that influence 
susceptibility and fire behavior should be attributed to the network of fire spread; however, 
such urban fuel models have not been developed, and methods for collecting such datasets 
were not found in this review. Table 4 lists the features that are used by M1, M2, and M3 to 
characterize WUI fuels.

The primary structure and defensible space features that determine WUI fire spread in 
these models are related to the size of structures and vegetation. All three models in some 
way use the unit area/volume of a home and/or vegetation to determine its heat and ember 
outputs and/or its likelihood of ignition. In the state of the models as we reviewed them, 
structures and vegetation generally have constant heat and ember outputs, and constant heat 
and ember thresholds for ignition. However, we know from structure susceptibility research 
that these constants should vary among individual homes depending on the features of each 
structure and defensible space. The features identified in Sect. 3.1 are apparently absent 
from WUI fire spread models. Analysis of WUI fire spread models would suggest that the 

Fuel type Feature Characterization
M1 [67]
 Structure Material Constant: wood

Size 3 values: 100, 150, 200 m3

Probability of 
ember access

0.90

Probability 
of ignition by 
direct flame

Ignites if touched, unless interven-
tion strength is applied (e.g., 70% 
hardening)

 Vegetation Probability of 
ember access

1.0

M2 [68]
 Structure Volume Constant: assumes stereotype build-

ing (10m3)
Ignitability Ignitable by radiation (constant criti-

cal heat threshold) and embers (con-
stant ember accumulation threshold)

 Vegetation Volume Constant: assumes full coverage of 
cell by douglas-fire trees

Ignitability Ignitable by embers (constant ember 
accumulation threshold)

M3 [69]
 Structure Size Area of roof

Material Combustible fraction 0.1–1 where 
all-wood = 1

 Vegetation Size Area

Table 4 Fuel features determin-
ing structure vulnerability in 
WUI fire spread models
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size of a structure or vegetation object is the most predictive feature of susceptibility to 
ignition. This finding is not confirmed by the research from which the empirical features 
were derived, and suggests that improved parameterization of structure and defensible space 
features would assist WUI fire spread models in representing structure susceptibility.

It is notable that structure and defensible space features may not be directly applicable to 
WUI fire spread models, presently. For instance, M1 incorporates structure modifications by 
applying a global hardening variable (e.g., 70% hardened) uniformly across all structures in 
the model domain. While this may reduce modeled fire spread, it is difficult to relate ‘70% 
hardening’ to actions taken by homeowners, insurance, or communities. M2 uses volume of 
vegetation and structures to simulate fire outputs, suggesting this model may benefit from 
3D characterization of vegetation cells with remote sensing, and basic information obtained 
from a structure’s property records such as structure area, number of floors, and/or number 
of rooms (Sect. 4.1). M3 adjusts the home’s combustibility using a combustible fraction 
tied to building materials. This model excels in its use of basic research in the parameters 
that influence heat release rates, ember outputs, and structure ignition thresholds. This sug-
gests more fuel attribute information such as vegetation density and building materials may 
increase model accuracy by adjusting the fire transfer coefficient and the heat flux required 
for ignition. However, it remains unclear from the reports whether detailed structure and 
defensible space attributes can feasibly be incorporated into M1, M2, or M3 at the parcel 
level.

Even with detailed fuel attributes, further research is still needed to determine the ignit-
ability, heat release rates, and ember production of different materials and configurations. 
These insights are essential to evaluate how changes to WUI fuel attributes affect broader-
scale home and community susceptibility [23, 74]. Research on the physical processes of 
structure-to-structure fire spread is ongoing due to the challenges of field observation and 
laboratory replication (e.g [85]). , . Extensive combinations of specific building materials 
and their arrangement pose challenges to measuring the heat outputs and ignition thresh-
olds, even in controlled laboratory environments. Until such research is more complete, 
WUI fire spread models will not have the foundational knowledge required to translate 
detailed fuel attribute information to model accuracy.

4 Discussion

4.1 Data Sources for Structure Susceptibility

Important considerations when using structure features in models and indices that describe 
or predict structure loss include availability, granularity, utility, and scale. The data sources 
that were used by many of the studies we reviewed exhibit tradeoffs across these four 
dimensions. In this section, we identify selected open data sources that have been used by 
studies to characterize parcel-level features that describe or predict structure loss. We briefly 
describe the contents of the data sources, identify limitations, and cite studies that used 
these databases for risk assessment or prediction, where applicable. By compiling these data 
sources in one location, we open the conversation for researchers to advance structure-level 
assessments using open data and standard methods.
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The literature is replete with data sources and methods for overcoming challenges related 
to measuring structure-level attributes. Companies such as First Street have used property 
records from companies such as LightBox who sell nationwide tax assessment data, but 
the completeness of these data is reported to be inconsistent [86]. Databases such as USA 
Structures [87], National Structure Inventory [88], and the Historical Settlement Dataset 
[89] contain nationwide structure attributes with less detail than tax assessments, but may 
be suitable for research requiring less single-structure detail and greater scale of applica-
tion. An underutilized source of structure features in the US is the local county tax assessor, 
which only appeared in one study [39]. Tax assessor records are likely available from a 
county office for every commercial and residential structure in the county. The content of 
each county database differs. In the authors’ experience of Montana and Colorado county 
tax assessments, a county database of structure attributes commonly includes structure 
square footage, lot size, year built, condition, roof material, roof structure, architecture type, 
attached/detached garage or outbuilding, number of rooms, siding material, and more. Simi-
lar features were found in county tax assessor data in California [39].

Some datasets characterize structure attributes at a coarser scale. The SILVIS Global 
WUI database provides information on housing density and vegetation type and has been 
used in regional risk analyses [8, 90, 91]. This dataset contains classified land types of both 
intermix and interface WUI types combined with vegetation data. This is a useful classifi-
cation for describing building exposure because up to 97% of structure loss may occur in 
areas designated WUI [8, 92]. The National Land Cover Database [93] has also been used 
to simulate WUI fires for vegetation and structure land cover types [94].

Studies commonly use Microsoft Building Footprints to obtain structure locations, but 
there are known commission and omission errors in this dataset and it may require manual 
cleaning [16, 63, 95–98]. At least one study used Google Street View to obtain empirical 
information on structures following the Marshall Fire [40]. Additional computer vision and 
machine learning techniques are sure to add to the growing body of direct or indirect mea-
surement of useful structural data [99].

Because of the complex nature of WUI fuels and the need to characterize thousands 
of structures for a single community, remote sensing and the use of these databases offers 
a more scalable alternative to in-person assessments [100]. Airborne light detection and 
ranging (LiDAR) – a method that uses lasers to measure distance from the sensor to a 
target object [101] – has been improving roof characterization [102] and vegetation char-
acterization [103]. Airborne LiDAR data are increasingly available for broad areas such 
as Colorado, unlocking new methods for open-access WUI characterization [104]. Roof 
characterization with remote sensing is a rapidly developing field and an excellent case for 
computer vision. Techniques and training databases for roof segmentation and characteriza-
tion models are documented in deep learning literature [105–108] including the xBD dataset 
for global damage assessment [109].

Remote sensing and property records are unlikely to provide real-time information on 
every feature of a structure, especially ephemeral attributes such as cleanliness of rain gut-
ters and presence of lawn furniture or automobiles. However, it provides a foundation for 
consistent, scalable data that can be obtained for communities nationwide. Table 5 pres-
ents a suggested dataset containing features that meet four criteria: they are empirically 
linked to structure loss and/or WUI fire spread model parameters, their measurements can 
be obtained for single structures, they can be obtained at a county-wide scale, and charac-
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terization does not require in-person assessment. The features that are missing from Table 5 
but are included in Table 2 (empirical features) include windows, vents, and eaves, which 
are difficult to characterize without in-person assessments and are not apparent in tax assess-
ment data or other widely-available data sources.

4.2 Key Findings and Gap Analysis

In the present review, we identified three methods of describing and predicting structure vul-
nerability and structure loss: empirical features, predictive vulnerability indices, and WUI 
fire spread model inputs. The primary gap identified is that the features that are used in each 
of these methods differ, as do the methods to characterize each feature, and the way that 
each feature is incorporated into predictive models and indices.

At least 12 features of structures and defensible space (Table 2) are commonly cited 
in the literature and have been empirically linked to structure loss via post-fire investiga-
tion, statistical analysis of damage databases, and laboratory experimentation. Each of these 
features can be further characterized by nuanced attributes. For example, windows can be 
single- or double-paned (or more), may be protected by flammable or non-flammable shut-
ters, be made of tempered or non-tempered glass, and come in a variety of shapes, sizes, 
arrangements, and exposure to adjacent flammable materials. This makes structure attri-
butes and the flame and ember behavior associated with each feature configuration highly 
stochastic and difficult to represent in WUI fuel attribute models. Our review of empirical 

Variable Data source Characteriza-
tion method

Structure
 Roof material [61] County tax assessor Empirical
 Roof area (m2) [69] Satellite imagery Raster 

calculations
 Siding material [61] County tax assessor Empirical
 Volume of home (m3) [68] LiDAR-derived 

rasters
Raster 
calculations

 Complexity of roof shape 
(1–5) [60]

Satellite imagery Computer 
vision

Defensible space
 Presence of deck [35, 40] County tax assessor Empirical
 Distance to nearest structure 
[42]

Building footprint 
geometries

GIS

 Number of adjacent homes 
within defensible space [42]

Building footprint 
geometries

GIS

 Presence of outbuilding [42] County tax assessor Empirical
 Volume of vegetation within 
defensible space [68]

LiDAR-derived 
rasters

Raster 
calculations

 Distribution of fuels within 
defensible space [52]

LiDAR-derived 
rasters or satellite 
imagery

Raster 
calculations

 Slope [44] LiDAR-derived 
digital elevation 
model raster (DEM)

Raster 
calculations

Exposure
 WUI class [8] SILVIS Global WUI GIS

Table 5 Features measurable 
without in-person assessment
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features in Sect. 3.1 demonstrated that flames and embers may enter structures and defensi-
ble space through any of the 12 features. Home hardening and defensible space should, thus, 
be taken as a whole-system approach at the structure and community levels. This is because 
a structure is only as resilient as its weakest link: a home may have a non-combustible roof 
but embers may still enter an attic space through vents if they are not protected with metal 
mesh screens. For a whole-system approach to home hardening and defensible space, the 
National Institute for Standards and Technology (NIST) has developed rigorous guidelines 
for the implementation of hazard reduction at the parcel level [42].

The only feature that was included in empirical features and every predictive model 
and index we presented (with the exception of the community-level SVI) is the roof. This 
was described and weighted differently among predictive models and indices, descriptions 
ranging from roof material and architectural complexity to simple assessments of roof area. 
These inconsistencies make it difficult to determine whether the roof is the most important 
driver of structure loss, or whether its inclusion reflects assumptions, practicality of observ-
ing the feature, or conventional emphasis rather than empirical importance. To illustrate 
this point, three of the vulnerability indices (WiRe, PVI, and VAT) used data that could be 
collected in-person via drive-by assessment, post-fire assessment, and pre-fire assessment, 
respectively. While many of the features used by these three indices are empirical features 
correlated with structure loss, the inclusion of features in each model was limited by the 
features that were able to be collected. Another vulnerability index, WRI, uses detailed 
structure-level data from the DINS database. Features from WRI such as windows, vent 
screens, and eave design are difficult to characterize without in-person assessments, as dis-
cussed in Sect. 4.1. Without in-person assessments, the observable features of structures 
and defensible space are largely limited to what can be obtained from property records and 
remote sensing, as discussed in Sect. 4.1.

In addition to features derived from different data, the weight given to these features is 
dependent on the method that was used to assign weights. For example, PVI used Boruta 
feature selection applied to data collected post-fire in a single community following a single 
destructive fire. WRI weighted attributes from the DINS database which was reported to be 
skewed towards destroyed rather than survived structures at the time of the analysis. VAT 
used fuzzy logic from questionnaires completed by experts and applied it to features that 
were collected in-person for a local area. Feature weights are expected to differ between 
locations [62]; however, using different features makes comparison of these weights unat-
tainable. Research is not easily replicated or validated as a result.

In Sect. 3.3, we reviewed the WUI fuel attributes used by WUI fire spread models to 
model fire spread in the built environment. The ability of these three models to characterize 
features of structures and defensible space is limited primarily by the lack of basic research 
on the fire and ember characteristics associated with structure materials and configurations. 
However, the model parameters identified in Table 4 suggest that M1 could be improved 
with the characterization of home hardening levels on individual structures, M2 could be 
improved with the characterization of individual structure size and the volume/arrangement 
of vegetation in vegetation cells, and M3 could be improved with the characterization of the 
combustible fraction of construction materials on individual structures. Such characteriza-
tion can be achieved through property records and remote sensing techniques outlined in 
Sect. 4.1, but further basic research is required to make these characteristics beneficial to the 
models. Specific research needs are discussed below.
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5 Conclusion

Consistent WUI fuel attribute datasets will benefit multiple research areas and applications, 
but only if researchers work across disciplines to fill this gap. It will require integrating the 
features found in each of the three groups: empirical features, predictive vulnerability indi-
ces, and WUI fire spread model inputs. To this end, the research community should aspire to 
a standard set of single-structure and defensible space features that are linked to empirical 
features, can be collected pre-fire for entire communities nationwide, and do not require 
in-person site assessments for every structure. Developing such feature sets will unlock 
replicable and insightful research that bridges disciplines and better serves fire managers 
and homeowners.

The existence of such feature sets is, so far, not evident. Neither are methods to develop 
standardized datasets, nor codes and standards for such datasets. The absence of these fea-
ture sets underpins several research gaps including validating susceptibility and WUI fire 
spread predictions, covering large geographic regions with single-structure susceptibility 
data obtained pre-fire, and understanding how to weight features in local-scale susceptibility 
and WUI fire spread predictions.

When a set of features is determined, predictive WUI fire spread models and susceptibil-
ity indices should begin to utilize features of the built environment at single-structure reso-
lution that can be obtained without in-person site visits and are well-linked to descriptive 
features. Models seeking to make local predictions should be developed at local scales, as 
encouraged by several authors (e.g [35, 43, 60]). More broadly, fuel attribute datasets should 
be produced pre-fire. Empirical feature characterization following urban conflagrations will 
benefit predictive model development if standard features are characterized pre-fire rather 
than solely retrospectively. A suggestion for a dataset that meets these requirements is pre-
sented in Sect. 4.1.

Basic research on fire behavior properties such as the heat release rates and ember pro-
duction of specific materials is a parallel research gap to WUI feature datasets. It is cur-
rently a significant limiting factor on the representation of WUI fire spread at scale. The 
gap between basic research and WUI fire spread models could be reduced if basic research 
measured fire behavior properties in whole-home and whole-community combustion exper-
iments in addition to single-object experimentation. However, there are significant barriers 
to conducting such experiments due to the stochasticity of material arrangements within 
structures and structure arrangements within communities, and the physical and logistical 
scales of such experiments.

This paper has reviewed knowledge and methods related to standardizing and scaling 
passive wildfire defense strategies that use home hardening and defensible space to reduce 
the likelihood of structure-to-structure fire spread in a community. However, active suppres-
sion may be the most important determinant of structure survival [71]. In California fires, 
over 90% of structures that were damaged but not destroyed were defended by firefighters 
[42]. Measuring suppression effectiveness is challenging because suppression happens dur-
ing emergent situations in which life and property take priority over research. Characteriz-
ing the effects of direct suppression on structure loss can improve firefighter response, WUI 
fire spread modeling, and risk mitigation effectiveness [38, 45, 57].

Because the WUI is the intersection of the built and the natural environment, it presents 
issues across social, economic, engineering, physics, and ecological domains. The WUI 
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therefore provides a common ground for diverse areas of study to address a large issue from 
different angles. Researchers should look to urban fuel classification as an area of research 
that can fill gaps in structure susceptibility prediction. Just as standard fuel models have 
benefited wildland fire spread models (e.g. Scott and Burgan’s 40 fire behavior fuel models 
[110]), fuel models for the built environment may provide forward momentum to future 
structure-to-structure spread, structure susceptibility, and community vulnerability predic-
tions. The 40 fire behavior fuel models connect fire behavior to certain fuel archetypes. Fuel 
archetypes in the built environment, characterized solely by structure loss likelihood, are 
presumed to be achievable given the current state of research and data availability. How-
ever, significant advances in laboratory experiments and detailed observations of active 
urban conflagrations would be required to characterize archetypes by fire behavior under 
varying weather and topographical conditions. Another application of physical vulnerabil-
ity prediction is improved community- and national-level understanding of socioeconomic 
vulnerability, another promising area for future research [6, 111–118]. Physical susceptibil-
ity of structures and communities is the foundation from which the WUI problem must be 
addressed [1], and there is an increasingly urgent need for progress in this field.
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