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Landsat Time Series and Lidar as Predictors of Live
and Dead Basal Area Across Five Bark

Beetle-Affected Forests
Benjamin C. Bright, Andrew T. Hudak, Robert E. Kennedy, and Arjan J. H. Meddens

Abstract—Bark beetle-caused tree mortality affects important
forest ecosystem processes. Remote sensing methodologies that
quantify live and dead basal area (BA) in bark beetle-affected
forests can provide valuable information to forest managers and
researchers. We compared the utility of light detection and rang-
ing (lidar) and the Landsat-based detection of trends in distur-
bance and recovery (LandTrendr) algorithm to predict total, live,
dead, and percent dead BA in five bark beetle-affected forests
in Alaska, Arizona, Colorado, Idaho, and Oregon, USA. The BA
response variables were predicted from lidar and LandTrendr pre-
dictor variables using the random forest (RF) algorithm. RF mod-
els explained 28%–61% of the variation in BA responses. Lidar
variables were better predictors of total and live BA, whereas
LandTrendr variables were better predictors of dead and percent
dead BA. RF models predicting percent dead BA were applied to
lidar and LandTrendr grids to produce maps, which were then
compared to a gridded dataset of tree mortality area derived
from aerial detection survey (ADS) data. Spearman correlations
of beetle-caused tree mortality metrics between lidar, LandTrendr,
and ADS were low to moderate; low correlations may be due to
plot sampling characteristics, RFmodel error, ADS data subjectiv-
ity, and confusion caused by the detection of other types of forest
disturbance by LandTrendr. Provided these sources of error are
not too large, our results show that lidar and LandTrendr can be
used to predict and map live and dead BA in bark beetle-affected
forests with moderate levels of accuracy.

Index Terms—Forestry, image sequence analysis, remote sens-
ing, vegetation mapping.

I. INTRODUCTION

B ARK beetle-caused tree mortality is prevalent across
western North America [1] and affects forest primary pro-

ductivity [2]–[4], carbon and nutrient cycling [5]–[8], forest
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hydrology [9]–[11], forest-atmosphere exchanges of water and
energy [12]–[15], habitat selection by wildlife [16], [17], and
wildfires [18], [19]. With synoptic measurements, remote sens-
ing technologies may help forest managers understand and
manage tree mortality from bark beetles, but such informa-
tion must be expressed in terms familiar to managers, such as
stand basal area (BA), defined as the cross-sectional area of tree
stems for a given area. Here, we compare how well two sources
of remotely sensed data, light detection and ranging (lidar),
and Landsat time-series data analyzed using the Landsat-based
detection of trends in disturbance and recovery (LandTrendr)
algorithm [20], can predict live and dead stand BA in bark
beetle-affected forests.
Bark beetles have killed billions of trees across millions of

hectares in western North America in the last two decades [1].
Adult bark beetles bore through the outer bark of tree stems and
lay eggs in the phloem beneath the outer layer of the bark that
carries carbohydrates from foliage to roots. Larvae hatch and
feed on the phloem, excavating tunnels as they feed. Through
mass attack coordinated by pheromones, large numbers of bark
beetles are able to kill trees by girdling [21], [22]. Weaker trees
such as those suppressed by other trees or affected by drought
are more susceptible to being killed by bark beetles [23]–[25].
The availability of abundant host trees and elevated tempera-
tures (particularly higher winter minimum temperatures) has
facilitated bark beetle population increase and range expansion
[23], [24], [26].
Studies have shown that remote sensing can detect and map

insect-caused tree damage and mortality across large spatial
extents [27]–[30]. Dead trees reflect incoming radiation dif-
ferently than live trees, making the detection of tree mortal-
ity by passive remote sensing systems possible [28], [31]–[33].
Changes in forest structure following tree mortality also make
the detection of tree mortality by active remote sensing systems
such as lidar possible [34], [35]. However, the nature of bark
beetle outbreaks creates challenges for detecting bark beetle-
caused tree mortality with moderate-resolution remote sensing.
First, outbreaks often occur gradually and last several years so
that attributing spectral and structural differences to tree mortal-
ity, especially low levels of tree mortality, can be difficult [27].
Second, during outbreaks, bark beetles selectively kill larger
and more susceptible trees (e.g., [36]), leaving younger and
healthier trees, so that beetle-affected forests are usually a mix
of live and dead trees, which both contribute to the spectral and
structural “signatures” of beetle-affected forests [27].
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Lidar systems measure the time required for laser pulses to
reflect off illuminated surfaces and return to the sensor; round-
trip times of laser pulses are then converted to range or distance
measurements. When lidar is flown over forests, information
about tree canopy height and density can be created and forest
attributes such as BA and biomass can be predicted with high
accuracy [37]–[40]. Lidar has been shown to predict tree BA
(and related attributes such as biomass) more accurately than
single-date multispectral imagery [39], [40] due to the greater
sensitivity of lidar to forest structure variability. Successful pre-
diction of live and dead BA in bark beetle-affected forest using
lidar alone has been demonstrated [35].
Landsat has proved to be an invaluable resource for describ-

ing and studying vegetation dynamics [41]. Landsat has some
advantages over lidar that makes use of Landsat data for
predicting forest stand BA responses appealing. Lidar data
are expensive to acquire and process; contain only limited
reflectance information; are limited both spatially and tempo-
rally; and have only recently become more widely available.
Landsat data, on the other hand, are freely available; capture
reflectance information in several spectral bands that provide
information about vegetation properties; are acquired globally
every 16 days at moderate spatial resolution; and the Landsat
archive extends back to 1972, making image time-series
detection of disturbance possible [41]. Recent methodolo-
gies such as the Vegetation Change Tracker [42], [43] and
LandTrendr that make use of Landsat Thematic Mapper image
archive (beginning in 1984) have shown promise for detecting
forest disturbance and predicting stand BA [20], [44]–[46].
LandTrendr algorithms seek to simplify the temporal trajectory
of a spectral index over the course of 16-day observations into
a series of straight-line segments, generalized to an annual time
step by default. The starting year, duration, and change in these
segments can be used to describe the change process of interest
on a per-pixel basis. Because the LandTrendr algorithms
measure the evolution of processes on the landscape, they
may capture the impact of the mortality process better than
single-date measurements from other sensors. Meigs et al.
[44], in a descriptive rather than predictive study, found that
bark beetle-killed BA was related to LandTrendr trajectories.
Pflugmacher et al. [45] predicted live and dead BA following
a combination of wildfire (predominantly), harvest, and bark
beetle disturbances and found that LandTrendr predicted dead
BA more accurately than lidar.
Because multispectral data primarily provide information

about optical forest properties whereas lidar data primarily
provide information about vertical forest structure, researchers
have investigated using both types of remotely sensed data to
estimate forest variables of interest. Forest variables predicted
using both multispectral and lidar data include: BA [39], tree
density [39], [47], tree volume [40], [47]–[50], aboveground
tree biomass [40], [50], and fuels [51], [52]. Using both types of
data usually results in better prediction accuracies than if only
one type of data is used.
In the United States, bark beetle-caused tree mortality is

mapped annually via aerial detection surveys (ADSs) [53].
Observers estimate the location, affected area, and severity of

bark beetle disturbance from aircraft. Mortality information is
delivered in the form of georeferenced digital polygon data.
Although useful for resource management and scientific appli-
cations, ADS data have some limitations that cause uncertainty
in tree mortality estimates: not all forests are surveyed every
year; the skill and experience of observers vary; and affected
area, rather than mortality area, is reported. To overcome the
latter limitation, Meddens et al. [1] derived a 1-km gridded
dataset of tree mortality area from ADS affected-area polygon
data.
Random forest (RF) modeling has been shown to be an effec-

tive tool for predicting forest attributes from remotely sensed
explanatory variables [40], [54]–[56]. The RF algorithm creates
a large number of classification trees. Observations are classi-
fied by each tree and are assigned to the majority class. Variable
importance scores are generated by ranking variables accord-
ing to how often they decrease the mean-squared error. Some
advantages of RF modeling include the ability to predict contin-
uous, non-normal variables; generation of variable importance
scores; and the random withholding of data during bootstrap
iterations that makes the division of data into training and eval-
uation datasets unnecessary for most applications.
Here, we evaluate the utility of lidar and LandTrendr to

predict field-observed total, live, dead and percent dead stand
BA. Our objectives were 1) to compare performance of predic-
tive RF models of these responses that use LandTrendr, lidar,
or both as predictors, and 2) to further evaluate models by
comparing predicted percent dead stand BA to estimates of
tree mortality area generated from the gridded ADS dataset of
Meddens et al. [1], a similar independent dataset. We evalu-
ated models predicting both dead and percent dead stand BA
because 1) both were important variables that were not neces-
sarily correlated, and 2) we considered percent dead stand BA
to be approximately equivalent to ADS mortality estimates of
Meddens et al. [1]. As demonstrated by others, we expected
lidar to be more sensitive than multispectral imagery to overall
stand structure [39], [40], and LandTrendr to be more sensi-
tive than lidar to stand health conditions and disturbance his-
tory [45]. Therefore, we hypothesized that lidar would predict
total and live stand BA more accurately, whereas LandTrendr
would predict dead and percent dead stand BA more
accurately.

II. METHODS

A. Study Areas

Study areas included five coniferous forests across west-
ern North America that have been affected by bark beetles:
Kenai Peninsula in Alaska (AK), Pinaleño Mountains in Ari-
zona (AZ), north central Colorado (CO), central Idaho (ID), and
central Oregon (OR) (Fig. 1). Spruce beetles (Dendroctonus
rufipennis Kirby) have affected forests in AK and AZ, whereas
mountain pine beetles (Dendroctonus ponderosae Hopkins)
have affected forests in CO, ID, and OR. Coincident field obser-
vations, LandTrendr outputs, and lidar data were available for
each study area. LandTrendr output extents encompassed and
extended beyond lidar acquisition extents (Fig. 1).
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Fig. 1. Study areas in Alaska, Arizona, Colorado, Idaho, and Oregon, USA.
Lidar extents are shown as filled black polygons (except in Idaho where it is
shown as a black dot). LandTrendr data extents are shown as hollow polygons.
Landsat Path/Row numbers are given next to each LandTrendr data extent.

B. Field Observations

Tree diameter at breast height (DBH) and health (live or
dead) were measured for each tree in circular fixed-radius plots
within lidar extents of all study areas. Plots were geolocated
via GPS so that comparison with lidar and LandTrendr data
was possible. Plot design varied between study areas. In AK
and OR, USFS Forest Inventory and Analysis (FIA) plots were
systematically located. In AZ, 80% of the plots were system-
atically located within the extent of the lidar survey and 20%
of the plots were supplementary plots added at random loca-
tions at higher altitude in the spruce-fir zone with higher tree
mortality, which the systematic plots failed to sample. In CO
and ID, plots were located according to stratified random sam-
pling designs. Radii of AZ, CO, and ID plots were 12.6, 8.0,
and 11.3 m, respectively. FIA plots in AK and OR consisted of
four subplots with 7.3 m radii. In OR, USFS Region 6 Contin-
uous Vegetation Survey (CVS) plots were also included; CVS
plots consist of five subplots with 15.5 m radii. Most plot obser-
vations were gathered in 2010, although some FIA plot obser-
vations were gathered as early as 2004. Distributions of %Dead
BA as measured at plots differed between study areas (Fig. 2).
Tree measurements of FIA and CVS subplots were combined,
and tree measurements were summarized by live and dead stand
BA, in units of m2 ha−1, for each plot using the Forest Vegeta-
tion Simulator (FVS) [57], [58].

C. Lidar

Discrete-return lidar data were acquired over each study area
between the years 2008 and 2010 (Table I). For each study area,
returns were classified as vegetation or ground by the vendor;
ground return elevations were averaged for each 1-m grid cell
to produce a bare-earth digital terrain model (DTM) of 1-m
resolution; and DTM values were subtracted from vegetation
returns to calculate height-above-ground values of vegetation
returns. All vegetation returns (as opposed to only first returns)
within each plot extent were then summarized to produce lidar
metric variables to be used as predictor variables in models
(Table II). Rather than producing lidar metrics for each FIA
and CVS subplot, vegetation returns of FIA and CVS subplots

were combined by plot before producing plot-level lidar
metrics. Lidar metric grids of 30-m spatial resolution (com-
parable to LandTrendr output resolution) were also produced
for mapping purposes. Lidar data processing was done using
FUSION software [59].

D. LandTrendr

For each study area, Landsat Thematic Mapper (TM) time-
series images from 1984 to 2010 were processed through
LandTrendr acting on individual pixels and operating on an
annual time step [20]. The normalized difference ratio of
Landsat bands 4 and 7 ((band4− band7)/(band4 + band7))
[60] was used for temporal segmentation, and disturbance
was defined as any segment showing a decline in this index
(Fig. 3). Once disturbance segments were defined, their timing
was imposed on the three tasseled-cap (TC) bands of bright-
ness (TCB), greenness (TCG), and wetness (TCW) [61] and
pre- and post-disturbance values for TCB, TCG, and TCW
and their differences (ΔTCB, ΔTCG, and ΔTCW) were calcu-
lated (Table III). Other metrics included the greatest disturbance
(GD) and the longest disturbance (LD) for every pixel, in terms
of when the disturbance started and the duration of the distur-
bance (Fig. 3; Table III). Values of these metrics coincident with
plot extents were extracted from the LandTrendr outputs to be
used as candidate predictor variables in RF models (Table III).

E. ADS Data

To evaluate lidar and LandTrendr model performance, pre-
dictions of %Dead BA were compared to a recently pub-
lished gridded ADS dataset [1]. Meddens et al. [1] describe
the process of converting ADS affected-area polygons (poly-
gon extents include live trees) to tree mortality area (crown
area of killed trees) grids covering the western United States.
We briefly summarize the process here. ADS polygons report-
ing the number of bark beetle-killed trees for each year from
1997 to 2010 were converted to 1-km2 grids. Grid cell values of
the number of killed trees were converted to grid cell values of
crown mortality area by multiplying the number of killed trees
by their tree host crown area. Comparison of these grids with
high-resolution imagery showed that ADS data underestimated
mortality. To compensate for underestimation, adjustment fac-
tors (3.7–20.9 depending on tree species) were applied to grids
to create an upper estimate of tree mortality area within each
grid cell. Subsequent processing of the dataset in the western
United States included the extension of the dataset to 2012 (pre-
viously from 1997 to 2010) and addition of a middle estimate
[62]. The middle estimate was based on subsequent remote
sensing analyses in other regional study areas and improved
upon the upper estimate by reducing the adjustment factor for
mountain pine beetle in lodgepole pine from 20.9 to 13.6. For
this analysis, we summed mid-level tree mortality area grids
from 1997 to 2010 to create a 1-km map of cumulative bark
beetle-caused tree mortality area across the contiguous United
States.
The dataset of Meddens et al. [1] does not include AK.

To produce a similar 1-km ADS map of cumulative spruce
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Fig. 2. Histograms showing percent tree mortality as measured on field plots and estimated by ADS data across forested lidar extents of the five study areas. The
number of field plots in each study area is given in the upper right corner of each panel. Field plot histograms are in terms of percent dead BA. ADS histograms
are in terms of percent tree mortality area.

TABLE I
LIDAR SURVEY PARAMETERS

beetle-caused tree mortality area across the Kenai Peninsula,
we followed the methods of Meddens et al. [1] using AK ADS
polygon data from 1989 to 2010. For the Kenai Peninsula, ADS
polygons before 1999 and 41% of polygons from 2000 to 2010
did not include the number of trees killed as an attribute. Rather
than excluding these polygons, which represented a substantial
amount of tree mortality, we assumed a tree mortality density
of five trees per acre, the median reported tree mortality density
of ADS polygons across the Kenai Peninsula for 1999–2010.

F. Random Forest

RF modeling, as implemented in the randomForest package
of R (version 4.6–7) [54], [63], [64], was used to predict Total,
Live, Dead, and %Dead BA response variables from lidar and
LandTrendr predictor variables. Default settings were used for
RF iterations: the number of variables tried at each split equaled
the number of predictor variables divided by three; 500 trees
were grown; and the minimum size of terminal nodes was five.
We combined observations from all study areas, which had dif-
ferent numbers of plots (194, 101, 113, 27, and 158 plots for
AK, AZ, CO, ID, and OR, respectively), to create RF models.

To equally represent each study area in RF models, we weighed
each observation by the inverse number of plots for that study
area, i.e., ID and AK observations were assigned weights of
0.037 (1/27) and 0.005 (1/194), respectively. Then, a weighted
random sample of two-thirds of all observations was taken
before each RF iteration, so that observations from study areas
with fewer plots had a higher probability of being selected. As
such, all RF model iterations were based on 395 of the total 593
observations.
For each of the four BA response variables, RF models

that used only lidar, only LandTrendr, and combined lidar and
LandTrendr response variables were produced, so that a total
of 12 final models were created. For each of these 12 models,
we repeated the RF variable selection methodology of Murphy
et al. [65] 100 times to create model improvement ratio (MIR)
[65]–[67] distributions for each predictor variable. The RF vari-
able selection process of Murphy et al. [65], which we used
because we wished to create parsimonious models that maxi-
mized percent variance explained, was as follows: an RF model
that included all candidate predictor variables was created and
MIR values, defined as variable importance (mean decrease
accuracy) divided by the maximum model improvement score
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TABLE II
NAMES AND DESCRIPTIONS OF LIDAR CANDIDATE VARIABLES

Only returns > 1.37m in height were used to create canopy height variables.

Fig. 3. Theoretical disturbed Landsat pixel trajectory depicting LandTrendr
segments and variables. Hollow dots represent annual Landsat spectral index
values. Lines represent segments temporally fitted by LandTrendr. Dimen-
sion lines represent LandTrendr variables: disturbance magnitude (1), duration
(2), recovery magnitude (4), and recovery duration (5). Filled dots represent
pre-disturbance (3) and post-disturbance (6) value variables. See Table III for
LandTrendr variable names and descriptions.

so that MIR values range from zero (low importance) to one
(high importance), were created for each predictor variable.
Then, variables with MIR values below i, where i = 0, 0.1,
0.2, and so forth until 0.9, were dropped and an RF model
was created. The RF model that minimized model MSE, max-
imized percent variance explained, and minimized the number
of predictor variables was selected, and MIR values for selected
predictor variables were returned. We repeated the process of
Murphy et al. [65] 100 times because we found that for a given
response variable, it often selected different RF models and

returned different MIR values for selected predictor variables,
but through repetition, we could generate stable MIR distribu-
tions and means for predictor variables. Predictor variables with
the highest mean MIR values, as determined by a threshold,
were selected for final models. Mean MIR thresholds, which
differed between the 12 models, were determined by finding
mean MIR thresholds under which variables did not improve
percent variance explained. If variables over mean MIR thresh-
olds were correlated > 0.9, the variable with the lowest mean
MIR value of the two was dropped, so that no final model con-
tained variables correlated > 0.9.

G. Comparison With ADS Data

Final RF models predicting %Dead BA were applied to
LandTrendr and lidar metric grids to create maps of %Dead BA
for each study area. For comparison with the 1997–2010 cumu-
lative tree mortality area map generated from ADS data [1],
30-m LandTrendr and lidar %Dead BA maps were aggregated
to 1-km spatial resolution and Spearman correlations between
predicted values of %Dead BA and % tree mortality area within
1-km2 grid cells were calculated. Spearman correlations were
used to account for the effect of non-normal distributions and
a possible nonlinear relationship between %Dead BA and %
tree mortality area. Only forested grid cells, which we deter-
mined using a forest mask developed from the forest type layer
of Ruefenacht et al. [68], were included in Spearman correla-
tion calculations. We also excluded grid cells where monitoring
trends in burn severity (MTBS) data indicated that fire occurred
between the years 1984 and 2010 [69].
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TABLE III
NAMES AND DESCRIPTIONS OF LANDTRENDR CANDIDATE VARIABLES

TABLE IV
PERCENT VARIANCE EXPLAINED BY RF MODELS PREDICTING TOTAL, LIVE, DEAD, AND PERCENT

DEAD STAND BA (m2 HA−1) FROM DIFFERENT SETS OF PREDICTOR VARIABLES

See Fig. 3 for further variable explanation.

III. RESULTS

In AK, ID, and OR, distributions of %Dead BA as deter-
mined by field plots approximated ADS distributions of % tree
mortality area across forested lidar extents (Fig. 2). In AK and
OR, distributions were positively skewed and in ID, distribu-
tions were closest to normal. In AZ and CO, field plot distri-
butions of %Dead BA were bimodal and negatively skewed,
respectively, whereas ADS distributions of % tree mortality
area were positively skewed. Distributions of both %Dead BA
and % tree mortality area aggregated across all study areas were
positively skewed.

RF models explained 28%–61% of the variance in BA
response variables (Table IV). Lidar models were better predic-
tors of Total and Live BA, whereas LandTrendr models were
better predictors of Dead and %Dead BA. RF models that com-
bined both lidar and LandTrendr predictors performed slightly
better than the models based on variables from a single sensor
type.
Lidar density variables, especially DENSITY (Percentage of

all returns > 1.37m in height), as well as HMAX (Maximum
canopy height), HMEAN (Mean canopy height), HP25 (25th
percentile of canopy height), and CRR (Canopy relief ratio)
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TABLE V
AVERAGE MODEL IMPROVEMENT RATIO (MIR) VALUES OF VARIABLES SELECTED AS IMPORTANT

FOR MODELS PREDICTING TOTAL, LIVE, DEAD, AND %DEAD BA FROM
LIDAR AND LANDTRENDR VARIABLES

A MIR value of 1 indicates most important. Only MIR values of selected variables are shown.

were important predictors of BA response variables (Table V).
LandTrendr variables that were frequently chosen as impor-
tant predictors of BA variables included GDmag (magnitude
of greatest disturbance), GDpre.val (Cover value before great-
est disturbance), GDpost.mag (“Recovery” magnitude after
greatest disturbance), LDmag (Magnitude of longest distur-
bance), LDpre.val (Cover value before longest disturbance),

LDpreTCG (Landsat TCG before longest disturbance), and
greatest disturbance pre-, delta-, and posttasseled cap variables.
GDmag, predisturbance cover values, and predisturbance TCG
were important predictors of all BA variables. LDmag and
changes in TCWwere important predictors of Dead and %Dead
BA. For combined models, lidar variables were generally cho-
sen as most important when predicting Total and Live BA,
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TABLE VI
SPEARMAN CORRELATIONS BETWEEN LIDAR-, LANDTRENDR-, AND ADS-DERIVED ESTIMATES OF

PERCENT TREE MORTALITY AREA ACROSS FORESTED UNBURNED PORTIONS OF LIDAR AND
LANDTRENDR SURVEY EXTENTS FOR FIVE STUDY AREAS

Lidar- and LandTrendr-derived estimates were aggregated to 1-km resolution for comparison with ADS-derived
estimates.

Fig. 4. Lidar- and LandTrendr-derived tree mortality maps of the Kenai Peninsula, Alaska. Nonforested and burned areas are masked in white. Map pixels are
aggregated to 1-km spatial resolution.

whereas LandTrendr variables were generally chosen as most
important when predicting Dead and %Dead BA.
Lidar- and LandTrendr-predicted %Dead BA were weakly to

moderately correlated with ADS estimates of % tree mortal-
ity across unburned forested areas of lidar extents (Table VI;
Fig. 4). Correlations between LandTrendr predictions and ADS
estimates of % tree mortality were generally comparable to
or greater than correlations between lidar predictions and the
ADS estimates. LandTrendr predictions and ADS estimates of
% tree mortality were weakly to moderately correlated across
unburned forested areas of LandTrendr extents (r = 0.28−
0.52; Table VI). Correlations between LandTrendr and ADS
estimates were greatest in AK and CO (r = 0.49− 62). Visual

comparison of maps showed that areas of greater %Dead BA
in LandTrendr maps generally corresponded to areas of greater
tree mortality area in the ADS map (Fig. 5).
In unburned forested areas, lidar-derived predictions of

%Dead BA aggregated to 1-km2 grid cells, averaged between
18% and 34%, and ranged from 0%–54% (Fig. 6). Across
unburned forested lidar extents, LandTrendr-derived maps
showed more variability in %Dead BA between study areas
than lidar-derived maps, with predictions, aggregated to 1-km2

grid cells, averaging 12%–43%, and ranging from 0%–69%.
Average ADS estimates of % tree mortality area within
unburned forested areas of lidar extents were generally lower
(4%–29%), with greater variability (ranges between 0% and
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Fig. 5. ADS-derived and LandTrendr-derived tree mortality maps at 1-km reso-
lution. Lidar extents, where plots are located, are outlined in black. Areas where
monitoring trends in burn severity data indicate fire occurrence from 1984 to
2010 are outlined in red. Nonforested areas are masked in white. LandTrendr
maps, which are in terms of percent dead BA, are aggregated to 1-km spatial
resolution for comparison with ADS maps, which are in terms of percent tree
mortality area.

100%), except in ID, where average ADS mortality was much
greater (52%). In unburned forested areas within LandTrendr
extents, LandTrendr predictions of %Dead BA aggregated to
1-km2 grid cells, averaged between 11% and 25%, and ranged
from 0% to 74%, whereas ADS estimates of % tree mortality
area averaged between 2% and 29% and ranged from 0% to
100%.

IV. DISCUSSION

The RF algorithm was useful to our analysis for several
reasons. First, distributional shapes of % tree mortality var-
ied between study areas (Fig. 2). The RF predictive model-
ing approach is nonparametric and, therefore, well suited for
these varying distributional shapes. RF allowed us to predict
these variables without having to transform and back transform,
which would have been necessary if parametric modeling was
used. The distribution of %Dead BA of records from all study
areas matched the distribution of % tree mortality area from
ADS data, suggesting that plots sampled variability in tree mor-
tality well. Second, variable importance values generated by RF
let us identify the most important out of many candidate pre-
dictor variables so we could create and interpret parsimonious
models. Third, processing time was not excessive despite run-
ning thousands of RF model iterations.
LandTrendr variables chosen as most important were logi-

cally related to BA variables. Total and Live BA were posi-
tively correlated to predisturbance cover and TCG, a measure
of forest “greenness” related to canopy cover, leaf area index,
and biomass [70]. Dead and %Dead BA were positively corre-
lated with disturbance magnitude variables and greater changes
in TCW; forest wetness has been shown to decrease following
bark beetle-caused tree mortality [71]. Live BA was negatively
correlated to disturbance magnitude. We also found predistur-
bance cover and predisturbance TCG to be positively correlated
to Dead and %Dead BA, which agrees with the fact that bark
beetle-caused tree mortality is often more severe in stands of
greater BA [25], [72].
Maps of % tree mortality generated from lidar, LandTrendr,

and ADS generally agreed with each other although large dif-
ferences between maps did exist. Visual patterns of mortality
severity were similar between maps, i.e., where the ADS map
showed higher levels of tree mortality, lidar and LandTrendr
maps usually showed higher levels of tree mortality. But lidar,
LandTrendr, and ADS estimates of %tree mortality were mod-
erately to poorly correlated. Correlations were not greater
because each type of estimate was subject to error. Lidar and
LandTrendr predictions were produced using RF models that
explained only 29% and 48% of the variation in %Dead BA,
respectively; thus, LandTrendr predictions were likely more
accurate than lidar predictions, as greater correlation with the
ADS data also suggests. However, estimates of tree mortality
area from the ADS data contain a degree of uncertainty because
of how different surveyors acquire data under different viewing
conditions at different times with varying mortality severities.
In addition, some forests might not have been entirely surveyed
every year. Correlations between LandTrendr and ADS esti-
mates across LandTrendr extents were low because LandTrendr
detected all types of forest disturbance, whereas the ADS data
only included bark beetle-caused tree mortality. We partly con-
trolled confusion with other types of forest disturbance by
excluding areas that burned from 1984 to 2010, as indicated
by MTBS data, from our analysis. Wildfires were particularly
numerous in ID and moderately numerous in AZ and OR. In
AK and CO, bark beetle-caused tree mortality seemed to be
the predominant type of forest disturbance, so that correlations
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Fig. 6. Distributions of percent tree mortality in 1-km2 grid cells from lidar-, LandTrendr (LT)-, and ADS-derived maps for each study area. Black boxplots
correspond to distributions from forested lidar extents; gray boxplots correspond to distributions from forested LT extents. Grid cells disturbed by fire are not
included in distributions. The numbers of grid cells in each distribution are given in the upper left corner of panels; black and gray text corresponds to lidar and LT
extent distributions, respectively. Lidar and LT distributions are in terms of percent dead BA. ADS distributions are in terms of percent tree mortality area. Lidar
and LT predictions were aggregated to 1-km spatial resolution for comparison with ADS data. Middle ADS estimates were used [1] and [62].

between LandTrendr and ADS estimates were greatest in these
areas. In other words, high correlations in AK and CO may
be indicative of a more simplified disturbance history across a
large forested area. In OR, significant spruce budworm defoli-
ation was also present and likely lowered correlations. Salvage
logging of beetle-killed trees might have also caused disagree-
ment between lidar, LandTrendr, and ADS estimates of mor-
tality. Low correlations, as well as differences in distributions
of % tree mortality between lidar, LandTrendr, and ADS data
(Fig. 6), were also partly due to the fact that predictions were in
different units; lidar and LandTrendr predictions were in units
of %Dead BA, whereas ADS estimates were in units of % tree
mortality area. Although %Dead BA and % tree mortality area
are similar, they are not completely comparable.
Our analysis showed how lidar and LandTrendr could be

used to predict BA conditions post-bark beetle outbreak. We
did not investigate how well LandTrendr detected outbreak ini-
tiation or trajectories using yearly ADS data, or how well lidar
and LandTrendr detected needle-on and needle-off stages of
tree mortality. Beetle-killed trees retain dead needles, which are
red and yellow in color, for a few years following death, after
which needles begin to fall [28], [31]–[33]. Bark beetle-caused
tree mortality generally occurred across our LandTrendr extents
from 1987 to 2010. Most field and lidar data were collected
near 2010, after outbreaks had been ongoing for several years,
so most killed trees likely did not have needles at the time of

field and lidar data acquisition. The LandTrendr temporal extent
ranged from 1984 to 2010, and thus captured canopy reflectance
changes associated with beetle-caused tree mortality. Maps of
%Dead BA showed that LandTrendr models were also sensitive
to other types of forest disturbance, which necessitated the use
of MTBS data to exclude areas burned by fire. Disturbance type
differentiation by LandTrendr, which would have been useful to
our analysis, is a topic for future research.
Our modeling results agree with those of previous studies.

Like others, we found that lidar variables that measure forest
vertical structure were better predictors of Total BA than vari-
ables from passive multispectral sensors [39], [40], [45]. Impor-
tant predictors of Total and Live BA that we found, namely
lidar density and height variables, were similar to what oth-
ers have reported [39], [40], [44], [45], [55], [56]. Foliated
branches will produce a more distributed canopy height pro-
file than the greater lidar pulse penetration allowed through
dead tree crowns, which equates to likely greater sensitivity of
lidar metrics to healthy canopy conditions in these forest types,
none of which are particularly dense. We found LandTrendr
variables to be better predictors of Dead and %Dead BA;
Pflugmacher et al. [45] found the same when predicting Dead
BA caused by several types of disturbance. LandTrendr was
likely a better predictor of Dead and %Dead BA because
1) lidar only represented a single snapshot of forest struc-
ture, whereas LandTrendr involved repeated measurements
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capable of showing disturbance-caused change and 2) Land-
sat imagery used by LandTrendr captured spectral variability
in forest canopies caused by bark beetle disturbance that lidar
height measurements could not. Similar to us, Meigs et al.
[44] and Pflugmacher et al. [45] found that Landsat distur-
bance magnitude variables were important predictors of Dead
BA in disturbed forests. Our RF models that used LandTrendr
variables explained variance of %Dead BA (48%) similarly
to Meigs et al. [44] (40%). We predicted Live and Dead BA
using LandTrendr variables less accurately (28%–51% variance
explained) than Pflugmacher et al. [45] (R2 = 0.86). However,
unlike our plots where disturbance was caused by bark bee-
tles only, most of the plots in Pflugmacher et al. [45] were
disturbed by fire and harvest, which the LandTrendr algorithm
likely detects more easily.

V. CONCLUSION

We predicted Total, Live, Dead, and %Dead BA in bark
beetle-affected forests with moderate accuracy using RF mod-
els that used lidar and LandTrendr data as predictor vari-
ables. Lidar was a better predictor of Total and Live BA,
whereas LandTrendr was a better predictor of Dead and %Dead
BA. Predictions of %Dead BA generated from RF models
were poorly to moderately correlated with estimates of tree
mortality area generated from ADS data. Our results confirm
the utility of LandTrendr for detecting and quantifying bark
beetle-caused disturbance as has been demonstrated by others,
but improve upon these studies by comparing predictions to
ADS data, arguably the best available source of independent
information for model evaluation. Such maps have immediate
utility to managers and our modeling methodology, which gen-
eralized across five study areas with different forest types, could
be replicated elsewhere in western North America by forest
managers and researchers who need to quantify and map bark
beetle-caused tree mortality.
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