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Abstract Accurate prediction of forest fire spread is a critical management and scientific challenge as the
world adapts to rapidly changing fire regimes. We reconstructed 5,400 daily burned area progression maps for
196 U.S. Northern Rocky Mountain wildfires (2012-2021) and used machine learning to estimate daily fire
growth given local weather, hydroclimate, fuels and topography. Optimized models explained 36% of the
variation in daily fire growth, increasing to 56% when an index of fire activity the previous day was included. Soil
moisture and plant hydraulic stress were the dominant predictors of fire spread, increasing accuracy by 8%—9%
over models with only fuel and weather. Wildfire danger forecasts and fire spread models in the U.S. use short-
term weather indices and don't consider longer-term drought. Our findings suggest that soil moisture and
vegetation stress are critical indicators of fire spread potential in this region, with implications for fire modeling
and prescribed burn planning.

Plain Language Summary Forest fires have been increasingly affecting the western United States
and many other regions worldwide. To support wildfire planning, mitigation and response efforts, researchers
have developed a range of physics-based and data-driven models to simulate fire propagation. The majority of
these models rely on weather conditions and fire danger indices for their predictions, without directly
considering soil moisture and its influence on live fuel moisture. We mapped daily fire perimeters for 196 large
forest fires from 2012 to 2021 using VIIRS satellite fire detections and statistical interpolation and used boosted
regression tree models to estimate the effects of weather, fire danger, soil moisture and fuels on daily fire
growth. Our results suggest that soil moisture-related variables strongly influence daily fire growth and potential
for large fire growth days. Additionally, our models indicated that inclusion of previous day active pixel counts
—that is, adding memory to the fire propagation model—can markedly enhance model performance. Our
findings highlight the crucial role of soil moisture in influencing forest fire spread, with significant implications
for future mitigation and response efforts.

1. Introduction

Wildfire activity has increased across much of the world (Senande-Rivera et al., 2022). In the western United
States, connections between wildfires, weather and climate are well established (Abatzoglou & Kolden, 2013;
Littell et al., 2009), pointing to increased atmospheric aridity (Park Williams et al., 2013), lengthening dry periods
(Jolly et al., 2015) and warm-season precipitation declines (Holden et al., 2018) as drivers of increased wildfire
area burned. Decades of fire exclusion in this region have changed the trajectory of forest structure and increased
fuel loads (Boisramé et al., 2022), which coupled with prolonged drought and increasing atmospheric aridity have
contributed to fires of unprecedented size and intensity (Alizadeh et al., 2021; Collins et al., 2011). Global climate
models project increasing temperatures and further decreases in summer precipitation in some regions of the west,
suggesting more frequent, and more extreme wildfires seasons are likely in the coming decades (Abatzoglou
et al., 2021; Abatzoglou & Williams, 2016).

Planned prescribed burns are a critical tool for managing fuels and wildfires in the west (Pritchard et al., 2021).
However, increased aridity has reduced the frequency of weather and moisture windows conducive to safe use of
planned ignitions (Swain et al., 2023), resulting in increased risks for managers and reduced application of this
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Figure 1. Day of burn mapping for the 2016 Berry fire in Wyoming. The left panel shows raw VIIRS active fire detection points colored by day of year. The middle panel
shows these points after filtering early and delayed pixels and the right panel shows gridded day of burn estimated with nearest natural neighbor interpolation.

important land-management tool. The intersection of overstocked, stressed vegetation and increasingly extreme
fire danger, coupled with increasing exposure of people and homes in the expanding wildland-urban interface
(Modaresi Rad et al., 2023; Radeloff et al., 2018) broadly frame the challenges associated with the wildfire crisis.
As a case in point, escaped prescribed fires in 2020 and 2021 led to a pause in planned ignitions on Federal land. A
review of those incidents implicated long antecedent drought as a potential contributing factor, highlighting a
need to better understand how evolving hydrologic conditions influence fire spread (USFS, 2022). Soil moisture
is increasingly acknowledged as an important predictor of wildfire danger (Krueger et al., 2023). However, U.S.
fire management strategies are designed around surface fuel moisture content and weather-based indicators with
no explicit consideration of soil hydrology and its direct effects on live fuel moisture (Jolly et al., 2024).

In this study, we analyze how weather and hydroclimate influenced daily fire growth during recent large forest
fires in the U.S. Northern Rocky Mountains. We estimate the day and location of a burned footprint within each
fire, extract coincident weather and moisture variables for the burned area, and analyze the drivers of daily fire
growth using machine learning. We focus on two main questions: (a) How predictable is daily fire spread? and (b)
What are the dominant predictors of daily fire growth, considering a broad range of fuel, weather and hydrologic
indicators?

2. Data and Methods

We used active fire data from the Visible Infrared Imaging Radiometer Suite (VIIRS; Schroeder et al., 2014) to
estimate daily fire growth at 196 fires that occurred in the U.S. Northern Rocky Mountains from 2012 to 2021. We
chose fires for which Monitoring Trends in Burn Severity perimeters and burn severity raster data were available
(MTBS; Eidenshink et al., 2007). We screened fires in our geographic domain, excluding those smaller than
400 ha, with fewer than 10 active fire days, or where VIIRS detection points covered <50% of the burned area,
where coverage was calculated as the proportion of 350 m grid cells that intesect >10% DNBR burned area
perimeter (dnbr value >1) that also contained at least one VIIRS point. Finally, we extracted pre-fire forest cover
data from the Rangeland Analysis Platform (RAP; Allred et al., 2021) and excluded fires with <30% forest cover,
leaving approximately 5,400 fire spread days from 196 unique fires. Figure 1 shows VIIRS active fire points and
interpolated outputs for the 2015 Berry fire in Wyoming as an example.

2.1. Daily Fire Progression Mapping

We compared several methods for mapping daily fire progression, including geographically weighted quantile
regression (GWQR; Chen, 2012) kriging, and natural neighbor interpolation (NN; Scaduto et al., 2020; Sib-
son, 1981). We tested these methods by comparing daily fire perimeters from each model with estimates from
more than 800 pairs of aerial fire perimeter maps from geoMAC. NN was previously shown to have high relative
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Table 1
Weather, Hydrologic and Vegetation Variables Evaluated as Predictors of Daily Wildfire Spread
Variable name Description Units Resolution
Soil water supply variables (5)
soil, soil_anom raw soil moisture; 14-day std. anom mm/S.D. 250 m; daily
Prcp GridMET precipitation day of burn mm/day 4 km daily
ech2o_soil, plc ech2o0 simulated daily soil moisture (%) and loss of hydraulic conductance percent 250 m; 3-hourly
Fire danger variables (3)
FM100/1000 100 and 1,000 hr dead fuel moisture % dry wt 4 km; daily
ERC energy release component BTU/ft2 4 km; daily
Atmospheric demand variables (10)
rh (min, max) min. and max. relative humidity percent 250 m daily
vpd (avg, min, max) daily vapor pressure deficit Kpa 250 m daily
pet, aet, def Potential and actual ET, and water balance deficit (PET-AET) mm 250 m daily
tmin, tmax, tdew Daily min/max temperature and average daily dewpoint temperature °C 250 m daily
Tskin Ech2o simulated daily maximum surface temperature °C 250 m,3-hourly
wind (5)
wind (mean, max) climate forecast system reanalysis (CFSR) mean, max daily wind speed m/s 0.25 deg. hourly
maxwindPM, maxwindAM, meanwind RTMA 95th percentile 1-8pm and 12—7am wind speed m/s 2.5 km hourly
hgt700; hgt700_z CFSR 700 mbar geopotential height (raw and standard z-score) MPa 0.5 deg. hourly
pre-fire vegetation (37)
grass, shrub, forest, bare, litter pre-fire RAP cover fractions and anomalies from 1992 to 2021 percent 30 m annual
NPP pre-fire RAP net primary productivity for shrub, grass and forest layers and percent 30 m annual

anomalies from 1992 to 2021 data.

Note. A full list of individual indices is provided in Table S1 of Supporting Information S1. The variables soil and soil_anom, pet, aet and def were extracted from
daily 250-m historical Topofire soil water balance grids. Soil is the daily soil moisture value (millimeters) and soil_anom is the standardized daily value relative to the
1992-2021 period (units of standard deviation). Ech20_soil and plc were simulated using the ech2o ecohydrology model.

skill for mapping wildfire perimeters in California (Scaduto et al., 2020), but we found its predictions were
degraded by detections reoccurring in previously burned areas. Therefore we modified the NN approach by
calculating quantiles of natural neighbors rather than weighted means. Finding it performed best; we used this
method to develop daily 8 arc-second (~250-m) resolution grids estimating the day of burn for each of our study
fires. Additional details describing this analysis are provided in the Text S1.1, Figures S1-S4 and Table S1 in
Supporting Information S1 lists the methods tested and their agreement with mapped perimeters.

2.2. Weather, Moisture and Fuel Predictors

We evaluated 57 predictor variables, including 37 pre-fire vegetation indices and 19 hydroclimatic indices
concurrent with the day of burn, and a single static terrain index; average slope (Table 1). Temperature, humidity,
and soil water balance data were extracted from 250-m resolution Topofire grids (Holden et al., 2019), and fuel
moisture fire danger indices from 4 km GridMET data (Abatzoglou, 2013) using the mean value for the estimated
spatial footprint of each burn day within a fire. For days with no active spread, we extracted weather indices from
the previously burned pixels, going back in time until at least 10 pixels were found. Pre-fire fuel and vegetation
data were extracted from the Rangeland Analysis Platform (RAP) vegetation cover fraction and Net Primary
Productivity data (Allred et al., 2021). These provide annual (1986-2023) 30-m resolution estimates of fractional
cover and biomass for annual and perennial grass, shrub, litter and forest cover types. For each layer, we extracted
both raw and standardized values (z-scores relative to 1992-2021) within each daily burn footprint for a total of
37 pre-fire vegetation indices. Average slope was extracted for each daily burn footprint from a 30-m digital
elevation model. Finally, we used the ecohydrology model ech2o (version 5.7.4-SPAC; Maneta &
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Table 2

Performance of Boosted Regression Tree Models Estimating Daily Fire Growth for a Continuous Response (Log-Transformed Hectares Burned) and a Binary Response

(Fire Spread Days > 400 ha)

Model type and selected variables

Accuracy statistics

Continuous log (hectares) nvar R? MAE R>-PF MAE-PF
plc, rmin, soil_ech2o0, wind, annual_grass, perennial_grass, avg_30m_slope, fm100, 9 0.36 0.50 0.56 0.40
npp_grass_anomaly

ech2o variables excluded

rmin, fm100, annual_grass, npp_shrub, slope, perennial_grass, soil_anom, 10 0.27 0.54

npp_nonforest_z, wind, maxwindPM

binary—growth > 400 ha nvar AUC PCC AUC-PF PCC-PF

plc, soil_ech2o, rmin, def, annual_grass, perennial_grass, slope + fm100, wind 8 0.85 0.80 0.91 0.92
ech2o variables excluded

annual_grass, rmin, slope soil_anom, def, perennial_grass, maxwindPM, vpd, npp_shrub, 11 0.80 0.75

pet, maxwindAM

Note. The selected variables for each model are shown in order of importance. Accuracy is reported as variance explained (r-squared) and Mean Absolute Error (MAE)
and AUC/PCC for the binary response. PF shows accuracy for each model with the number of active VIIRS pixels the previous day added as a predictor and retrained. R?
and MAE are the model variance explained and mean absolute error. R?-PF and MAE-PF are for models that include active pre-fire pixels.

Silverman, 2013) calibrated for Ponderosa pine seedlings (Simeone et al., 2019) to simulate daily minimum soil
moisture, maximum soil surface temperature and percent loss of hydraulic conductance (PLC) for the extent of
each fire, at 3-hourly time step and 250-m spatial resolution. More detail on data extraction and preparation
methods can be found in Text S1.2 of Supporting Information S1.

2.3. Statistical Models and Data
2.3.1. Boosted Regression Tree Models

We trained boosted regression tree models (BRT; Friedman1999) to estimate daily fire spread and potential for
large growth days. Our continuous response variable, daily area burned per fire in hectares, was base 10 log-
transformed using an offset of 7. We also consider a classification model (binary response) with growth
days >400 ha as a threshold for large fire growth.

We screened candidate predictors using spatial subsets of the data for training and testing (i.e., spatial cross-
validation (CV)) and forward feature selection (FFS; Meyer et al., 2018), with CV folds constructed using
random subsets of fire-level data. We extend this approach using multi-scale spatial cross-validation (MSCV;
Erickson et al., 2023), running FFS multiple times on subsets of the data, each time varying the number of CV
folds from K = 5-20 groups (approximately 5%—-20% of data per fold) and tracking how often each predictor was
selected. These methods are detailed in Text S1.3 of Supporting Information S1 and variable selection results are
provided in Tables S2 and S3 of Supporting Information S1. We use the H statistic (Friedman & Popescu, 2008) to
identify potential 2- and 3-way interactions and we visualize and interpret these effects using partial dependence
plots. Finally, we refit these models with an additional predictor variable; the number of VIIRS detections that
were active in the previous day. This indicator of nearby fire activity is included to provide additional context for
models trained with only weather and hydroclimate. Tabulated variable interactions are shown in Table S4 of
Supporting Information S1.

3. Results
3.1. How Predictable is Daily Wildfire Spread?

Table 2 shows model accuracy results for continuous (daily fire growth) and binary (large fire growth) response
models. Optimized BRT model with 10 predictors explains 36% of the variability in daily area burned. Including
the number of previously active fire pixels (PF) as a model predictor increased the accuracy to 56%. Area under the
receiver-operator curve (AUC) scores for a binary response estimating spread days >400 ha were 0.86 and 0.91
without and with PF, respectively. Figure 2 shows linear correlations between observed and estimated daily spread
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Figure 2. Relationships between daily fire growth estimated from VIIRS and predicted daily growth from a boosted regression tree model. The left panel shows

correlations (Pearsons r) for 196 fires used in the analysis with circle color and size indicating correlation strength and fire size respectively. The right panel shows daily
growth patterns for selected fires with line traces for models fit with and without the previous day active fire pixels (PF) included as a predictor. Letters in the right panel
are referenced in the locator map by a letter and “+”. Figure S7 in Supporting Information S1 shows variation in per-fire errors relative to fire size, duration and season.

for all 196 fires, and line traces of daily growth patterns for selected fires. Despite relatively low absolute accuracy,
predictions based on weather and hydroclimate track day-to-day variations in daily growth reasonably well, with
Pearson's r > 0.7 for 50 fires. Per-fire accuracy was slightly lower for early season fires and higher for larger, longer
duration fires (Figure S7 in Supporting Information S1). The addition of PF substantially improves the agreement,
suggesting that without the spatial context of actively burning area or fire line length, models based solely on
weather and hydroclimatic conditions struggle to predict large growth days when actively burning area is high. The
overall skill of these models, particularly the large growth day model, suggest there is potential for forecasting
active fire spread by combining near real-time fire detection and mapping (e.g., Chen, 2022) and weather forecasts.

3.2. What Are the Strongest Predictors of Daily Fire Growth?

Soil moisture and percent loss of hydraulic conductance (PLC) were the dominant predictors for both continuous
and binary models, with a strong interaction (Friedmans H = 0.26) and a weak 3-way interaction with minimum
relative humidity (H = 0.03). Visualizing the marginal effects of these variables under warm dry conditions
(<20% RH) suggests a threshold-like response in fire spread potential to the onset of hydraulic stress (Figure 3;
Figure S8 in Supporting Information S1) with atmospheric aridity mediating the growth response. Wind variables
were important predictors in all models and while their overall influence is small, an interaction between 100-hr
fuel moisture and wind speed (H = 0.12) shows its effect is conditional on dry surface fuels (Figure 3c). Three
pre-fire vegetation variables were retained in our final models, all related to grass cover. A strong interaction
between annual and perennial grass cover (H = 0.29) shows higher spread potential where combined pre-fire
grass cover was high. This result is consistent with our mechanistic understanding of fire behavior. However,
the RAP vegetation cover product used here is derived from Landsat imagery and estimates under dense forest
canopy may not be reliable (Allred et al., 2021). A list of all variable interactions encountered during multiple CV
iterations is provided in Table S4 of Supporting Information S1.

Models without simulated soil moisture and PLC had significantly lower accuracy (R> = 0.27; MAE = 0.54) than
the full model (R* = 0.36; MAE = 0.50). Although a simple soil moisture model and water balance variables
become significant in their absence, their reduced skill suggests that the mechanistic detail enabled by an
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Figure 3. Partial dependence plots for six predictor variables and their interactions from a boosted regression tree model estimating log10-scale daily fire growth. (a) 3-
way interaction between soil-moisture, percent loss of hydraulic conductance (PLC) and minimum relative humidity, shown for dry (RH < 20%) conditions. (b) PLC—
-100-hr fuel moisture; (c) Mean climate forecast system reanalysis daily surface wind speed-100 hr fuel moisture; (d) Pre-fire annual-perennial grass cover. The plots
share a common scale where color indicates the magnitude of the response. Plots and legend are shown in log-scaled units with legend label back-transformed from log-
scale to hectares. Figure S8 in Supporting Information S1 shows the PLC-soil moisture interaction from panel A under low (<20%) and high (>40%) relatively humidity.

ecohydrology model captures important information relevant to fire behavior. There are several key differences
between the soil moisture models that could explain this. Ech2o is an energy balance model, and unlike the water
balance model where vegetation is uniform, includes spatially explicit pre-fire canopy cover and leaf area index
inputs for each fire that influence variability in soil water loss from evapotranspiration and surface temperature
variations below the canopy (i.e., microclimate). Furthermore, ech2o0 considers lateral and vertical moisture
distribution, resulting in spatial patterns of soil moisture in valley bottoms not represented by the water balance
model. Disentangling these effects will require further study. We see a small additional loss in accuracy for
models trained after dropping water balance variables and using only traditional weather and fire danger indices
(r2 =0.26; MAE = 0.61). Tables S2 and S3 in Supporting Information S1 shows the feature selection results for
all 57 predictors, and Figure S5 in Supporting Information S1 shows accuracy results for models constructed with
different subsets of variables.
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4. Discussion

Our results support a hypothesis that soil moisture plays a dominant role in controlling fire spread potential in the
U.S. Northern Rocky Mountains, likely by mediating hydraulic stress and moisture content in live vegetation.
This is consistent with recent combustion research (Boving et al., 2023; Brown et al., 2022; Scarff et al., 2021)
simulation studies (Ruffault et al., 2023) and a growing body of research linking fire behavior and effects with
plant ecophysiology (Dickman et al., 2023; Jolly et al., 2024). Although drought, and its effects on fuel abundance
and moisture has long been conceptually applied to fire risk assessment at seasonal to daily time scales across
regions using a variety of indices, quantification of the storage and lags associated with soil moisture effects in
those indices has been missing or merely approximate (Littell et al., 2016). The strong roles of quantitatively
estimated soil moisture and vegetation moisture status in this study have implications for wildland fire man-
agement in the U.S., where the use of longer time lag drought indices has historically been limited to the Keetch-
Byram Drought Index (KBDI; Keetch & Byram, 1968), a simplified soil moisture index that is not a reliable
indicator of drought in the western U.S. In the U.S. central plains investments in relatively dense networks of soil
moisture monitors have proven effective for wildfire danger monitoring and mapping (; Krueger et al., 2015).
However, such observations are sparse in the western U.S., where fire managers use longer time lag (1,000 hr)
fuel moisture indices like the Energy Release Component (ERC; Deeming et al., 1977) as indicators of fire danger
with only qualitative consideration for long-term drought conditions. These indices do not consider hydrology or
snowmelt and require local knowledge and calibration using location-specific climate data to set fire danger levels
(Risk & James, 2022). At present, analysis supporting incident response for larger fires is carried out through
integrated systems like the Wildland Fire Decision Support System (WFDSS, Noonan-Wright et al., 2011) which
connects spatial data and predictive fire models such as FARSITE (Finney, 1998), FLAMMAP (Finney, 2006)
and FSPRO (Finney et al., 2011). However, predictability of these systems can be highly variable (Cruz &
Alexander, 2013), and underlying treatment of surface moisture is relatively simple, with a 2-week fuel moisture
conditioning routine that ignores antecedent drought conditions. Our study suggest that soil moisture and the
onset of vegetation stress play a more important role in regulating large fire growth in U.S. Northern Rocky
Mountain forests than previously recognized. This finding is in accordance with recent literature showing that
increased nighttime fire activity is strongly influenced by both drought (Luo et al., 2024) and warmer nighttime
temperatures (Balch et al., 2022; Freeborn et al., 2022). Incorporation of longer-term drought influences in fire
management data systems and related applications could help managers better anticipate conditions under which
prescribed fires could be successful (Majumder et al., 2025), better target suppression activities, and refine risk
assessment analyses.

Resolving the connections between soil moisture deficits, vegetation water content and simulated fire behavior
has been acknowledged as a key challenge in fire behavior modeling (Dickman et al., 2023). These linkages have
been simulated at the leaf and plant scale (Ruffault et al., 2023) and measured in combustion studies (Boving
et al., 2023; Scarf et al., 2021), but are not represented in current fire behavior models. Here, we simulated
hydraulic stress (loss of hydraulic conductance; PLC) at landscape-scales using an ecohydrology model, with
vegetation parameters calibrated for Ponderosa pine seedlings (Simeone et al., 2019). PLC is derived from leaf
water potential, which varies widely by species. Because our studied fires span large vegetation gradients with no
size or age-specific adjustments, we consider PLC a generalized index of stress in our analysis. Laboratory studies
suggest that relative water content in leaves is a better measure of plant hydraulic stress (Sapes & Sala, 2021) and
a stronger predictor of flammability (Boving et al., 2023). Nevertheless, the performance of these variables
relative to an array of other predictors suggests soil moisture and reduced hydraulic function in live vegetation are
important indicators of potential for large forest fire spread that have potential to improve seasonal wildfire
danger assessments in this region. Because we restricted our analysis to fires in forested settings, we suggest care
in generalizing these results to other regions, and there would be benefit from replication to assess how strong of a
role soil hydrology plays elsewhere. Recent analyses of large fire growth potential have emphasized temperature
and surface weather as factors contributing to large fire spread, with limited consideration given to drought
(Brown et al., 2023; Potter & McEvoy, 2021; Whitman et al., 2024). Large-scale satellite studies suggest that soil
moisture may be a stronger control on relative water content than atmospheric vapor pressure in western forests,
but those effects are stronger in the Northwestern US (Lyons et al., 2021). In more arid, fuel limited regions like
the Southwest, other factors like fuel availability or more recent weather could play a more significant role.
Comparative analyses are needed to elucidate the role of soil moisture on fire spread in other regions.
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5. Conclusion

Unique among other natural disasters like hurricanes and floods, the timing and intensity of some fires can be
predicted, and even influenced. There is general agreement that more fire is needed in many western landscapes to
mitigate even greater fire risk in the future. However, more proactive use of fire entails significant risk, and will
require reliable weather and fire spread forecasting systems. This study demonstrates that soil moisture, simulated
using an ecohydrology model, can significantly improve estimates of forest fire spread potential in the US
Northern Rocky Mountains. While current fire management systems in much of the world rely primarily on short-
term weather-based indicators, our results suggest that evolving wildfire monitoring, management and mapping
systems should place greater emphasis on monitoring soil moisture conditions in addition to fuels and weather.

Data Availability Statement

Datasets used in this study are from publicly available data sources. Vegetation cover fraction data were extracted
from Rangeland Analysis Platform data (version 3) downloaded from http://rangeland.ntsg.umt.edu/data/rap/rap-
vegetation-cover/v3/. Gridded fuel moisture indices were accessed through the University of Idaho Northwest
Knowledge Network: https://www.northwestknowledge.net/metdata/data/. Daily 250 m historical Topofire
weather and soil water balance grids can be downloaded from the University of Montana: https://topofire.dbs.
umt.edu/public_data/topofire_weather/. Historical hourly Realtime-Mesoscale Analysis data is available through
the Google Earth Engine platform (https://developers.google.com/earth-engine/datasets/catalog/NOAA_NWS_
RTMA). The Climate Forecast System Reanalysis data (CFSR) is provided by the National Oceanographic and
Atmospheric Administration (NOAA). https://www.ncei.noaa.gov/data/climate-forecast-system/access/opera-
tional-analysis/time-series/. R software version 4.4.2 was used for all analysis and figures. Code and tabular data
are archived in an Open Science Framework repository (Holden & Swanson, 2025).
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