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Abstract. There has been an increasing interest in the economic health cost from smoke exposure from wildfires in the
past 20 years, particularly in the north-westernUSA that is reflected in an emergent literature. In this review, we provide an

overview and discussion of studies since 2006 on the health impacts of wildfire smoke and of approaches for the estimation
of the associated economic cost. We focus on the choice of key variables such as cost estimators for determining the
economic impact of mortality and morbidity effects. In addition, we provide an in-depth discussion and guidance on the
functioning, advantages and challenges of BenMAP-CE, freely available software of the US Environmental Protection

Agency (EPA) that has been used in a growing number of studies to assess cost from wildfire smoke. We highlight what
generates differences in outcomes between relevant studies and make suggestions for increasing the comparability
between studies. All studies, however, demonstrate highly significant health cost from smoke exposure, in the millions or

billions of US dollars, often driven by increases in mortality. The results indicate the need to take health cost into account
for a comprehensive analysis of wildfire impacts.
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Introduction

Total area burned through wildfires in the United States has
increased since the mid-1980s, with the north-west USA as one

of the most affected regions (Spracklen et al. 2009; Liu et al.

2016; McClure and Jaffe 2018). Although there is some evi-
dence to suggest this increase is due to a more normal fire

mitigation regime in areas where fires had previously been
supressed (Doerr and Santin 2016), there exists a growing
consensus that climate change has led and will lead to an

increased incidence of wildfires (Fried et al. 2008; Spracklen
et al. 2009; Flannigan et al. 2013; Liu et al. 2016). Abatzoglou
and Williams (2016) found anthropogenic climate change to
have contributed to increased fuel aridity and a doubling in the

cumulative forest fire area since 1984, the main drivers of this
being earlier spring snow melt and increasing spring and sum-
mer temperatures (Spracklen et al. 2009). Another driver of

wildfires is the increased wildland-urban interface, the zone
between unoccupied land and human population, where homes
are built near or among lands prone to wildfires (Radeloff et al.

2018). Liu et al. (2016) estimate ‘more than 82 million indivi-
duals will experience on average a 31% to 57% increase in
frequency and intensity’ of wildfire in the USA. This increase is

to be greatest in the Pacific Northwest, with a 78% increase in
annual mean area burned by 2050 (Spracklen et al. 2009).
Linked to this, Cascio (2018) found that the size of the popu-
lation at risk from smoke is going up: an increase in wildfire

prevalence has led to an increase in exposure to harmful pol-
lutants emitted by wildfires like particulate matter (PM), and
ground-level ozone (O3). As such, interest in the cost to health of

these wildfires is growing.
At present, there exists significant literature surrounding

wildfires’ ecological impact (Reid et al. 2016); yet literature

surrounding the valuation of indirect health costs associated
with wildfires is still relatively new. Direct health costs from
wildfire relate to damage such as death resulting from burn

injuries whereas the indirect costs are the result of secondary
impacts. Many general cost studies on wildfires vastly underes-
timate the true cost of those fires as they do not incorporate
smoke-induced health costs. The literature suggests that these

indirect costs may be much greater than assumed in the past and
growing. It is estimated that between 2010 and 2015, wildfire
smoke costs grew on average by 217% each year in the western

USA (Jones and Berrens 2017).
Kochi et al. (2010) carried out a literature review on the

economic costs of health impacts in 2010. At that time, they

identified a need to better understand both the major and minor
impacts of wildfire smoke on adverse health outcomes including
more knowledge on aversion behaviours. In the 10 years since

then, several new studies on the cost of health impacts from
wildfires have emerged, particularly in the USA. This could in
part be due to the increasing severity of wildfires, especially in
the USA, but also due to the availability of BenMAP-Commuity
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Edition (BenMAP-CE) or the ‘Environmental BenefitsMapping
and Analysis Program’: open-source software provided by the
US Environmental Protection Agency (EPA) that makes the

evaluation of changes in air quality and the application of cost–
benefit analysis in the wildfire context more accessible and has
been used by several studies.

In the present literature review, we will examine the latest
studies on the economic costs of adverse health-related impacts
from wildfires. Although there is some literature on the health

effects from prescribed fire smoke (Nguyen et al. 2020), we are
not aware of economic valuation studies for prescribed fires.

We focus mostly on northern America, as the bulk of recent
literature focuses on this geographic region but also include

studies from other regions where relevant. We believe this to be
a valuable exercise to inform future research and policy. Often-
times, health impacts from smoke are still not considered when

estimating the total cost from a wildfire as it is time-consuming.
Synthesising the literature related to health costs allows us to
better contextualise other costs from wildfires and to inform

discussions onwhat drives costs fromwildfires. As such, a better
understanding of total wildfire costs can provide an indication
where to focus mitigation spending for wildfire impacts.

We provide readers with practical guidance on how
BenMAP-CE functions and where its challenges lie that makes
the standardisation across BenMAP-CE studies difficult. We
also discuss options on how to make those studies potentially

more uniform for future research. The first part of the paper
includes all studies that have been identified as relevant to the
topic, whereas the second part focuses on studies that used

BenMAP-CE.
This remainder of this paper is structured as follows: The

pollutants from wildfires that affect human health section

reviews the literature in the field, including the epidemiological
effects of wildfire smoke, describing first the pollutants, and
then health impacts of these pollutants. The Economic cost of

health impacts and BenMAP-CE sections discuss literature that

values health impact incidences to derive economic cost with a
focus on BenMAP-CE. The final two sections provide a discus-
sion and conclusion respectively.

Methodology

The literature search was conducted using search engines
(Google Scholar and ResearchGate) and databases (CSIRO

Publishing and Elsevier) in order to identify peer-reviewed
articles as well as grey literature that tackle the subject.
Through the citations and references of these papers, further

evidence was found to contribute to this literature review.
Search terms centred around wildfire/forest fire, prescribed
fires/controlled burns, particulate matter (PM2.5 and PM10),
ground-level ozone (O3) and health impacts/effects. Through

the search, a focus was placed on literature from 2006 onwards
as well as a concentration on North America. However, litera-
ture that added value was also utilised as supporting evidence

even if not under these criteria. A filtering process – through
titles, then abstracts and finally full papers – was then used to
identify the relevant studies. We identified 47 studies as rele-

vant, of which 12 estimated the economic cost of health impacts
and of those, five used BenMAP-CE.

The pollutants from wildfires that affect human health

Wildfires generate smoke plumes that are the primary cause of

indirect health costs. Smoke plumes are defined as ‘gases,
smoke and debris that rise slowly from the fire while being
carried along the ground because the buoyant forces are

exceeded by those of the ambient surface wind’ (National
Wildfire Coordinating Group 2018). These plumes dramati-
cally alter air quality in the affected area and can increase

both the levels of ozone (O3) and PM to dangerous levels
(Larsen et al. 2018). Other combustion products produced
by wildfires include: polycyclic aromatic hydrocarbons
(PAHs), carbon monoxide (CO), nitrogen oxides (NOx), vol-

atile organic compounds (VOCs) and sulfur dioxide (SO2)
(Hänninen et al. 2009).

There is consensus that wildfire smoke has a significant

impact on both acute and long-term health endpoints in the
exposed populations (US Forest Service 2018). In general, the
health literature shows associations between smoke exposure

and an increased risk of mortality (death) (Morgan et al. 2010;
Johnston et al. 2012; Kochi et al. 2012; Shaposhnikov et al.

2014; Reid et al. 2016). Specifically, Johnston et al. (2012)

found the estimated global mortality attributable to wildfire to
be an average of 339 000 deaths annually across the world (the
most affected regions being sub-Saharan Africa and south-east
Asia). In addition, there is also evidence of the increased risk of

morbidity (Kochi et al. 2010).
The evidence on health impacts from prescribed fires is very

limited but literature on PM2.5 concentrations suggests theymay

be less severe than from wildfires. Generally, even though the
burnt areas from wildfires and prescribed fires are similar in the
USA per year, the measured PM2.5 concentrations are much

lower for the latter (Jaffe et al. 2020). This is due to fuel types
and firemanagement practice that avoids burning canopy or duff
fuels in prescribed fires.

Particulate matter (PM)

Particulate matter is the catch-all term for ‘solid particles and
liquid droplets found in the air’ and includes both PM10

(diameters 10 mm and smaller) and PM2.5 (2.5 mm and smaller)
(EPA 2018a). Fine PM consists of soot, organic carbon com-

pounds and inorganic ash (Hänninen et al. 2009). Owing to its
size, PM infiltrates deep into the lungs, with some even entering
the bloodstream.Decreases in the levels of PM2.5 have been seen

nationwide in ambient air as anthropogenic emissions (emitted
by combustion engines) have been reduced. Fann et al. (2018a)
found the estimated fraction of deaths in the USA due to PM2.5

from all sources to be 6.1% in 2005 (150 000 deaths), which fell
to 4.6% (121 000 deaths) by 2014 as PM2.5 concentrations
declined. Yet areas with a high wildfire prevalence have seen
increases in levels of PM2.5 (particularly the western and north-

western USA) attributable to the impact of wildfire (Liu et al.

2016; McClure and Jaffe 2018). In addition, Wegesser et al.
(2009) demonstrated that PM2.5 produced by wildfire is of a

greater toxicity than that found in ambient air, highlighting the
need for health analysis of PM2.5 caused by wildfires.

The effects of PM2.5 are both acute and long term, with

Adetona et al. (2016) describing PM2.5 as the most harmful
pollutant from wildfire to public health.
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Multiple reviews of the literature find a strong association
between exposure to wildland fire smoke and respiratory mor-
bidity and mortality (Youssouf et al. 2014; Liu et al. 2015; Reid

et al. 2016; Cascio 2018). This includes aggravated asthma,
chronic obstructive pulmonary disease (COPD), bronchitis,
decreased lung functioning and pneumonia. Regarding the

exacerbations of asthma, studies including Henderson et al.

(2011) and Morgan et al. (2010) found an association with
increased respiratory mortality in a study of bushfire smoke in

Australia (concentrating on the urban area of Sydney), a finding
supported by a longer-term Australian study (Johnston et al.

2011).Meanwhile, an analysis of cities across Europe also found
increases in respiratorymortality to be associated with increases

in levels of PM10 (Faustini et al. 2015).
Wildfire smoke exposure has also been shown to lead to

higher rates of respiratory hospital admissions as a result of

smoke exposure (Delfino et al. 2009; Lee et al. 2009; Morgan
et al. 2010; Henderson et al. 2011; Rappold et al. 2011; Martin
et al. 2013) and an increase in the rates of physician visits (Yao

et al. 2016).
The research on PM2.5 exposure and cardiovascular morbid-

ity shows mixed results. Haikerwal et al. (2015) is one of few

studies to show an association between PM2.5 and cardiovascu-
lar outcomes. In that study, PM2.5 exposure was linked to an
increased risk of out-of-hospital cardiac arrests and ischaemic
heart disease (IHD) during the 2006–07 wildfires in Victoria,

Australia. Reid et al. (2016) conclude that ‘toomany studies and
too many inconsistencies in findings exist to determine whether
wildfire smoke exposure is associated with specific cardiovas-

cular outcomes’.

Tropospheric ozone (O3)

Another key pollutant fromwildfires is tropospheric ozone (O3).

O3 – a secondary pollutant – is generated by the photoreaction of
NOx (oxides of nitrogen) andVOCs,which are both produced by
wildfires.

Studies by Jaffe and Widger (2012) and McClure and Jaffe
(2018) have shown wildfire to contribute to an increase in the
level above the ozone air quality standard. Unhealthy levels of
ozone were shown to be 3.3 times more likely to occur on

‘smoke plume days’ in a study of a 2006–13 wildfire by Larsen
et al. (2018), with the most heavily impacted areas being urban
owing to the increased presence of non-methane organic com-

pounds (NMOCs), which need to be present to produce O3.
Having said that, measuring O3 production from wildfires is
quite complicated as it is a secondary pollutant and as such,

whereas particulate matter concentration tends to decrease away
from the site of the fire, O3 mixing ratios have the potential to
increase (Jaffe andWidger 2012). Studies showing increased O3

concentrations due towildfires include Bossioli et al. (2012) and

Kang et al. (2014).
Likely owing to the difficult measurement of O3 due to

wildfires, information on its impact on health is much sparser

relative to PM (Reid et al. 2016). Reisen et al. (2015) state that
although O3 concentrations close to fires are unlikely to be high
enough to cause concern, higher O3 concentrations can occur

‘where concentrations are already high owing to anthropogenic
activities’, for example in urban areas.

If concentrations are sufficiently elevated, ozone can have
serious health implications, particularly for vulnerable popula-
tions and it is also a greenhouse gas. O3 has been shown to

irritate lungs and aggravate bronchitis and asthma, as well as
leading to short-term mortality (occurring within less than 90
days) (Youssouf et al. 2014; Reisen et al. 2015).

In addition, VOCs themselves (which react with nitrogen
oxide to form ozone) have been found to be associated with
symptoms like skin and eye irritation, drowsiness, coughing and

wheezing (Youssouf et al. 2014).

Population segmentation

The population segments most affected by wildfire smoke are
the elderly, smokers and those with pre-existing conditions

(Youssouf et al. 2014). Also, increases in exposure and health
risks are greater for women than men, and greater for African
Americans, and in counties with [relatively] lower levels of

education (Liu et al. 2017). These studies raise significant
questions about inequalities leading to vulnerabilities of popu-
lations particularly with regard to ability or knowledge to

implement preventative measures.
Another health concern associated with wildfires is birth

outcomes. One study found the 2003 southern Californian

wildfires to be associated with a reduced average birthweight
(Holstius et al. 2012). These findings were confirmed by
Cândido da Silva et al. (2014) and Flannigan et al. (2013).

Economic cost of health impacts

Health impacts from wildfires carry costs from lives lost,

medical treatment, working time lost and disutility – for
example from pain. Our literature search brought up only a small
number of directly relevant papers estimating this economic

cost. For much of the literature, emphasis is placed on western
USA wildfires (e.g. Douglass 2008; Kochi et al. 2012;
Richardson et al. 2012; Jones et al. 2016; Jones and Berrens
2017).Many of the studies use the cost–benefit transfer software

tool BenMAP-CE in some form or another (Douglass 2008;
Jones et al. 2016; Jones andBerrens 2017; Fann et al. 2018b). To
measure mortality (lives lost) cost from wildfires, studies used

the Value of Statistical Life (VSL). To capture morbidity cost
(disease), either Cost of Illness (COI) or Willingness to Pay
(WTP) or both were applied. The concepts of VSL, WTP and

COI in the context of wildfires are discussed in the next section.

Measuring the cost of premature mortality – the value of a
statistical life (VSL)

Costs from mortality are far greater than from any other health
endpoint owing to the large cost associated with one death
measured by the VSL, which is a measure of per-unit cost of
premature mortality. The VSL refers to society’s aggregated

WTP to save one anonymous person’s life and is derived from an
individual’s WTP for a specific mortality risk reduction. For
example, individuals may be asked howmuch they are willing to

pay to reduce their risk of dying of 1 in 10 000 (or 0.0001) from a
specific pollutant. This implies that for every 10 000 individuals,
we would expect one individual to die if no reduction in the

pollution occurs. If the average WTP for this 1/10000 mortality
risk reduction is US$100 (all dollar values are in 2019 dollars
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unless stated otherwise to allow a better comparison), then the
value of VSL can be calculated as individual’s average WTP for
the risk reduction of x over x (US$100/0.0001 ¼ US$1 million)

(EPA 2018b). Kochi et al. (2010) states that VSL estimates in the
literature are betweenUS$2.3 and 16.4million (2019 dollars); the
EPA (2019a) provides a central estimate of US$9.38 million

(2019 dollars), which is also used in BenMAP-CE and derived
from 26 VSL studies. The discussion about appropriate VSL is
ongoing. For example, Rittmaster et al. (2006) lowered the VSL

estimate in a study onwildfire smoke in order to reflect the group
to be most likely affected by air quality changes, namely the
elderly. Elderly people have fewer remaining years of life than
other age groups; they may therefore be willing to pay less to

reduce themortality risk. One could argue, however, theymay be
willing to pay more because the remaining years of life are a
scarce good to them (Kochi et al. 2012).

All studies that estimate the cost from mortality rely on VSL
and on values provided by the EPA (or the Canadian equivalent)
for different regulatory analyses. Generally, costs from even a

small increase in premature mortality are far greater than any
other cost associated with wildfire health impacts, with the next
largest impact being from working days lost (Rittmaster et al.

2006; Kochi et al. 2010; Jones and Berrens 2017). However, the
wide range of VSL estimates also makes it harder to contextua-
lise the magnitudes of mortality cost across studies.

Rittmaster et al. (2006) found a 1-day increase in PMduring a

2001 fire in Chisholm, Alberta, Canada, had aggregated health
impacts of CAN$18.5 million, most of which was from prema-
ture mortality. Similarly, Kochi et al. (2012) estimated the value

of an additional 133 deaths due to cardiorespiratory illness from
smoke exposure during 2003 southern Californian wildfires to
be between US$207.28 million and US$2.08 billion. In a rare

US east coast study, Rappold et al. (2014) examined a wildfire
smoke episode in rural North Carolina. The purpose of this study
was to look at the impact of potential interventions (like
adequate forecasting), and they found the economic benefits

of effective interventions to be US$58 million in total, again
mainly owing to avoided premature mortality. Jones and
Berrens (2017) investigated wildfires in the entire western

US from 2005 to 2015 and found that although emergency room
visits were dominating in terms of numbers, mortality accumu-
lated the greatest health cost at US$1.9 billion (averaging $177

million year�1). In another similar longer-term study, Fann et al.
(2018b) looked at the impact of wildfire episodes in the
USA from 2008 to 2012. They found a significant increase

in hospital admissions and premature deaths valued at between
US$13 and 24 billion per year for short-term exposure (within
5 years) and US$90 and 154 billion per year for long-term
exposure (over 5 years).

Measuring the cost frommorbidity – derivingWillingness to
Pay and Cost of Illness

Various approaches have been used to estimate the cost of
morbidity impacts, which is challenging as the severity and
duration of adverse health outcomes vary significantly (Kochi

et al. 2010). Table 1 provides a summary of the COI and WTP
estimates and their sources in the reviewed studies.

The COI approach only looks at direct costs frommorbidity:
it sums the resource and opportunity costs from being sick – the

treatment cost and lost wages – without considering the
disutility associated with pain, discomfort and lower quality
of life (also known as reduced QALY). The cost of the

preventative action taken to avoid becoming sick is also not
taken into account (e.g. the cost of buying an air cleaner).
Generally, this approach is used to value the cost of specific

health outcomes involving medical care or some form of direct
expense.

Therefore, most COI estimates are derived from actual

treatment data for specific endpoints from hospital and emer-
gency departments, as shown in Table 2. Those figures range
from less than US$100 to close to US$70 000 depending on the
endpoint. Some studies include opportunity cost (wages lost)

as part of COI. Work days lost are a major factor in morbidity
costs, accounting for 36–74% of health costs (Kochi et al.
2010). In addition, there are COI that represent the average cost

of illness per exposed person per day that are non-endpoint
specific, e.g. US$11.43 in Richardson et al. (2012), US$3.60 in
Richardson et al. (2013). The latter study also includes a COI

estimate that considers lost leisure time, arriving at a COI of US
$20.10. Most of the BenMAP-CE studies apply the software’s
in-built COI values (Rittmaster et al. 2006; Rappold et al.

2014; Jones et al. 2016; Parthum et al. 2017). The COI
estimates that are per exposed person (often obtained by survey
data) would include individuals who suffered from serious
cardiovascular conditions (caused by smoke) and those who

purchased a face mask for protection. The latter would not
show up in the hospital or Emergency Department (ED) data,
which makes it difficult to compare these COI estimates with

endpoint-specific COI.
In contrast to COI, the WTP of an individual to avoid any

negative impact from the fire includes all potential cost. This

includes disutility from symptoms and cost of preventative
action in addition to, as measured by COI, medical expenditures
and lost wages (Richardson et al. 2012). WTP can be derived
through revealed preferences (RP) or stated preferences (SP)

methods. The former uses market transactions to estimateWTP,
the latter usually surveys in which participants express their
subjective WTP to prevent adverse endpoints.

The Defensive Behaviour Method (DBM) also known as the
averting behaviour method (Grossman 1972) is an RP method,
where the individual’s averting and mitigating behaviours (e.g.

using a home air cleaner, staying indoors) to reduce symptoms
days are taken into account. In the DBM, a utility maximisation
model is used to determine where the marginal benefits of

reduced time spent sick equals the marginal cost of reduced
sick time. The underlying idea is that the individual will not
spend more on defensive action than the benefit they receive
from it. The marginal cost of reduced sick time is determined by

dividing the average cost of the defensive action (e.g. cost of an
air cleaner) by the incremental effect of the defensive action
(e.g. the effect of an air cleaner to reduce symptoms by 1 day),

which is derived statistically.
Richardson et al. (2013) used DBM and the contingent

valuation method (CVM) to determine the WTP of reducing

symptom days by 1 day for the 2009 California Station fire. For
CVM, an SP method, individuals affected by wildfire smoke
are explicitly asked about their WTP to reduce the symptom
days their household experienced by x%. Jones et al. (2016)
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Table 1. Mortality and morbidity cost estimates of smoke-induced (health) impacts in studies since 2006

COI, Cost of Illness; WTP, Willingness to Pay; HA, hospital admission; ED, emergency department; VSL Value of Statistical Life;

Author(s) Mortality cost

estimate

Derivation of mortality cost esti-

mate (in 2019 US dollar values)

Morbidity cost estimates Derivation of morbidity cost estimates

Rittmaster et al.

(2006)

VSL estimate: From Environment Canada and

Health Canada Air Quality

Valuation Model (AQVM)

Respiratory HA (COI) From Environment Canada and Health

Canada AQVM

Low: CAN

$3.7 million

AQVM is a dataset that contains

data similar to BenMAP-CE. This

includes economic estimates for

different health end points taken

from relevant studies (1979–94) in

the literature

Cardiac HA (COI)

Central: CAN

$6.3 million

ED visit (COI)

High: CAN

$12.7 million

Restricted day activity (WTP, COI)

Asthma symptoms (WTP)

Acute respiratory symptoms (WTP)

The study did not provide COI/WTP

estimates in the manuscript

Kochi et al.

(2012)

VSL estimate: US Environmental Protection

Agency (EPA) estimates (2005)

from the Regulatory Impact Anal-

ysis for the Final Clean Air Inter-

state Rule

US$1.56 mil-

lion–US

$15.6 million

Richardson et al.

(2012)

WTP for a decrease in 1 symptom day

from wildfire smoke using an air

cleaner: US$100.6

WTP derived using survey information

applying the Defensive Behaviour

Method

Private COI for 1 symptom day: US

$11.43

Private COI derived using Alberini and

Krupnick (2000) based on medical

expenses and wages lost

WTP : COI¼ 9

Richardson et al.

(2013)

To achieve a reduction in 1 symptom

day

All data were obtained through a survey

and analysed with statistical data

analysis.

– WTP using Defensive Behaviour

Method: US$103.52 (US$1.94–5.25,

90% CI)

Defensive BehaviourModel is taken from

Richardson et al. (2012), differences in

WTP are due to rounding

– Mean WTP using Contingent Valua-

tion Method: US$141.24

– COI: US$3.6 (US$27.15–727.42,

90% CI)

– COI (including missed leisure time):

US$20.10 (US$16.81–23.38, CI 90%)

Moeltner et al.

(2013)

Average treatment cost in hospitals and

ambulatory surgical centres (COI)

Treatment cost summary statistics based

on actual cost data from hospitals

– Respiratory illness: US$42 000

– Cardiovascular illness: US$47 000

Treatment cost per 100 acres burned

depending on distance from fire or

type of fire:

Treatment cost per 100 acres burned

derived from regression analysis

US$145–560

Rappold et al.

(2014)

VSL value for

mortality: US

$11.4 million

(US$0–226

million, 95%

CI)

Internally adjusted BenMAP-CE

value

Empirical data on EDþHA average

cost (COI):

ED þHA visit costs were obtained from

2008 Nationwide Emergency Depart-

ment Sample (NEDS) and from Health-

care Cost and Utilisation Project

(HCUP) and multiplied by number of

additional incidences

– Asthma: US$9800

– Congestive heart failure: US$3200

BenMAP-CE economic values for

respiratory and cardiovascular end-

points, work loss

Jones et al.

(2016)

WTP for a decrease in 1 symptom day

from wildfire smoke using an air

cleaner: $141.24

Defensive Behaviour Method based on

Richardson et al. (2012) to derive WTP

(Continued)

Review of the economic cost of wildfires Int. J. Wildland Fire 965



also applied DBM based on the approach by Richardson et al.

(2012).
Another way to derive WTP is the life satisfaction approach

or subjective wellbeing approach (SWB), which is increasingly
applied in various contexts (National Research Council 2014).
Jones (2017, 2018) took this approach.

This approach involves taking reported subjective estimates of
life satisfaction and explaining them with socioeconomic vari-
ables including income level and the variable of interest, here

environmental conditions (smoke), geographic location and
health status. This approach requires fewer assumptions regard-
ing the rationality of individuals (Levinson 2012) compared with
DBM and CVM, and instead considers surveys of SWB as

empirical approximations for individual utility (Jones 2018). To
isolate the effect of wildfire smoke on SWB, it is necessary to
identify locations where smoke plumes coincide with the survey

date (or occurred shortly before the survey date). To calculate
WTP to avoid a smoke-induced health effect, the marginal rate of
substitution (MRS) between income and health status induced by

a 1-day increase in smoke exposure is determined. This equals the
amount of income compensation required to exactly offset a
utility decrement from experiencing 1 additional day of wildfire
smoke-induced health effects (Jones 2018).

Jones (2017) and Jones (2018) both use the US Behavioural
Risk Factor Surveillance System data (2006–10); however, the
latter study tries to isolate the negative impacts on SWB from

wildfire smoke due to health-related impacts only (WTP of
$153). Jones’ (2017) WTP estimate of $447 includes all nega-
tive impacts on SWB from wildfire smoke (health-related, lost

amenity values, changes in ecosystem services, visibility). The
differences in results suggest that health costs are a significant
portion but only a part of the total cost individuals experience

from wildfire smoke exposure.
Few studies so far have estimated the more comprehensive

WTP for wildfire morbidity shown in Fig. 1: using DBM,
Richardson et al. (2012, 2013) estimated US$100.6 and Jones

et al. (2016) and Jones and Berrens (2017) estimated US$141.24
to reduce symptoms by 1 day.

Richardson et al. (2013) provide the only CVM WTP

estimate, with US$113.24 and Jones (2017, 2018) determined
WTP with the life satisfaction approach as US$442 and 153
respectively. None of these estimates are endpoint-specific. This

is challenging given that, for instance, the disutility from cardiac
arrest is likely different from an asthma attack. However, it is
noteworthy that all of the measures are relatively close (apart
from Jones 2017, as explained above), which can help to

Table 1. (Continued)

Author(s) Mortality cost

estimate

Derivation of mortality cost esti-

mate (in 2019 US dollar values)

Morbidity cost estimates Derivation of morbidity cost estimates

BenMAP-CE economic values (COI)

for ED asthma and HA respiratory

(including asthma and pneumonia),

minor restricted activity days

(MRAD)

Kochi et al.

(2016)

Average medical cost per HA (COI):

US$35 000–83 000

Averaging total hospital and ED cost of

each patient by county, disease category

and age group

Averagemedical cost per ED (COI): US

$527–722 (COI)

Jones (2017) WTP $442 to avoid 1 day of wildfire

smoke

Life satisfaction approach to derive WTP

to avoid direct and indirect impacts from

wildfires (beyond health) based on

changes in subjective wellbeing due to

exposure to wildfire smoke

Jones and

Berrens (2017)

VSL value of

US$7.48

million

Internally adjusted BenMAP-CE

value

WTP $141.24 for all morbidity impacts WTP is taken from Jones et al. (2016)

Parthum et al.

(2017)

BenMAP-CE COI values for HA respi-

ratory and cardiovascular, by age

group

COI estimates are internal to BenMAP-

CE

Local median daily income to deter-

mine opportunity cost (i.e. wages lost)

Income from Bureau of Labour statistics

Fann et al.

(2018a)

VSL value of

US$10.1

million

Internally adjusted BenMAP-CE

value (2010 estimate and 2016

income year)

HA respiratory (COI): $43 000 EPA estimate for Regulatory Impact

Analysis (EPA 2012)

Jones (2018) WTP for smoke-induced health

impacts: $153

Extension of Jones (2017) using the life

satisfaction approach. Differentiation

between smoke-induced health impacts

and other impacts (lost visibility,

amenity)
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contextualise costs across fire and build an evidence base for

benefit transfer. In a benefit transfer, estimated values from one
or more studies are applied to an unstudied location.

Even thoughWTP clearly covers a much greater range of the

costs, a COI approach is usually much simpler to implement
because far fewer variables need to be determined and the data

aremore readily available. It is therefore not surprising thatmost

studies looked at COI and very few studies applied WTP for a
reduction in health damages; however, WTP values can be up to
30 times greater than the most frequently used COI estimates

and five times larger than comprehensive COI estimates
(Richardson et al. 2013).

Table 2. Studies since 2006 estimating the economic cost of wildfires: fire assessed, endpoints, use of Ben-Map and aggregate cost estimates (where

applicable)

All $ values are 2019 dollars; however, the studies may have used different income adjustments, which likely creates the differences in VSL estimates. COI,

Cost of Illness; WTP, Willingness to Pay. HA, hospital admissions; ER, emergency room; ED, emergency department

Author(s) Event description Endpoint BenMAP-CE Total estimated economic cost

Rittmaster et al. (2006) Chisholm, Alberta, Canada

2001

Mortality, respiratory and cardiac

HAs, ER visits, restricted activ-

ity days, asthma symptom days

No CAN$18.5 million from an aggregate 1 day

increase in PM2.5

Kochi et al. (2012) Southern California wildfire,

2003

Mortality due to cardiovascular

and respiratory illness

No Additional 133 deaths due to cardiorespira-

tory illness costing an estimated US$207.28

million to 2.07 billion

Richardson et al. (2012) Station Fire, California, 2009 WTP and COI for indirect smoke

health impacts

No WTP for decrease in 1 symptom day from

wildfire smoke using an air cleaner: US

$101.57

Private COI based on 1 symptom day: $11.43

Study did not estimate total cost

Moeltner et al. (2013) 24 large-scale wildfires in

Reno/Sparks area Las Vegas,

USA, March 2005 to

December 2008

Cardiovascular and respiratory

morbidity

No US$1.3–4.1 million for wildfires in northern

Nevada in 2008

Rappold et al. (2014) Evans Road Fire, rural North

Carolina, 2008

Benefits of intervention through

adequate smoke forecasting

Yes Economic benefits of effective interventions:

Using BenMAP-CE:

US$58million (87% of total due to premature

mortality)

Using HAþED treatment data:

$473 000 for asthma

$781 000 for congestive heart failure

Jones et al. (2016) Wallow, south-western US

wildfire, Albuquerque, 2011

WTP for indirect smoke health

impacts

Yes US$447 000 (non-wildfire-specific DR

functions) and US$540 000 (wildfire-spe-

cific DR functions) for ED (asthma), HA

admission (all respiratory) and minor

restricted activity days

Kochi et al. (2016) Southern California wildfire,

2007

Respiratory and acute cardiovas-

cular HA, respiratory and car-

diovascular ED visits

No US$4.23 million total medical costs (COI)

Jones (2017) Impact of smoke fromwildfire

on life satisfaction using

survey data from 2006–10,

USA

WTP for total individual damages

(health and non-health)

No Derivation of WTPmeasure to avoid 1 day of

wildfire smoke: $447

Jones and Berrens (2017) Western USA wildfires,

2005–15

Mortality, ER all respiratory, HA

all respiratory

Yes $1.9 billion total health cost or $177 million

per year (2005–15) of which 99% is mor-

tality cost

Parthum et al. (2017) Benefits of avoiding one

wildfire event in a national

refuge, Virginia, 2008

Benefits of reducing the occur-

rence of wildfires (using ED visit

data) and COI

Yes One avoided wildfire catastrophe is worth

$3.69 million or $306 per hectare burned

Fann et al. (2018a) Wildfire episodes in the USA

2008–12

Premature mortality, HA Yes Between $13 and $24 billion per year (2008–

12) for short-term exposure

Between $90 and $154 billion per year (2008–

12) from long-term exposure

Jones (2018) Individual WTP to avoid

wildfire smoke exposure in

the USA (survey data from

2006 to 2010)

WTP for smoke health impacts

(life satisfaction approach)

No WTP – $154
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Away to relateWTP andCOI estimates areWTP :COI ratios
as recommended and derived by Richardson et al. (2013), in
other words, multiplying study-specific COI by the ratio to get
an estimated WTP. This makes benefit transfer feasible without

having to engage in implementing the previously discussed
CVM, DBM or life satisfaction approach. However, the chosen
WTP : COI ratio needs to be relevant for the particular location

or wildfire episode.
Differences in results not only arise from the choice of

costing approach but also from the presentation of results:

estimates can be in totals or per person, with the former being
affected by location (low- v. high-population areas), and
whether the study analysed a single wildfire v. multiple fires,

or events over multiple years. Table 2 provides an overview of
the analysed fires, the considered endpoints, whether BenMAP-

CE was used and aggregate results for the studies where
applicable.

BenMAP-CE

BenMAP-CE is open-source Windows-based software created
by the EPA. First developed in 2003 to analyse national-scale air

quality policies, the proprietary version was replaced by an
open-source tool in December 2013 named BenMAP-

Community Edition. It allows the user to estimate economic

benefits and cost to health due to air quality changes. Its main
use has been in the assessment of urban air policy benefits.
Studies include both local and regional analyses in the United

States but also work elsewhere, mainly in China. The former
include work by Fann et al. (2011) on air quality policy, health
benefits and inequality; by Nowak et al. (2013) on the effect of
tree removal on PM2.5 and associated health effects; and

Kheirbek et al. (2013) on PM2.5 and ozone impacts in NewYork
City, among many others.

Douglass (2008), in a study from the grey literature, was the

first to employ BenMAP-CE to determine health costs of wild-
fires inWashington, Idaho and Oregon. Five of the 12 studies on
the economic health cost fromwildfires have used BenMAP-CE

since 2008, a sign of its increasing importance for this type of
analysis. Jones et al. (2016) link this to its potential to estimate
economic impacts of various changes in air quality, whether
positive or negative, which until this point ‘was not easy to do in

a systematic and controlled way’.
In the case ofwildfires, costs are looked at instead of benefits.

As a first step, the user imports air quality data for a specific

location and population. Then, to estimate the health impacts of
the air quality changes, dose–response (DR) functions are used
to estimate the incidence rate. In this context, a DR function

describes the magnitude of the health impact as a result of a
certain increase in the pollutant relative to a baseline incidence.
The estimated change in incidences is thenmultiplied by a given

dollar amount using a COI or WTP value. The output can be
represented numerically, but BenMAP-CE can also be used as a
geographic information system (GIS) to map the calculated
data. The following sections discuss the key aspects of using

BenMAP-CE for smoke impacts as a guide to readers who are
interested in applying the software for this context.

Air pollution exposure estimates

Most USA studies use freely available air quality data from a
variety of EPA monitoring sites, which are located across the
country but tend to be concentrated in urban areas. Jones and

Berrens (2017), Jones et al. (2016) and Moeltner et al. (2013)
used the readily available AQS (Air Quality Systems) and
IMPROVE (Interagency Monitoring of Protected Visual

Environments) monitored data (www.epa.gov/outdoor-air-
quality-data/interactive-map-air-quality-monitors, accessed 19
August 2020).

AQS is the catch-all term for the ambient air pollution data

collected by the EPA, state and local agencies from thousands of
monitors (EPA 2019b). In contrast to this, IMPROVE stations
only collect air quality data in some of the USA’s protected

areas. Therefore, the location of the study will determine the
data source used. For example, when looking at urban areas,
AQS will be of more use. All studies cited the ease of

153

442

113.24

141.24

100.6

0 100 200 300 400 500

Richardson et al. (2012 and 2013) (DBM)

Jones et al. (2016) and Jones and Berrens
(2017) (DBM)

Richardson et al. (2013) (CVM)

Jones (2017) (SWB – includes all utility
impacts from smoke)

Jones (2018) (SWB – only health impacts
from smoke)

WTP (2019 dollars)

Fig. 1. Willingness to Pay (WTP) estimates per exposed person per day for different studies. SWB,

subjective wellbeing approach; CVM, contingent valuation method; DBM, Defensive Behaviour Method.
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accessibility of the data available on the EPA’s website. Jones
and Berrens (2017) in a large-scale study of the western US
looked at 146 AQS sites and 101 IMPROVE sites. Jones et al.

(2016) used data from seven monitoring stations located in
Albuquerque’s metropolitan area from EPA AQS.

Some studies have used modelled data as opposed to moni-

toring data including Fann et al. (2018b) and Rappold et al.

(2014) who used the Community Multiscale Air Quality model
(a suite of programs from the EPA for conducting air quality

monitoring simulations) and NOAA’s Smoke Forecasting Sys-
tem (SFS) respectively to estimate emissions with and without
wildland fires, for prescribed fires as well as agricultural fires.

Smoke event periods and smoke event counterfactual

In a second step, the smoke event period and an accurate location
need to be determined to ensure that the extent of the estimated

health impacts is correct. Studies must be careful not to over-
estimate the geographic extent in BenMAP-CE, thereby
including too many people and vice versa. This component can
be made as complex or a simple as required by the study.

Wind direction can be taken into account (Moeltner et al.
2013), or the use of smoke dispersion models, but it is also
possible to use a simpler approach such as a maximum distance,

e.g. an 80-km radius from the monitoring station (Jones et al.
2016). One must also consider the influence of several wildfires
occurring in one region at the same time, which may lead to an

overestimation of the impact of one specific fire.
Studies vary significantly in their approach: Jones andBerrens

(2017) used the NOAA/NESDIS hazard mapping system in

combination with the location of monitoring sites to look for
intersection, i.e. where the visual smoke from satellite pictures
correlated with elevated levels of the pollutant from monitoring
stations. Specifically, they defined a smoke event day as daily

average PM2.5 levels of more than the 99th percentile of daily
average readings per monitor site over the previous 5 years. The
same protocol was followed by Jones et al. (2016). Both studies

describe this methodology as a conservative estimate as they are
potentially missing many subtle smoke impacts. Rappold et al.

(2014) examined the 2008 Evans Road fire in eastern North

Carolina where cumulative exposure to PM2.5 over the study
period exceeded 50 mg m�3. Smoke exposure estimates were
gained using the NOAA’s SFS, which uses the BlueSky smoke
modelling framework to forecast the smoke event periods and the

smoke event counterfactual. So far, there is no consistent method
used across studies, with many studies weighing up the trade-off
between better representation of the smoke event period and the

complexity and difficulty of the method.

Dose–response functions

The choice of the DR function plays an important role as it

creates the explicit link between the smoke and health outcomes
incidences. BenMAP-CE’s library contains ,40 DR functions,
which are specific to urban air quality only; however, the soft-

ware does have the capability to import other functions.
Results vary significantly between wildfire- and non-wild-

fire- (i.e. urban air quality) specific DR functions. Differences

stem from chemical differences in smoke, the public’s percep-
tions of health risks and associated averting behaviour (Liu et al.

2017). Also, urban air quality DR functions generally describe
relationships for lower (PM) pollutant concentrations but long
duration of exposure as opposed to wildfire-specific DR with

high PM pollutant concentrations for a short period of exposure.
Wegesser et al. (2009) showed that wildfire ‘PM was much

more toxic to the lung on equal weight basis than PM collected

from ambient air’. Related to this, Jones et al. (2016) found
wildfire-specific DR functions produced considerably higher
morbidity costs than those that used in urban air studies: they

compared different DR functions and found COI for their
analysis to be US$74 000 using urban DR functions and
US$111 000 using wildfire DR functions, nearly 70% more.
Emergency room asthma costs were a staggering 2535% higher

and hospital admission for all respiratory costs were also 44%
higher than using respective urban air quality DR functions.

BenMAP-CE studies using urban DR functions internal to

BenMAP-CE were Douglass (2008), Rappold et al. (2014) and
Jones et al. (2016). Studies that used wildfire-specific functions
were Jones and Berrens (2017) and for some functions Jones

et al. (2016). Jones andBerrens (2017) used sixwildfire-specific
DR functions from the health literature covering emergency
room (ER) asthma visits and respiratory visits (based on Reid

et al. 2016), hospital admissions for pneumonia, hospital admis-
sions for all respiratory illnesses, hospital admissions for asthma
fromDelfino et al. (2009) andmortality functions from Johnston
et al. (2012). The wildfire-specific DR functions used in Jones

et al. (2016) were also from Delfino et al. (2009) and Resnick
et al. (2015), which are specific to the westernUS. In a variation,
Rappold et al. (2014) used a state-wide tracking tool to record

daily ED visits and therefore incidence rates in North Carolina.
As Jones et al. (2016) state, the choice of DR function, ‘is an

unsettled methodological issue [y] which is likely to be con-

fronted by researchers estimating the costs of a wildfire event’.
The lack of internal wildfire-specific DR functions in BenMAP-

CE is a shortcoming of the software. It requires analysists who
choose to use wildfire-specific functions to engage with the

relevant and specialised health literature to identify the appropri-
ate information and enter it into BenMAP-CE. To help this
process, Reid et al. (2016) analysed 103 wildfire-specific DR

functions for their suitability and bias in a review of recent
literature. Their review represents a good resource for future
researchers looking for wildfire-specific DR functions.

Economic values

In a next step, BenMAP-CE uses the Aggregate, Pool and Value
(APV) configuration to specify the geographic level at which the
results are calculated, how the incidence results are combined or

pooled and which economic value to assign.
This involves BenMAP-CE applying VSL, WTP or COI

values for estimated incidence levels for various endpoints
based on the chosen DR functions. For VSL, even though

BenMAP-CE offers the central VSL value of US$7.4 million
(2006 dollars), this can be adjusted to account for inflation and
changes in income (we expect VSL to increase with income).

This leads to somewhat different VSL values even for studies
that all use BenMAP-CE, as shown in Table 2.

For morbidity, although BenMAP-CE includes various esti-

mates, certain endpoints only have inbuilt COI (based on actual
treatment costs and wages lost) applicable to them. As with the
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health impact functions, however, it is possible to import the
WTP or COI values. Studies in this area are therefore split
between those that use internal and external values in BenMAP-

CE. For example, to value premature deaths, Fann et al. (2018b)
used the VSL estimate internal to BenMAP-CE from the EPA as
well as for hospital admissions from respiratory symptoms,

whereas Jones and Berrens (2017) used their own derived
WTP value of US$141.24 to value morbidity impacts while
the VSL from the EPA was used to value mortality. By using

WTP or COI values external to BenMAP-CE, a more reliable
final estimate can be made as these functions can be taken from
literature that is more specific to the study’s context.

Discussion

The literature on adverse health effects fromwildfires during the
past 10 years has been shaped by changes in wildfire occur-

rences but also by the availability of new tools for analysis. This
is particularly true for the western United States: the increasing
incidence of wildfires in this part of the world, related among

other things to climate change and a growing urban–wildland
interface, has heightened interest in this type of research, which
is reflected by the growing number of increasingly sophisticated

publications in the field. The availability of BenMAP-CE has
made the analysis more accessible for researchers from different
disciplines. The software is easy to access and non-technical,
with manuals and example applications available online.

Nevertheless, the diversity in estimates at all levels, the
consideration of single or multiple wildfires with differing
geographic extents and varying population density make direct

comparison of studies difficult.
Although mortality usually only accounts for a small per-

centage of total number of incidences in studies, the high VSL

makes this impact account for most of the costs in studies that
assess mortality impacts. In our review, we found that all studies
applied the concept of VSL to determine the cost of premature
mortality and all of the studies used EPA (or the equivalent

organisation outside the United States) estimates from different
regulatory contexts. Despite this, the range of values is consid-
erable, which makes comparison tricky. We suggest that all

studies apply the current central EPA estimate of the VSL of
US$9.38 (2019 dollars) and report lower and upper values that
are study-appropriate (e.g. considering different age groups).

This would at aminimum allow a comparison of the central VSL
estimates for each study.

We found that the next largest health-related costs stem from

working days lost and then respiratory morbidity endpoints
relying on COI estimates. COI for morbidity are also highly
diverse, in particular when comparing actual treatment cost and
average cost per exposed person. Indeed, even treatment cost for

similar endpoints may vary from hospital to hospital and
certainly from country to country. The meta-analysis type
approach taken in BenMAP-CE where a distribution based on

several studies is derived may be well suited to accommodate
geographic cost differences and increase comparability between
studies.

Although there are so far only four studies that estimated
(non-endpoint specific) WTP for avoiding health impacts from
wildfire smoke, their results are encouraging as they all arrive at
central estimates between US$100 and 150 employing three

different approaches (DBM, CVM and SWB). In general, an
increased use of WTP estimates for better decision-making
would be advantageous and, as such, a more diverse range is

needed across different demographic and socioeconomic groups
as well as for specific endpoints in order to gain a greater
understanding of the impacts of wildfire.

To increase validity of BenMAP-CE results for wildfires, the
software should include wildfire WTP estimates. The literature
so far provides four suitable WTP estimates that could be

permanently included in BenMAP-CE (Richardson et al. 2012;
Richardson et al. 2013; Jones 2018) and more could be added as
the research advances.

In addition, it would be helpful if BenMAP-CE included

more wildfire-specific features that still need to be entered or
adjusted manually by the user. The calculation of economic
health cost from wildfires (as opposed to urban air quality

changes) requires identifying the relevant epidemiological liter-
ature for suitable DR functions and the appropriate economic
literature for WTP or COI estimates. However, even with the

appropriate DR functions, owing to the analysis being focused
on relatively low but long-term pollutant exposure in the context
of urban air quality, the output is calculated as changes over an

entire year, which can bias results.
In addition, there exists no standardised methodology for

estimating smoke event periods and areas and BenMAP-CE in
its current form does not allow an easy estimation of a short-term

smoke event period (from a fewweeks to a fewmonths, the usual
duration of a fire).

By providingmore wildfire-specific parameters inBenMAP-

CE, the research of impact studies will become easier to carry
out, more standardised and comparable in the future. This may
allow us to better understand the overall trends in the economic

costs of the adverse health impacts from wildfire smoke and
make this field of research more accessible.

Assuming a sufficient number of studies on the economic
health cost of wildfire smoke will be published in the next few

years, a meta-analysis of those studies may be feasible (Van
Houtven 2008). The resulting WTP values could be used for
benefit transfer (Johnston et al. 2015), for wider application in

the economic impact analysis of wildfires. Alternatively, more
studies such as that of Richardson et al. (2013) that derive
WTP : COI ratios may be applied for benefit transfers. Indeed,

benefit transfer values may bridge the gap between complex
original studies and the shortcomings of BenMAP-CE studies.

Conclusion

In this literature review, we have provided a systematic over-
view of studies on the economic health-related cost from wild-
fires since 2006. We showed that most studies have a common

approach of estimating health cost by starting with determining
air pollution from fires, estimating increased morbidity and
mortality incidences due to the air pollution and finally attaching

economic values to those additional incidences. However,
comparisons between studies are limited by the many choices
that need to be made in the analysis process and that lead to

results that differ significantly between studies.
Although there is still great potential in deriving more

consistent health cost from wildfires, it is clear, however, that
health-related cost from wildfires are always substantial and
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often proportionally the highest among all types of costs from
wildfires ahead of suppression cost: average yearly federal
suppression cost between 2006 and 2018 amounted to

US$1.78 billion (National Interagency Fire Center 2020). Fann
et al. (2018a) found the yearly health cost of short-term expo-
sure to wildfire smoke across the USA to be between US$13 and

24 billion and between US$90 and 154 billion per year for long-
term exposure between 2008 and 2012. This certainly suggests
that from a cost–benefit point of view, the cost of suppression

spending is justified by the potential (further) damage avoided
from wildfire smoke. However, the better alternative to accept-
ing high suppression cost may be to think about interventions
(masks, air cleaners) that may decrease the health costs from

wildfire.
This is where research can also contribute. As far as we

know, thus far, there are no economic assessments of health

costs of prescribed fires, which would constitute an important
component of the cost–benefit analysis of fire management
regimes. In addition, tools like BenMAP-CE allow us to go

beyond impacts by analysing the benefits (avoided damage), for
example of increasing awareness among the public about the
dangers of wildfire smoke and putting in place interventions to

reduce smoke impacts. Studies like Rappold et al. (2014) and
Parthum et al. (2017) have already begun to make headway here
and we believe that future research should focus, in addition to
improving impact estimates, on the economic benefits and costs

of mitigating the effects of the high indirect costs from smoke as
demonstrated by the studies analysed in the present literature
review.
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