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Abstract
Each year wildland fires kill and injure trees onmillions of forested hectares globally, affecting plant
and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying
mechanisms offire-caused treemortality remain poorly understood, however, limiting the ability to
accurately predictmortality and develop robustmodeling applications, especially under novel future
climates. Virtually all post-fire treemortality prediction systems are based on the same underlying
empiricalmodel described in Ryan andReinhardt (1988Can. J. For. Res. 18 1291–7), whichwas
developed from a limited number of species, stretchingmodel assumptions beyond intended limits.
We review the current understanding of themechanisms offire-induced treemortality, provide
recommended standardized terminology, describemodel applications and limitations, and conclude
with key knowledge gaps and future directions for research.We suggest a two-pronged approach to
future research: (1) continued improvements and evaluations of empiricalmodels to quantify
uncertainty and incorporate new regions and species and (2) acceleration of basic, physiological
research on the proximate and ultimate causes offire-induced treemortality to incorporate processes
of tree death intomodels. Advances in both empirical and process fire-induced treemodelingwill
allow creation of hybridmodels that could advance understanding of howfire injures and kills trees,
while improving prediction accuracy offire-driven feedbacks on ecosystems and landscapes,
particularly under novel future conditions.

Understanding and predictingfire-induced
treemortality

Millions of forested hectares burn annually, causing both
positive and negative impacts on carbon storage, biodi-
versity conservation, hydrologic processes, and economic
and social services (Bowman et al 2009). In fire-adapted
and fire-dependent ecosystems, fire controls tree density
and species dominance (Bond et al 2005), creating habitat
that supports diverse plant and animal species that cannot
persist in the absence of fire. However, fire-adapted
ecosystems may be vulnerable to climate-driven altera-
tions to fire regimes that are an emerging threat in recent
decades, with observations of increasing fire size, fre-
quency, and severity (Flannigan et al 2009, Pechony and
Shindall 2010, Bowman et al 2014, Brando et al 2014,

Fairman et al 2016, Seidl et al 2016, Liang et al 2017b).
Across almost all biomes, fire season has lengthened for
25% of the Earth’s vegetated surface and the burnable
area has doubled since 1979 (Jolly et al 2015). Climate-
mediated increases in fire severity and frequency are
projected to cause large decreases in carbon stocks
through loss in forested area (Liang et al 2017a) and are
already causing forest declines in Australia where
increased fire frequency is killing trees before maturity
(Bowman et al 2014). Such changes in fire regimes can
shift forests to non-forested states (Fairman et al 2016,
Falk 2017, Walker et al 2018). Moreover, trees may be
more sensitive to fire-caused injury following episodes of
drought-stress (van Mantgem et al 2013), which may
become more frequent in many regions with continued
warming (Cook et al 2015). The global pervasiveness of
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fire highlights the importance of understanding how fire
impairs and kills trees in order to accurately model those
impacts for awide rangeof applications andconditions.

Treemortality is a criticalmechanism throughwhich
fire limits ecosystem productivity, influences resource
availability, and changes the structure and composition
of vegetation (Bond et al 2005,Dantas et al 2016). In spite
of the importance of fire-caused tree mortality, the
underlyingmechanisms remain poorly understood. This
gap in understanding greatly limits our ability to accu-
rately predict mortality from fire, estimate fire-driven
feedbacks to the global carbon cycle, extrapolate to novel
future conditions, and implement appropriate manage-
ment actions to increase forest resilience towildfire.

We review the mechanisms causing fire-induced
tree mortality, suggest standardized terminology,
describe applications and limitations to modeling
approaches, and summarize key knowledge gaps.
While the focus of this review describes tree mortality
where the main stem dies (i.e. top-kill) and how that is
modeled, we also address fire-induced tree injury and
recovery via resprouting.

Mechanisms offire-induced treemortality

Plant and ecosystemresponses tofire are categorized into
either direct or indirect fire effects (Reinhardt et al 2001;
see box 1 for glossary of key terms). Though most tree
mortality is from direct effects, mortality from proximal,
indirect effects often occurs in large trees and may
account for a largeproportionof forest biomass loss from
fire (VanMantgem et al 2011). Indirectmortalitymay be
influenced by pre-fire stress from competition, drought,
and disease, or by post-fire conditions such as elevated
bark beetle populations. Because of these multiple
interactions, predicting delayed tree mortality is less
straightforward than predicting immediate, fire-caused
treemortality (Kane et al2017b).

The assumedmechanism of direct tree death from
fire is cambium necrosis via heat transfer to the crown,
stem, and root tissue (figure 1) (Dickinson and John-
son 2001, Michaletz and Johnson 2007). Heat transfer
occurs by convection, conduction, and radiation and
all three processes can cause tree injury and mortality.
Temperatures �60 °C cause immediate tissue death,
although longer exposure at lower temperatures can
also be lethal (VanWagner 1973, Michaletz and John-
son 2007, Kelsey andWestlind 2017). Biophysical pro-
cess models generally model heat transfer effects to a
tree modularly, separating heat-caused injuries to the
crown, stem, and root tissues (Michaletz and John-
son 2006, Michaletz and Johnson 2008, Kavanagh et al
2010, Chatziefstratiou et al 2013), as complete death to
any of these tissues will result in tree death or top-kill if
the tree is a resprouter. Although partial injuries to
multiple parts of the tree can also lead to mortality,
these interactions and indirect effects are not currently
incorporated into any process models. We summarize

Box 1.Aglossary of key terms.Main term is the recommended
usage; previously used synonyms noted parenthetically.

Bark char [bole char; bole scorch]: blackened residue of bark resulting
from incomplete combustion and indicator of the duration the

tree bolewas exposed to flames and heat from thefire. Correlates

to the heat pulse into tree and has been used as surrogate for cam-

biumkill.

Bark char code [depth of char]: a classification systemused as a proxy

for the duration a tree bolewas exposed to heating by fire (codes:
unburned, light,moderate, deep).

Bark char height [bole char height; stem char height]: vertical height
from ground of blackened bark on a tree bole. Typicallymeasured

as eithermaximumor average height.

Cambium kill: death of the vascularmeristematic tissue (i.e. cam-

bium tissue located between bark and secondary xylem/wood)
during fire. Typically occurs on the lower portion of tree stems.

Cambium kill rating: method used to estimate the amount of cam-

biumkill and stem injury fromfire. Requires removing a small

sample of bark at four locations at a tree’s base.

Cavitation: process bywhich air in liquidwater held under tension

within plant xylem comes out of solution and expands to fill

xylem elements, causing a break in the plant’s water column and a

decrease in hydraulic conductivity.

Crown kill [bud kill]: portion of a tree’s buds (i.e.meristematic tissue

that develops into branches, flowers, or foliage; usually at the end

of stems), branches, and foliage that is killed duringfire.
Crown scorch: portion of the tree’s foliage that is killed during afire.

Foliage appears brownish redwithin days offire. Crown scorch is

usually expressed as a percent of either pre-fire crown volume or

crown length.Mostly commonly, crown scorch estimates also

include crown kill, but sometimes these injuries aremeasured

separately.

Direct fire effect [first-order effect]: impacts fromfire occurring during

and immediately after afire fromheat-induced chemical pro-

cesses; includes treemortality solely fromfire-caused injuries and

not due to interactions with other stressors.

Duff: layer ofmoderately decomposed organicmaterial, encompass-

ing the fermentation (Oe) and humus (Oa) organic soil horizons.
Duff occurs beneath the litter horizon (Oi) and above the under-
lyingmineral soil.

Epicormic bud: dormant or adventitious bud on the stem or branch

of awoody plant fromwhich a shoot can arise after stimulation by

stress or changes in light availability.

Fire severity: physical, biological, and ecological effects of afire on

ecosystem properties; in forests usually quantified by the level of

treemortality or the degree of soil heating.

Flame length: distance from themiddle of the flaming zone at the

base of thefire (usually the ground) and the average flame tip.

Heat flux: amount of heat released per unit area over time.

Hydraulic conductivity (Kp): ease withwhichwatermoves through

the vascular xylemof a plant.

Indirect fire effect [second-order fire effect]: impacts fromfire, occur-

ring days to years after fire due to interactions with directfire

effects and other factors such as post-fire climate and insects.

Non structural carbohydrate (NSC): mobile, nonstructural carbon in

plants not used in building structural biomass, but to buffer defi-

cits inmaintenance and growth demands.

Scorch height: themaximumvertical height at which lethal heating

(i.e. reaches 60 °C) occurs duringfire; used to estimate crown

length scorched. It ismathematically related to fireline intensity

andflame length.Many post-fire treemortalitymodels do not

differentiate tissue types and assume all crown tissue (foliage,
buds, branches)within the scorch height zone is dead.

Smoldering combustion: slow-moving, low-temperature, solid-phase

burning of fuel without the presence of flames.
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the effects of heat transfer on a tree’s crown, stem, and
roots below, but refer readers to Dickinson and John-
son (2001) and Michaletz and Johnson (2007) for
more detailed descriptions of combustion processes
and direct fire-caused treemortality.

Tree crowns consist of foliage, buds, and branches.
Convection is the dominant heat transfer process caus-
ing necrosis to crown tissue (Van Wagner 1973, Dick-
inson and Johnson 2001, Michaletz and Johnson 2006).
Heated air in the fire plume can kill foliage and vascular
tissue in buds andbranches (figure 1). Fire-causednecro-
sis to the crown is often lumped into one estimate of
injury called crown scorch (figures 2(A), (B)), but the dif-
ference between the amount of foliage versus buds killed
can be large for some species (figures 1, 3) (Michaletz and
Johnson 2007). Fires causing 100% bud necrosis, which
also implies 100% foliage necrosis, result in immediate
tree death in non-sprouting species. Partial bud necrosis
reduces short-term photosynthetic capacity, necessitates
mobilization of stored nonstructural carbohydrates

(NSC) to rebuild foliage, and indicates heating to the sur-
roundingbranches and stem.

Heat transfer to the tree bole or stem occurs
through conduction and radiation (figures 1, 2(D) and
(E)) (Dickinson and Johnson 2001, Michaletz and
Johnson 2007). Damage to the conductive tissues in the
stemmay be themost important primary cause ofmor-
tality in small trees and thin-barked species (Michaletz
and Johnson 2008, Lawes et al 2011a, 2011b). Heating
to the stem can damage phloem and xylem, and thus
impair translocation of photosynthates to roots and
water and nutrients to the crown (respectively), leading
to eventual death (Midgley et al 2011). Bark thickness is
an important determinant of tree resistance to fire
(Brando et al 2012, Pausas 2015, Pellegrini et al 2017).
Thick bark serves to protect the underlying vascular
cambium and epicormic buds from fire and is the pri-
mary bark trait influencing heat transfer to the cam-
bium (Bova and Dickinson 2005), though species have
developed other adaptations that increase resistance to

Figure 1.Heat is transferred to living tissues of trees duringfire (top panel), resulting in injuries to different parts of trees after fire
(bottompanel). Fire causes injuries to different parts of trees—buds, foliage, cambium in the stem, and roots—through three different
heat transfer processes.Combustion directly consumes live foliage and buds, small live branches, and small trees and causes tissue
death.Convection, themovement of hot air—and radiation, heat traveling as energy waves, causes tissue deathwhen temperatures are
³60 °C for 1 s.Bole heating: Heat is conducted through the bark of trees, but because bark is a poor conductor it insulates the live
cambiumunderneath fromheat.Thick bark insulates larger trees of some species, while thin bark provides little insulation on smaller
trees and thin-barked species. Soil and root heating primarily occurs through conduction during smoldering combustion of duff and large
logs. Graphics by RVanPelt.
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fire. For example, the relatively thin-barked eucalypts
have higher than expected resistance to fire compared
to otherAustralian species with thicker bark due to dee-
ply buried buds that allow resprouting after fire (Lawes
et al 2011a, 2011b).

Long-term smoldering combustion can conduct
heat through soil, leading to lethal temperatures that

kill roots and mycorrhizae. This impact decreases
water transport and nutrient acquisition in the short-
term and results in NSC drains to rebuild lost roots
(Varner et al 2009, O’Brien et al 2010, Taudière et al
2017). Fire-caused tree mortality from root death
alone is likely uncommon, as mineral soil is a poor
conductor of heat and forest floor organic layers

Figure 2. Fire-caused treemortality results from injuries to the crown, bole, and roots. Injuries to the crown: injuries to foliage and buds
occur due to direct consumption during the fire, and convective and radiant heating during thefire which causes tissue death. The
portion of the crown foliage killed (A), (B) is termed crown scorch and develops a characteristic red color soon afterfire. Bud kill is
typically assumed to equal crown scorch. Injuries to the bole and resistance to bole injuries: bark thickness, char depth, height, and the
proportion of the circumference of the bole charred are indirect estimates of potential injury to the living cambiumbetween bark and
wood. Thick bark (C) protects vascular cambium and epicormic buds, increasing survival fromfire. Even low-intensity fires kill the
cambiumof thin bark species (D). Directmeasurement requires bark removal to determine if the cambium is dead (E; at arrow).
Injuries to roots.Consumption of ground and surface fuels adjacent to the treemay be an important variable in ecosystemswith deep
accumulations of fuel (F). A surfacefire burns near the bole of a tree (G). Thermal image of smoldering combustion near tree base after
flaming has stopped (H). (Warmer colors=higher temperatures.)
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insulate soil and roots from flames (Hartford and
Frandsen 1992, Hood 2010). The long-term heating
required to kill roots would almost certainly also
impact the tree stem,making any resulting tree death a
combination of injuries to the roots and stem
(figures 1, 2(F) and (G)). Although heat transfer to
roots is less understood than to the crown or stem,
there are models of soil heating from fire (Campbell
et al 1994, Campbell et al 1995) that are used with
the assumption that all roots located in the zone of
lethal heating (i.e. ³60 °C) are killed. This is likely an
invalid assumption for larger roots (Michaletz and
Johnson 2007).

Although it is widely recognized that fires can kill
trees directly through heat injuries to tissues in the
roots, stems, and crown, little physiological research

has been conducted to identify cellular-level mechan-
isms causing mortality (Michaletz and Johnson 2007,
Kavanagh et al 2010). This is perhaps unsurprising
since even in the absence of fire, our current under-
standing of how trees die is limited (Hartmann et al
2015). Emerging physiological research on the
mechanisms causing drought-induced tree mortality,
described below, may also extend to fire-induced tree
mortality.

All plants must maintain hydraulic conductivity
and NSC pools to survive; therefore, focusing on
hydraulic integrity and NSC provides a mechanistic
framework to test the impacts of stress and dis-
turbance on individual plant productivity and biomass
(Anderegg et al 2015, Venturas et al 2017). Reduction
of whole-plant hydraulic conductivity by more than

Figure 3. Fire-causedmortalitymodels usually only predict top-kill, but resprouting has important consequences for rates of
ecosystem recovery afterfire. (A)The ability of trees to recover biomass after a given level of injury varies with species’ traits.
(B)–(D) Some species have protected or large buds that can survive temperatures that scorch and kill surrounding foliage, allowing
branch survival and crown recovery. (E)Even large buds can be killed by high-intensity fire and directflame contact. (F)Epicormic
sprouting allows recovery along a tree’smain stem, (G)–(H) stembase, and from (I) root suckering after top-kill. These adaptations to
firemake itmore likely that plant will photosynthesize, repair damage, replenishNSC reserves, and recover after fire-caused injuries.
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60% due to cavitation leads to hydraulic failure and
death (Adams et al 2017b). Trees are most susceptible
to cavitation at the ends of branches and roots, which
act analogously to circuit breakers to relieve water ten-
sion andmaintain hydraulic integrity of themain stem
(Johnson et al 2016). The extreme temperatures trees
experience during fire from the convective plume can
cause vapor pressure deficits in foliage strong enough
to cause cavitation, leading to immediate tissue death,
or long-term reductions in hydraulic conductance
(Kavanagh et al 2010, Midgley et al 2011), that can
increase susceptibility to future stresses (e.g. drought,
bark beetles). Experiments of tree stem heating show
decreased sap flow, net photosynthesis, and stomatal
conductance as early indicators of eventual tree death
(Ducrey et al 1996, Smith et al 2017), which also sug-
gest heat-induced cavitation occurs. In addition to
causing cavitation, heating also may impair hydraulic
conductivity by causing irreversible xylem deforma-
tion (Balfour and Midgley 2006, Michaletz et al 2012,
Bär et al 2018). Experimental testing supports plume-
induced hydraulic failure via cavitation, but evidence
of xylem deformation is equivocal (West et al 2016,
Bär et al 2018). Additional research with more species,
under a wider range of heating scenarios, including
actual fires are needed for an improved understanding
of the cellular-level physiological damage caused by
fire. For example, most studies to date have immersed
cut stems into a water bath for the heat treatment, but
it is unlikely that this method of heating accurately
mimics conditions occurring during wildland fires.
These initial experiments are important for testing of
hypotheses, but our ability to measure physiological
impacts remains rudimentary and basic methodolo-
gies need substantial improvement. Beyond these few
experiments of heat effects to the stem and leaf/
branch, there exists substantial uncertainty over the
influence of root and mycorrhizal injuries on trees’
ability to repair aboveground injuries from fire (Tau-
dière et al 2017) or how fire affects long-term hydrau-
lic vulnerability and sprouting ability in resprouting
species (Pausas et al 2016).

Damage to photosynthetic tissues and the need to
replace them constrain a tree’s ability tomaintainNSC
pools by reducing acquisition of carbon through pho-
tosynthesis and increasing demand of carbon for
repair. Plants must assimilate carbon and maintain
NSC pools for myriad vital functions, including main-
taining hydraulic integrity, defense, and respiration
(Dietze et al 2014). In one of the only studies of fire
effects on NSC, long-duration soil heating reduced
root NSC concentration in coarse storage roots and
led to short-term reductions in tree radial growth
(Varner et al 2009). These effects persisted at least a
decade post-fire, reducing defensive resin ducts and
diminishing radial growth during subsequent
droughts (Slack et al 2016). Death by carbon depletion
seemingly can occur if NSC levels fall below critical
thresholds (Martínez-Vilalta et al 2016), but evidence

of these thresholds and the mechanisms involved are
limited and seem inconsistent across tree species
(Adams et al 2017b). Moreover, significant gaps in
understanding remain regarding how to measure
NSCs, how they are used for different plant functions,
and their roles in buffering the impacts of abiotic and
biotic stress and disturbance (Meir et al 2015).

Indirect causes offire-induced tree
mortality

The interactive nature of factors contributing to fire-
induced tree mortality, particularly delayed mortality,
suggests analogies to mortality patterns in unburned
forests (figure 4). In unburned forests, tree mortality
is often the result of multiple stressors, including
competition, pest and pathogen activity, and short- and
long-term climatic fluctuations (Das et al 2016). These
interactions are likely also important in low- andmixed-
severity fire regimes, in contrast to high-severity regimes
where trees are typically immediately killed by fire or
top-killed, in the case of resprouting species. Indicators
of increased stress include decreased radial growth,
reduced leaf area, low hydraulic conductance, and low
NSC reserves (see above). For example, in a large study of
unburned trees, trees that died had reduced tree growth
in years preceding death compared to surviving trees
(Cailleret et al 2016). These above lines of evidence,
coupled with studies showing post-fire mortality may be
worsened by pre-fire competition (van Mantgem et al
2018), suggest that low pre-fire growth may be an
indicator of susceptibility tofire-caused injuries.

Drought is a common stressor for conifers in the
western US, and pre-fire drought has been shown to
increase the likelihood of tree death following fire (van
Mantgem et al 2013, van Mantgem et al 2018). This
may become an important consideration in dry for-
ests, where acute and chronic droughts are increas-
ingly coupled with high temperatures and have been
linked to forest die-backs even without fire (Allen et al
2015, Adams et al 2017a). In addition, fire-caused
injuries can decrease subsequent growth (Slack et al
2016, Sparks et al 2017), reducing productivity and
possibly increasing the likelihood of tree death in
futurefires.

Insects and pathogens can also increase stress
before fire—decreasing growth, NSC reserves, and
impairing hydraulic conductivity—as well as causing
additional delayed mortality in trees that otherwise
would have survived fire injuries (Parker et al 2006,
Kane et al 2017b). Several post-fire mortality models
include beetle attacks (Woolley et al 2012, Hood and
Lutes 2017). Because bark beetles require living trees
with healthy phloem to reproduce, trees killed imme-
diately by fire are not suitable hosts. Host suitability
and attraction after fire varies by tree and bark beetle
species, but in general, bark beetles attack and kill trees

6
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with intermediate levels of both crown scorch and
cambium injury, or higher levels of either crown
scorch or cambium kill (Jenkins et al 2014). As fires
can change both tree resistance to beetles after

low-severity fire (Lombardero and Ayres 2011, Hood
et al 2015, Kane et al 2017b) and local bark beetle
population pressure (Jenkins et al 2014), post-fire
mortality models may need to account for bark beetles

Figure 4.Pre-fire conditions such as drought and plant competition can increase vulnerability tofire through increased plant-stress
and also by influencing the physicalfire environment and increasing localfire intensity. (A)Pine tree showing signs of extreme
drought stress. (B)Comparison of needles formed before acute drought stress in 2012 and in 2015 during drought. (C)A coast
redwood/tanoak forest, impacted pre-fire by the invasive pathogen Phytophthora ramorum (sudden oak death) and then burned,
contributing to increased treemortality. Photo credit: HowardKuljian. (D)Pitch tubes and resin streaming frombark beetle attacks
after fire. (E)Bark removed from adeadwhitefir tree that burned 2 years prior, had bark beetle galleries from an attack pre-fire, and a
whitemycelia fan indicatingArmillaria root rot infection—all three factorsmay have contributed tomortality. Photo credit: Tucker
Furniss. (F)Dense,fire-excluded forests decrease water availability and can lead to extremefire behavior and vulnerability to bark
beetle-causedmortality. (G)High-intensity crownfire burning through a drought-impacted forest with recent treemortality (i.e. red
trees on left side of photo; photo credit: Carrie Vernon,NPS).
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to make accurate predictions. Additional basic
research on the short and long-term impacts of fire on
host tree defenses and attraction is needed. Likewise,
research on the interaction of fire and pathogens is
extremely limited (Parker et al 2006), though two stu-
dies have shown fire-pathogen interactions can cause
additional mortality through synergistic feedbacks
from infections both before and after fire (Metz et al
2013, Maringer et al 2016). These interactions are
poised to increase with increasing rates of the intro-
duction of non-native insects and diseases (Aukema
et al 2010) and climate change-associated increases in
bark beetle pressure (Kolb et al 2016).

Most previous studies of fire-caused treemortal-
ity have ignored density-dependence (Wooley et al
2012, Grayson et al 2017), modeling tree mortality
as if individual trees were alone in space. Density can
influence fire-induced tree mortality through two
main ways: by affecting local fire behavior and
through competition with neighboring trees. Forest
structure influences fuel arrangement, local moist-
ure, and fire-atmosphere interactions, thereby also
influencing fire behavior that causes direct injury to
trees (Agee and Skinner 2005, Stephens et al 2012).
Indirectly, competition can influence fire-induced
tree mortality (Das et al 2011), since it limits access
to aboveground and belowground resources,
thereby increasing stress. Increased fire-induced
mortality from competition has been documented
(Platt et al 1998, Yu et al 2009, Hammond et al 2016,
van Mantgem et al 2018), with slower growing trees
more likely to die given the same level of fire-caused
injury than faster growing trees (van Mantgem et al
2003, Nesmith et al 2015). Alternatively, decreases
in tree density and competition after fire can
increase resource availability, potentially compen-
sating for the short-term impacts of injury to release
surviving trees (Alfaro-Sánchez et al 2016). Addi-
tional research is needed using density-dependent
models to determine how pre- and post-fire compe-
titive interactions influencemortality.

Empiricalmodeling approaches

Most research into fire-induced tree mortality is
empirical and uses logistic distribution models where
the binary outcome is tree status, either alive or dead.
These empirical logistic regression models are used in
fine-scale software tools for firemanagement planning
(Reinhardt et al 1997, Reinhardt and Crookston 2003,
Reinhardt and Dickinson 2010, Andrews 2014), pro-
cess-based landscape succession models (Sturtevant
et al 2009, Keane et al 2011), and dynamic global
vegetation models (DGVMs) of the terrestrial carbon
cycle (Thonicke et al 2010, Kelley et al 2014) (table 1).
Empirical models are applied to predict mortality at
one of two scales: the probability of individual tree

mortality or the proportion of tree mortality by size
class and species (or functional type) (Hood et al
2007).

Post-fire tree mortality (i.e. top-kill) has been tra-
ditionally modeled as a function of fire injury (e.g.
crown scorch, bark char) and tree characteristics (e.g.
species, bark thickness, height, and diameter)
(figure 5(A)) (Ryan and Reinhardt 1988, Woolley et al
2012). Some models also incorporate fuel consump-
tion and fire residence time (Peterson and Ryan 1986,
Thonicke et al 2010). Crown scorch has been shown to
be most important predictor of fire-caused conifer
mortality (Sieg et al 2006), but is less influential for
resprouting species (Lawes et al 2011b). The simplest
scenario to predict is when a surface or crown fire
completely consumes the tree crown (i.e. terminal
branches and foliage) via direct flame contact, killing
all crown meristematic tissue and causing immediate
tree death. In other words, when flame length exceeds
tree height, tree death can be predicted relatively accu-
rately.Mortality from convective and radiative heating
from surface fires is more challenging to predict when
portions of the tree crown remain alive, especially for
conifer species with large buds that can survive even
when needles are scorched and killed. Predictive
computer systems (Reinhardt and Crookston 2003,
Andrews 2009, Thonicke et al 2010) typically estimate
crown kill height (also called scorch height as crown
scorch and kill are undifferentiated) from fire intensity
based on flame length using the equation developed by
Van Wagner (1973); some systems also allow direct
input of anticipated crown kill height (Reinhardt et al
1997). Crown kill height is then used to calculate
crown scorch as either a percentage of the crown
length or volume (Reinhardt et al 1997). Less com-
monly, the percent of crown length or crown volume
scorched is estimated directly via post-fire field obser-
vations and used as a model input (Lutes 2012). Some
models use bole or stem char height in addition to or
in replacement of crown scorch (Hély et al 2003,
Woolley et al 2012), especially for deciduous trees
(Brando et al 2012).

Bark thickness or tree diameter at breast height,
which is strongly correlated with bark thickness, is
used in many models as a surrogate for resistance to
basal heating (Ryan and Reinhardt 1988, Hood et al
2008, Kelley et al 2014) because bark thickness has the
largest influence on heat transfer to the underlying
cambium due to bark’s poor conductivity (Bova and
Dickinson 2005). DGVMs and some landscape mod-
els that predict fire-caused mortality values by large
grid cells and cohorts use a simplified approach with
constant parameters for scorch height and bark thick-
ness based on broad plant functional type or species
grouping (Thonicke et al 2010).
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Advantages and limitations to empirical
models

The current structure of empirical models relies on
simple, external measures of observable tree injuries
that are proxies for the fire’s actual heat flux
(figure 5(A)). This structure makes it possible to
predict fire-caused tree death for a range of flame
lengths as long as species, tree diameter, and height are
known. For non-resprouting species and those where
crown scorch and bud kill are equal, the current
framework seems to work reasonably well if the bark
thickness coefficient (i.e. predicted relationship of
bark thickness based on species and diameter) is
correct and delayed mortality due to insects is not a

factor (Hood et al 2007, Grayson et al 2017, Kane et al
2017a).When the above conditions are notmet,model
performance is reduced due to over-simplification of
species responses, extrapolation beyond the models’
underlying data, the inability to quantify long-term
effects on tree-to-ecosystem productivity (see below),
and difficulty correctly incorporating indirect effects
onmortality.

Many fire behavior and effects software use fire-
induced mortality algorithms developed from a lim-
ited number of conifers and use a simplified crown-
injury response to predict mortality for numerous
additional deciduous and conifer species (Reinhardt
et al 1997, Reinhardt and Crookston 2003, Thonicke
et al 2010, Andrews 2014). These software systems use

Table 1.Commonly used post-fire treemortalitymodeling applications by scale. See suggested primary references for detail onmodels and
assumptions used in each software system.

Spatial scale

Temporal

scale Application and primary user

Software systems and

primary references

Tissue Seconds—

minutes

Predicting lethal crown kill

height and stem (i.e. cam-

bium) kill

FOFEM submodel (Van
Wagner 1973); Fire-
Stem2D (Chatziefstratiou
et al 2013)

Researcher

Individual tree 0–3 years Predictingmortality for post-fire

salvage logging

FOFEM (Reinhardt et al
1997,Hood and

Lutes 2017)

Manager; researcher

Stand-Forest Years—

decades

Prescribed fire planning; esti-

mating different treatment

and expectedwildfire effects

related to tree-mortality

objectives

FOFEM (Reinhardt et al
1997); FFE-FVS
(Reinhardt and
Crookston 2003)

Manager; researcher

Landscape Decades—

centuries

Spatially explicit predicted chan-

ges in tree populations, cover

type, and carbon pools under

differentmanagement, cli-

mate, and disturbance regime

scenarios

Fire-BGC (Keane et al 2011);

Researcher

LANDIS-II (Sturtevant et al
2009)

Biome-Global Years—

decades

Estimating carbon pools, NPP,

and vegetation dominance;

examining controls driving

patterns in cover type and

productivity

LPX-Mv1 (Kelley et al 2014);
SPITFIRE (Thonicke et al
2010)

Researcher
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a sub-model estimating crown scorch height from
flame length based on one study of four species (Van
Wagner 1973). Further error is introduced if crown
length scorched must be converted to crown volume
scorched tomeet model requirements (Peterson 1985,
Hood et al 2007). The scorch height model cannot

differentiate between foliage kill and bud kill, an
important distinction that can modify tree survival
through post-fire crown recovery (Hood et al 2010).
As a result, themost commonly used empirical models
predict mortality of several western conifers with rea-
sonable certainty, but perform poorly for others,

Figure 5. (A)Conceptualmodel representing currentmodeling approaches to predicting post-fire treemortality. Common inputs are
shown in ovals. Additional, less-common inputs are shown in boxes. Black arrows represent causal pathways that are usually included
in themodels, while gray arrows include pathways that are included less often.No physiological processes are explicitly represented.
(B)Conceptualmodel of the physiological processes that contribute to post-fire tree growth andmortality. Species arefirst grouped
and assigned response functions to heatflux of living tissues (tan box), susceptibility to insects and disease, and competition tolerance
(blue boxes). Short-termdamage (red boxes) leads to long-term impairment of physiological status (green boxes), specifically the
depletion of carbohydrate reserves or decreases in hydraulic function. Either of those factors, or their combined influence, can cause
changes to tree growth and immediate or delayed treemortality. Exogenous factors (blue boxes) can directly cause damage, or alter the
physical environment (purple boxes) leading to damage, impaired functioning, or improved functioning. Positive correlation (+),
negative correlation (−), Species dependent (+/−).
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especially when simplified models with fewer inputs
are used over more complex ones (Hood et al 2007,
Kane et al 2017a). Model accuracies have not been
evaluated across size ranges or for the majority of tree
species, especially the diverse angiosperms. The focus
on western US conifer species explains why crown
scorch and bark thickness are the primary model
inputs. The former predictor is problematic for decid-
uous species, as crown scorch cannot be assessed dur-
ing the leafless dormant season. Therefore, some
models use bole char in lieu of crown scorch (Brando
et al 2012, Keyser et al 2018), but unlike crown scorch,
bole char cannot be predicted by standard wildland
fire behavior models. In addition, surface fuel con-
sumption at the base of trees is not typically included
in models, but may be of particular importance for
shallow-rooted species, seedlings, and in long-
unburned areas (see below).

Empirical mortality models predicting top-kill of
the main stem account for stem resistance to fire by
using either a species-specificmodel or amulti-species
model with species-specific bark-thickness scaling
functions based on tree diameter. The relative invest-
ment of bark thickness to stem diameter varies by spe-
cies (Pausas 2015, Pellegrini et al 2017). Bark
thickness-tree size relationships used in US fire effects
software systems are linear, which is supported by
research showing bark thickness scales linearly with
diameter in some common western US conifers from
small-to-large trees (10–50 cm basal stem diameter)
(van Mantgem and Schwartz 2003) and angiosperms
(Rosell 2016). However, bark thickness-tree size rela-
tionships generally have not been validated for many
species and across diameter ranges. Jackson et al
(1999) illustrated several relationships between size (or
age) and bark thickness allocation in North American
Pinus and Quercus species, with some species allocat-
ing preferentially to bark early, some linearly, and oth-
ers only as adults (a sigmoidal pattern). Additionally,
the thickness of the outer versus inner bark is likely
more important for protection from wildfire and the
ratio of these bark components varies by species (Pau-
sas 2015, Rosell 2016). These unaccounted differences
can under- or over-predict bark thickness, which can
distort tree mortality estimates (Zeibig-Kichas et al
2016). These shortcomings are further exacerbated by
the diversity in bark morphology and moisture that
can influence heat transfer to the underlying tissues
(Chatziefstratiou et al 2013).

Well-known exceptions to coniferous tree respon-
ses to fire include bud survival when foliage is scor-
ched and sprouting from epicormic buds and below-
ground bud banks (Meier et al 2012, Burrows 2013,
Pausas et al 2018) (figure 3). For example, burning
during dormant seasons or periods when active
growth has ceased can reduce bud kill and subsequent
tree mortality (Harrington 1987, Valor et al 2017) and
indeterminate-growth species can sustain higher levels
of crown loss if burning occurs at the beginning of the

growing season compared to later in the season (Weise
et al 1987). Likewise, species that can resprout from
epicormic buds can survive higher levels of crown
injury (Bond and Midgley 2001). Moreover, resprout-
ing following top-kill (i.e. mortality of the above-
ground ramet but not the genetic individual) confuses
the very concept of fire-causedmortality (Midgley et al
2010). In ecosystems where resprouting following
top-kill is common (e.g. savannas, temperate decid-
uous forests), rametsmay still follow standard patterns
of mortality (e.g. bark thickness confers fire resist-
ance), but successional patterns and recovery times are
faster than ecosystems dominated by non-sprouting
species (Kelley et al 2014, Pausas andKeeley 2017).

Empirical models are inherently limited to the
underlying data distributions, creating uncertainty in
accuracy when extrapolating beyond initial data ran-
ges and for novel conditions. The data used to develop
current empirical models have limited scope in terms
of species, sizes, and life history strategies. Further-
more, the data were collected primarily from fires
occurring in the 1980s to the early 2000s, and therefore
performance has not been evaluated under the hotter
climate anticipated in many areas. Because increased
temperatures exacerbate plant moisture stress via
increased vapor pressure deficits (Breshears et al
2013), it is critical that we further our understanding
of fire-drought interactions on tree death. The over-
whelming focus of tree mortality research has been on
moderate-sized trees, with very few studies including
small trees (i.e. �10 cm DBH), but fuels treatments
and prescribed burning objectives often involve killing
small trees. It would be useful to know how effective
such prescribed burns are for killing small trees and if
models need re-parameterization for predicting small
tree mortality. Limited evidence suggests that higher
levels of damage may be needed to cause mortality in
smaller trees (Engber and Varner 2012). While crown
injuries are still influential for small trees, basal scorch
and ground char can be more important because of
thin juvenile bark (van Mantgem and Schwartz 2004,
Battaglia et al 2009). Likewise, large, old conifers often
experience elevated mortality after fire, through a
combination of factors: damage to roots from smol-
dering combustion in fuel accumulations near the tree
base, fire burning in existing fire scars, low leaf area
relative to carbon demands, and decreased hydraulic
conductance (Kolb et al 2007, Hood 2010). In addi-
tion, some bark beetle species preferentially attack lar-
ger-diameter trees, thereby increasing post-fire
mortality of these trees that likely would have survived
based solely on fire-injuries (Hood and Bentz 2007,
Kolb et al 2016). To accurately predict mortality of
small or very large trees, different or additional pre-
dictor variables may need to be incorporated into
models.

Perhaps the most limiting aspect of current
empirical models is that predictions are binary–either
the tree survives or dies from fire. This approach is
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appropriate for predicting individual tree mortality,
but constrains modeling how sub-lethal fire-caused
injuries affect tree growth. Fire-driven changes in
stand structure through loss of photosynthetic bio-
mass and reductions in hydraulic conductivity due to
injury that further constrains photosynthesis can alter
stand and ecosystem-scale gas exchange and pro-
ductivity patterns for years (Nolan et al 2014, Smith
et al 2016). Although spatially explicit ecosystem pro-
cessmodels already include algorithms of fire-induced
tree mortality (table 1) and factor changes in the com-
petitive environment on subsequent projections of
tree growth, additional research could allow inclusion
of fire injury on post-fire growth and vulnerability of
surviving trees, as shown in figure 5(B). In summary,
empirical models can effectively predict binary mor-
tality outcomes, but due to the lack of widespread
model evaluation and uses that often extrapolate far
beyond models’ scopes, we do not know how well
empirical models work for numerous species, tree
sizes, and geographic regions, nor can we predict fire-
caused changes in productivity.

Fire-induced tree mortality is governed by a com-
plex suite of direct and indirect factors that simple lin-
ear models cannot easily accommodate. Past
disturbance, stress, bark beetles, fungi, competition,
season, and soil type may all impact fire-induced tree
mortality (Hood and Bentz 2007, Youngblood et al
2009, Fettig et al 2010, Das et al 2011), making delayed
tree mortality difficult to predict (Eidenshink et al
2007, Kane et al 2017b). The challenges presented by
multiple interactions mirror difficulties in describing
instances of tree mortality in unburned stands, which
also may be caused by the effects of multiple stressors
(Das et al 2016). While attempts have been made to
improve post-fire tree mortality model performance
by adding additional variables, such as species identity,
pre-fire climate, season of fire, tree vigor, insects and
pathogens, or other local conditions (Varner et al
2007, Woolley et al 2012, van Mantgem et al 2013,
Nesmith et al 2015), these alternative models were
developed from smaller, regional datasets and vary
widely in inputs, making comparisons difficult. More-
over, attempts at model evaluation and tests of trans-
ferability to different regions have been restricted to a
few species and geographic locations (Hood et al 2007,
Woolley et al 2012, Ganio and Progar 2017, Grayson
et al 2017, Kane et al 2017a), limiting the applicability
of these models outside the original range of data and
creating challenges to incorporating them into widely
usedfire effects software programs.

A roadmap for future research andmodel
implementation

Despite the limitations of empirical modeling
approaches, they are useful and many of the limita-
tions can be resolved or improved. The following

research priorities should be explored simultaneously
to advance our understanding of and ability to predict
fire-induced tree mortality (box 2). First, improve-
ment to existing empiricalmodels and development of
new empirical models should continue, so that
managers who rely on these models to make decisions
can do so with higher accuracy–given an understand-
ing of model limitations and uncertainty in their
predictions. Software systems have embedded post-
fire tree mortality models that predict mortality far
beyond the data used to parameterize the models.
Therefore, benchmark datasets are needed to allow
model evaluation and quantify uncertainty across
species, sizes, and geographic regions. Second,
research is needed to make the connections from fire
behavior, to energy release, to tissue damage of specific
tissues, to the effects of the fire on whole plants—i.e.
mortality, survival with reduced fitness, or survival
with full recovery. The dose-dependent response
approach developed for quantifying reductions in
productivity associated with fire-related tree injuries
rather than a binary outcome (Smith et al 2016, Sparks
et al 2016) offer great promise. Fire behavior models
based on fluid dynamics are beginning to model heat
flux at scales relevant for plant tissues, but the
connection between heating and physiological damage
in different tissues, and how that varies with ontogeny,
phenology, and morphology is not understood.
Detailed knowledge of individual species responses
will be limiting. We suggest that grouping species
based on similar traits (e.g. bark thickness, sprouting
ability, morphological architecture, and hydraulic
strategies) and developing functional responses to heat
flux, insect and disease, and competition could offer
an immediate improvement to the existing empirical
modeling framework. Third, we need a better under-
standing of the basic physiological impacts of fire on
hydraulic failure andNSCmaintenance and how these
impacts on individual tissue scale to affect whole tree
functioning and death (Venturas et al 2017, Micha-
letz 2018). Also, biophysical models only account for
direct fire effects, but incorporating indirect effects
such as insects and competition would improve
understanding of delayed tree mortality. Focusing on
these lines of research will help answer some of the
remaining outstanding questions about fire-induced
tree mortality (box 2), and improve our ability to
predict fire-induced tree mortally both at immediate
time scales and under novel future climates.

Although current logistic models can accurately pre-
dict mortality for some species (figure 5(a)), they are far
removed from the actual physiological and ecological
processes that cause immediate and delayed post-fire
mortality (figure 5(b)). Other empirical analysis techni-
ques that can detect nonlinearities and contingent rela-
tionships (e.g. classification and regression trees, path
analysis) could help identify interactions and provide
insight into the mechanisms of fire-induced tree mortal-
ity, laying a foundation for future advances in process-
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basedmodels offire-inducedmortality. Someattempts to
model fire-induced mortality with path analysis have
been made (Menges and Deyrup 2001, Youngblood et al
2009, vanMantgem et al2018). Thesemodels allowbetter
accounting of the strength and direction of direct and
indirect influences on post-fire tree mortality, but also
require a priori hypotheses of effects and interactions.
Applying different modeling techniques does not neces-
sarily mean dauntingly complicated models. For exam-
ple, the likelihood of death increases sharply around 70%
crown scorch in some conifers,whichhas led to the use of
piecewise regression to identify simple thresholds ofmor-
tality in predictor variables (Fowler et al 2010, Grayson
et al2017).

Existing research and data already provide a founda-
tion upon which existing models and planning tools
could be improved to make more accurate predictions
and explicitly quantify uncertainty in predictions. Plan-
ning tools could report expected ranges of mortality (i.e.
95%C.I.) and allow for the inclusion of additional obser-
vations (e.g. bark beetle attacks, cambium kill) where a
higher degree of model accuracy is desired. Given the
development of easy to acquire gridded climatic data,
such as PRISM (Daly et al 2002) or TerraClimate (Abat-
zoglou et al 2018), incorporating climatic variables, such
aswater stress, intowidely usedfire effects software could
provide expectedmortality levels given a range of pre-fire
climates. Also, older models deserve to be re-evaluated:
the empirical model developed by Peterson and Ryan
(1986) allows for different lethal heating thresholds in the
crown due to seasonal effects and crown morphology.
Though the provided temperatures are unsubstantiated,
this model provides a way forward, linking fuel

consumption andfire behavior to predict resulting tissue
injury and tree death.

Ultimately, a whole-tree coupled physical-physiolo-
gical model is necessary to predict physical heat transfer
and resulting fire effects based on living plant physiologi-
cal traits, and thus the prediction of fire-induced tree
mortality and growth.However, such amodelwould still
have a host of limitations and uncertainties (Adams et al
2013). While a whole-plant process model is not yet
available, independent, tissue-specific models exist to
predict circumference andheight of cambiumkill (Chat-
ziefstratiou et al 2013) and differences in crown scorch
andbudkill heights (Michaletz and Johnson2006).

The wide-ranging applications associated with
fire-induced tree mortality (table 1) do not lend itself
to a one-size-fits-all approach, and it seems unlikely
that empirical models will be replaced due to the need
to balance model complexity with model application.
Instead, empirical models should be refined for use in
landmanagement applications in the near-term, while
heating and physiological process models should be
developed and linked to create a hybrid-based
approach to improve mechanistic understanding to
predictmortality under novel scenarios.

Accurate predictions of fire-induced tree mortality
with quantified uncertainty are needed for models used
in planning, post-fire management, predicting future
landscape dynamics, and feedbacks to the global carbon
cycle. Fire is expected to become increasingly prevalent
in many ecosystems due to climate change (Flannigan
et al 2009, Jolly et al 2015). Direct fire effects may be exa-
cerbated during periods of climatic stress, such as
drought, where xylem functionmay be further compro-
mised or more easily disrupted by heat effects of fire in

Box 2.Outstanding questions aboutfire-induced treemortality.

What is the uncertainty and predictive accuracy in existing empiricalmodels predicting tree death, and how does it vary across species, geographic

regions, and tree sizes?

An active information archiving network is essential to provide benchmark datasets formodel evaluation and to promote collaboration and

discourse about research findings.

Howdoes ontogeny, phenology, andmorphologymodulate tissue sensitivity to lethal heating?

Morphological and chemical characteristics influence heat transfer, water loss, vulnerability to cavitation, etc, but limitedwork has been

conducted at temperatures experienced duringwildland fires. Such basic work is needed across a range of species, sizes, and growing

periods to allow improvement in predicting treemortality and productivity for dormant versus growing season burning, differential

species sensitivities to fire, and fire-drought interactions. Tissue lethal exposure time is unresolved for the elevated temperatures that

occur infires. Instantaneous tissue death is assumed at 60 °C, butwhat causes death at lower temperatures over longer time period-

s?Models should account for heatflux to tissues fromflaming and smoldering combustion fire phases.

Do injuries to different tree tissues (crown, stem, and roots) causemortality in additive or synergistic ways?

Currently, separate processmodels exist for crown and stem components, but not for roots. Coupled physical-physiologicalmodel integra-

tion is needed to predict whole-treemortality and differential tissue death to allow top-kill with andwithout epicormics and root sprout-

ing. Conduction of heat to underlyingmineral soils and roots is poorly characterized.

Howdoes pre-fire tree state due to drought stress (prolonged and acute), disease, competition, etc influenceNSC levels, vulnerability to cavitation

during fire, repair, and treemortality?

Knowledge of pre-fire state and post-fire resource allocation is needed to develop tree-level process-basedmodels and improve predictions

of empiricalmodels. Thesemodels should incorporate post-fire stress or release from competition, indirect fire effects, and climate.

Are there logical functional groupings based on species traits and vulnerabilities?

Grouping species with similar plant architecture, physiological strategies, or functional responses could allow development ofmore general

response functions to heat flux, drought stress, insects and disease, and competitionwithout needing exhaustive research for individual

species.
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stems and crowns (Kavanagh et al 2010, Michaletz et al
2012), as well as potentially increased indirect fire-
induced mortality due to bark beetles (Kolb et al 2016).
Many critical questions remain about fire-induced tree
mortality (box 2). Taken together, these reasons under-
score the need for increased research on the fundamental
processes of post-fire tree mortality coupled with the
development of bettermanagement tools.
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