
fire

Article

Hydrological and Meteorological Controls on Large Wildfire
Ignition and Burned Area in Northern California during
2017–2020

Yusuke Hiraga * and M. Levent Kavvas

����������
�������

Citation: Hiraga, Y.; Kavvas, M.L.

Hydrological and Meteorological

Controls on Large Wildfire Ignition

and Burned Area in Northern

California during 2017–2020. Fire

2021, 4, 90. https://doi.org/10.3390/

fire4040090

Academic Editors:

Emmanouil Psomiadis, Konstantinos

X. Soulis and Michalis Diakakis

Received: 27 October 2021

Accepted: 24 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Hydrologic Research Laboratory, Department of Civil and Environmental Engineering, University of California,
Davis, CA 95616, USA; mlkavvas@ucdavis.edu
* Correspondence: yhiraga@ucdavis.edu

Abstract: This study examined the hydrological/meteorological controls on large wildfires > 10,000 acres
(40.5 km2) during 2017–2020 in Northern California at spatial and temporal scales of the target
wildfires’ occurrence or growth. This study used the following simple indices for analysis: Moisture
Deficit Index (MDI) computed by dividing vapor pressure deficit by soil moisture, MDIWIND
computed by multiplying MDI by horizontal wind speed, and MDIGUST computed by multiplying
MDI by wind gust speed. The ignition location MDIWIND and MDIGUST showed larger values on
the ignition date in fire-years compared to non-fire-years for most of the target wildfires (95.8% and
91.7%, respectively). The peak timing of MDIGUST, which is to evaluate the integrated effect of dry
atmosphere/soil and windy condition, coincided with the ignition date for August Complex Fire
2020, Ranch Fire 2018, Claremont-Bear Fire 2020, and Camp Fire 2018. We also found that August
Complex Fire 2020, Claremont-Bear Fire 2020, and Camp Fire 2018 occurred in the areas where
MDIGUST became spatially and temporally high. Further, strong relationships were found between
burned area sizes of the target wildfires and MDI (R = 0.62, p = 0.002), MDIWIND (R = 0.72, p < 0.001),
and MDIGUST (R = 0.68, p < 0.001). Overall, the findings in this study implied the strong effect of
dry atmosphere/soil and windy conditions on recent large wildfire activities in Northern California.
The findings could contribute to a more temporally and spatially detailed forecast of wildfire risks or
a better understanding of wildfires’ occurrence and growth mechanisms.

Keywords: wildfire; climate change; atmospheric moisture; soil moisture; forest; drought; wind
gusts; fire weather; forecast

1. Introduction

California has experienced numerous wildfires and their associated damages in recent
years. During 2017–2020, over 34,000 wildfires burned about 8 million acres (32,375 km2),
accounting for more than 7% of California’s land area [1]. The California Department
of Forestry and Fire Protection (CALFIRE) reported that these recent wildfires including
both California’s largest wildfire in history: August Complex Fire 2020 and its deadliest
wildfire in history: Camp Fire 2018, which caused over 180 fatalities and damaged or
destroyed over 45,000 structures [1]. Recent extreme wildfires have substantial economic,
social, and environmental impacts. Wang et al. [2] estimated total wildfire damages in
2018 to be USD 148.5 billion, with USD 27.7 billion (19%) in capital losses, USD 32.2 billion
(22%) in health costs due to air pollution exposure, and USD 88.6 billion (59%) in indirect
losses related to broader economic disruption. Proctor et al. [3] stated that drinking water
quality exceeded state and federal government-defined exposure limits for volatile organic
compound contaminants in Tubbs Fire 2017 and Camp Fire 2018 in Northern California.

It is well established that recent wildfire activity has been strongly driven by hy-
drological/meteorological conditions [4–16]. The recent increase in California wildfire
activity has been driven by hotter temperature-induced moisture deficit increase [4,5],
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decrease in fire-season precipitation frequency [6], and earlier snowmelt-induced snow-
pack decrease [7,8]. Strong winds and gusts also play a critical role in both initiating and
supporting the fires, such as “Diablo” for Northern California or “Santa-Ana” for Southern
California [9–13]. On the basis of the fact that wildfire activity has been strongly driven by
hydrological/meteorological conditions, future wildfire activity is expected to be worse
with climate change in California, such as significant increases in large wildfire occurrence
and burned area [17,18]. Therefore, it is becoming more important to further understand
the hydrological/meteorological controls on wildfire activity in California. In particular,
investigating the hydrological/meteorological controls on wildfire regimes at finer scales,
such as spatial and time scales of individual wildfire’s ignition or growth, is essential for a
better understanding of wildfires’ occurrence and growth mechanisms. This investigation
is also expected to result in a more temporally and spatially detailed wildfire occurrence
and growth forecast.

There have been several studies characterizing hydrological/meteorological condi-
tions conducive to historical large wildfire activities at spatial and time scales of individual
wildfire’s ignition or growth in California. For instance, Nausler et al. [10] showed that
wildfires in the California North Bay region in October 2017 occurred coincident with
strong downslope winds, with a majority of burned area occurring within the first 12 h
of ignition. Di Giuseppe et al. [19] showed that observed California fires in 2017 were
matched to high values of Canadian Fire Weather Index (FWI) influenced by temperature,
relative humidity, precipitation, and wind speed [20]. Westerling et al. [21] found that the
National Fire Danger Rating System (NFDRS) Burning Index (BI), which mainly is deter-
mined from the moisture content of a forest and wind speed, showed the increase during
the period that Ceder Fire 2003 started and grew due to Santa Ana wind. More recently,
Srock et al. [22] showed the linkage between the developed Hot–Dry–Windy index (HDW),
which evaluates the comprehensive effect of atmospheric moisture, temperature, and wind
speed, as well as the day on which the most rapid fire growth occurred for some historical
large wildfires including Ceder Fire 2003 in Southern California at specified points.

As listed above, the previous studies investigated the hydrological/meteorological
controls on historical large wildfire activities in California, mainly focusing on atmospheric
moisture, temperature, and wind speed [22–24]. What seems to be lacking, however,
is an investigation on hydrological/meteorological controls on more recent California
wildfires, such as in 2020, the most significant wildfire season recorded in California’s
modern history [1], at spatial and time scales of individual wildfire’s ignition or growth.
Thus, this study was designed to evaluate the hydrological/meteorological controls on
more recent large wildfires during 2017–2020 in California at spatial and temporal scales of
the wildfires’ occurrence or growth. Furthermore, this study considered the soil moisture
to examine the hydrological/meteorological controls in addition to atmospheric moisture,
temperature, and wind speed considered in the previous studies. This is because several
recent studies have reported that soil moisture plays very important role in controlling
wildfire activity [25–34]. For instance, Thomas Ambadan et al. [28] stated that soil moisture
is potentially useful in identifying soil moisture anomalies where wildfire hot-spots may
occur. Rigden et al. [31] concluded that using soil moisture, as opposed to vapor pressure
deficit (VPD) alone, has the important implication of greater predictability of wildfire
risk. Here, VPD is the difference between the water vapor pressure at saturation and the
actual water vapor pressure for a given temperature. Moreover, this study addresses not
only examining the hydrological/meteorological characteristics on the day with wildfire
activity at a specified point, which has been mainly done by previous studies [21,22],
but also addresses investigating the spatial distribution of hydrological/meteorological
indices to identify wildfire hot-spots, as well as investigating the relationships between
hydrological/meteorological indices and wildfire area burned at the scale of wildfire
growth to understand the hydrological/meteorological controls on wildfire growth.

This study analyzed 24 large wildfires whose burned areas were larger than 10,000 acres
(40.5 km2) and that were located in North Coast and Sierra Nevada in Northern California.
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Northern California was selected as a study area since recent unprecedented wildfire
activities have predominantly been in Northern California. The structure of this paper is
as follows: Section 2 of this paper reviews the study area, hydrological and meteorolog-
ical data, and analysis methods. Section 3 presents the results of the analysis. Section 4
discusses these results and summarizes the findings.

2. Materials and Methods
2.1. Study Area and Target Wildfire

This study examined the recent large wildfires, located in the regions of North Coast
and Sierra Nevada within the study area over Northern California (Figure 1).
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Figure 1. Study area and target wildfires. The study area is shown in a red frame. North Coast and Sierra Nevada are
shown in light blue and light green, respectively. The Central Valley separates the North Coast and Sierra Nevada regions.

North Coast and Sierra Nevada are defined as shown in Figure 1. Over these two
largely forested regions, lightning accounts for the majority of summer wildfire igni-
tions [35]. Our study targeted 24 large wildfires whose burned areas were larger than
10,000 acres (40.5 km2), occurring during 2017–2020. In this paper, these wildfires are
called “target wildfires”. The wildfires that were not fully extinguished by November 2020
were not targeted. We also excluded the wildfires whose burned areas did not contain the
atmospheric and surface grid point data. Table 1 lists the target wildfires’ burned areas,
ignition date, extinguished date, and ignition location latitude and longitude information,
which came from the CALFIRE Incident Archive dataset [1] and Incident information
system dataset [36].
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Table 1. Target wildfire information.

Target Wildfires Burned Area (Acres) Ignition Date Extinguished Date Ignition Latitude Ignition Longitude

August Complex Fire 1,032,648 16 August 2020 11 November 2020 39.776 −122.673

Ranch Fire 410,203 27 July 2018 4 January 2019 39.243 −123.103

Claremont−Bear Fire 318,935 17 August 2020 30 November 2020 39.691 −121.227

Hennessey Fire 317,909 17 August 2020 2 October 2020 38.482 −122.149

Carr Fire 229,651 23 July 2018 30 August 2018 40.654 −122.624

Camp Fire 153,336 8 November 2018 25 November 2018 39.813 −121.435

County Fire 90,288 30 June 2018 4 January 2019 38.806 −122.182

Kincade Fire 77,758 23 October 2019 6 November 2019 38.792 −122.780

Glass Fire 67,484 27 September 2020 20 October 2020 38.563 −122.497

Delta Fire 63,311 5 September 2018 4 January 2019 40.943 −122.430

Nuns Fire 56,556 8 October 2017 9 February 2018 38.349 −122.503

Zogg Fire 56,338 27 September 2020 13 October 2020 40.539 −122.567

Walker Fire 54,612 4 September 2019 26 September 2019 40.061 −120.681

Atlas Fire 51,624 8 October 2017 9 February 2018 38.392 −122.244

River Fire 48,920 27 July 2018 4 January 2019 39.048 −123.120

Loyalton Fire 47,029 14 August 2020 14 September 2020 39.702 −120.143

Hirz Fire 46,150 9 August 2018 4 January 2019 40.896 −122.219

Tubbs Fire 36,807 8 October 2017 9 February 2018 38.609 −122.629

Redwood Valley Fire 36,523 8 October 2017 9 February 2018 39.249 −123.166

Donnell Fire 36,450 1 August 2018 4 January 2019 38.349 −119.929

Slink Fire 26,759 29 August 2020 9 October 2020 38.568 −119.568

Gold Fire 22,634 20 July 2020 12 August 2020 41.110 −120.923

Helena Fire 18,709 31 August 2017 9 January 2018 40.760 −123.100

Pocket Fire 17,357 9 October 2017 9 February 2018 38.765 −122.909

Figure 1 shows the locations and perimeters of the target wildfires. The perimeters
of the wildfires during 2017 and 2018 were obtained from the Monitoring Trends in Burn
Severity Project (MTBS) dataset [37]. MTBS delineates fire perimeters using pre- and
post-fire satellite imagery along with Normalized Burn Ratio (NBR), differenced NBR, and
relativized differenced NBR images [37]. The wildfire perimeters during 2019 and 2020
came from the California State Geoportal Wildfire perimeters dataset [38]. As shown in
Figure 1 and Table 1, the target wildfires included August Complex Fire 2020 and Ranch
Fire 2018, which are the largest and second-largest wildfires in California’s modern history,
respectively. The target wildfires also included Camp Fire 2018, which is the deadliest
wildfire in California’s modern history.

2.2. Hydrological and Meteorological Data

This study used data for hydrological/meteorological gridded variables, obtained
from the National Centers for Environmental Prediction (NCEP) North American Mesoscale
(NAM) 12 km Analysis [39]. NCEP NAM 12 km Analysis provides the mesoscale atmo-
spheric and surface analysis grids over the continental United States at 12 km spatial
resolution every 6 h for 2012 to the present. NCEP NAM 12 km Analysis was produced by
the Weather Research and Forecasting Non-Hydrostatic Mesoscale Model (WRF-NMM).
This study investigated the hydrological/meteorological controls on the target wildfires
using the following variables: VPD at 2 m above ground, horizontal wind speed at 10 m
above ground, wind gust speed at surface level, and average soil moisture content from
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land surface to 2 m depth below ground. VPD is calculated using the temperature and
relative humidity at 2 m above ground, as shown in Equation (1).

VPD = es − e (1)

where es and e are saturated vapor pressure and actual vapor pressure (hPa), respectively.
es is computed using the following equation [40]:

es = 6.112 × exp
(

17.67Ta

Ta + 243.5

)
(2)

where Ta is the land air temperature at 2 m above ground (◦C).
Namely, VPD describes the aridity of the atmosphere. Wind gust speed represents

the maximum wind speed observed over a fixed period [41]. We selected the aforemen-
tioned state variables since it is well established that hot, dry, windy weather and dry
surface/forest play important roles for wildfire activities [22,42,43]. This study used the
variables at or close to the surface for the analysis since they are considered to affect more
directly the ignitions and growths of wildfires compared to the variables at higher heights.
Average soil moisture content from land surface to 2 m depth below ground was used since
water available to plants is generally considered to be in the upper 2 m of soil [44]. NCEP
NAM 12 km Analysis computes wind gust speed by adding the fraction of the wind speed
difference between the top of the planetary boundary layer (PBL) and the surface, which is
mixed down to the surface to the surface wind speed [45]. In this process, PBL height is
determined on the basis of a critical value of the bulk Richardson number [45].

Besides the variables above, we used the following simple indices that are meant to
evaluate the hydrological/meteorological controls on the wildfires more comprehensively.

• Moisture Deficit Index (MDI), which is computed by dividing VPD by soil
moisture content;

• MDIWIND, which is computed by multiplying MDI by horizontal wind speed;
• MDIGUST, which is computed by multiplying MDI by wind gust speed.

MDI is used to describe the comprehensive aridity of both atmosphere and soil.
MDI can also be considered to address drought stress on vegetation by capturing the
strength in water potential differences between the atmosphere and soil, with vegetation
and prominent pass-through or link between the two. MDIWIND and MDIGUST are to
evaluate the integrated effect of hot, dry, and windy conditions on the ignition and burned
area of the target wildfires.

2.3. Analysis

First, we analyzed the characteristics of the hydrological/meteorological variables at
the ignition location on the ignition date for each target wildfire. As the ignition location
variables for each target wildfire, the aforementioned variables at the grid point that
is closest to the ignition location and is located within the burned area of the wildfire
were identified and used. Then, the ignition location variables on the ignition date in
the year with the target wildfire were compared to the corresponding variables at the
same location on the same date in years without wildfires. In this study, the variables
in years without wildfires are called “non-fire-year variables”. For each target wildfire,
non-fire-year averaged ignition location variables were obtained by time-averaging the
variables at the ignition location and on the same date as the ignition date during years
up to the year before the wildfire occurred. For instance, for a target wildfire in 2019, the
ignition location variables on the ignition date in 2019 were compared to the corresponding
non-fire-year averaged ignition location variables during 2012–2018. The time period used
to compute the non-fire-year averaged variables was from 2012 since the temporal range of
the NAM 12 km Analysis is from 2012 to the present. The non-fire-year averaged values
were calculated on the basis of the values in years up to the year before the occurrence of
the wildfire since the land cover is often significantly different for the pre-fire and post-fire
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conditions. We also conducted Welch’s t-test in order to check if there is a statistically
significant difference in the averaged ignition location variables/indices between relatively
large (>50,000 acres) wildfire group and relatively small (<50,000 acres) wildfire group. R
version 4.0.5 was used for performing Welch’s t-test. In this study, a p-value less than 0.05
was considered statistically significant.

Second, we investigated how the temporal changes in the ignition location indices
corresponded to the ignitions or growths of the selected wildfires. The time series of the
daily ignition location indices, MDI, MDIWIND, and MDIGUST, during the time period
from three weeks before the ignition date to one week after the ignition date were examined
for each selected wildfire. The motivation of this analysis was to find key indices that
can explain the timing of wildfire ignitions or growths, leading to improving the wildfire
danger predictability.

Third, we examined how the spatial distribution of hydrological/meteorological in-
dices is linked to the spatial distribution of extremely large wildfires over the study area.
We investigated the relationship between the spatial distribution of daily averaged MDI-
GUST and the locations of the selected wildfires on the ignition date over the study area.
The motivation of this analysis is that a more detailed identification of the high wildfire
risk locations may be possible by considering the spatial distribution of the hydrologi-
cal/meteorological conditions.

Finally, we analyzed the relationships between the burned areas and the hydrologi-
cal/meteorological variables and indices at a longer time scale and larger spatial scale for
the target wildfires. In this analysis, for each target wildfire, we identified the daily spatial
maximum value of the target variables/indices within the burned area and averaged the
daily spatial maximum values over a 2 week period after the ignition date. For soil moisture
content, we identified the daily spatial minimum value within the burned area and aver-
aged it over a 2 week period after the ignition date. Then, the relationship between these
time-averaged variables/indices and the logarithm of burned areas for target wildfires
was examined. This analysis was based on the assumption that the burned area maxi-
mum/minimum variables/indices over a period of wildfire growth may explain burned
areas (i.e., wildfire sizes) better than the ignition location variables/indices on the ignition
date. Since the shortest fire duration was 2 weeks out of all the durations of the target
wildfires in this study (Kincade fire 2019; Table 1), we performed a 2 week averaging to the
variables/indices as the wildfire growth period. We used the logarithms of burned areas
since it has been reported that burned area shows an exponential distribution [4,43,44].

3. Results
3.1. Characteristics of Hydrological/Meteorological Variables and Indices at the Ignition Location
on the Ignition Date for the Target Wildfires

We first analyzed the characteristics of the hydrological/meteorological variables at
the ignition location on the ignition date for each target wildfire by comparing them with
the corresponding non-fire-year averaged ignition location variables. Table 2 shows the
values of hydrological/meteorological variables at the ignition location on the ignition date
for each target wildfire.
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Table 2. Daily averaged hydrological/meteorological variables at the ignition location on the ignition date for each target
wildfire. Each variable’s ratio represents the ratio of the daily averaged ignition location variables in the fire-year to the
corresponding non-fire-year averaged variables.

Target
Wildfires

Burned
Area

(Acres)

Vapor
Pressure

Deficit [hPa]

Ratio
(%)

Soil
Moisture

(%)

Ratio
(%)

Horizontal
Wind Speed

(m s−1)

Ratio
(%)

Wind Gust
Speed

(m s−1)

Ratio
(%)

August
Complex Fire 1,032,648 28.76 123.45 0.115 67.16 2.35 141.91 3.60 218.90

Ranch Fire 410,203 25.21 112.96 0.137 78.58 2.37 120.32 3.24 161.84

Claremont-
Bear Fire 318,935 27.34 128.25 0.128 89.76 2.75 114.54 3.67 162.41

Hennessey Fire 317,909 31.17 214.30 0.122 99.15 1.62 64.70 1.67 66.23

Carr Fire 229,651 26.22 114.09 0.128 80.25 1.80 77.49 1.55 50.18

Camp Fire 153,336 11.42 252.97 0.121 64.04 5.12 172.54 8.16 152.36

County Fire 90,288 30.45 126.62 0.188 92.02 2.44 127.86 2.76 120.72

Kincade Fire 77,758 27.99 362.90 0.120 84.99 3.76 255.03 6.89 364.10

Glass Fire 67,484 20.36 158.83 0.126 81.09 2.79 163.06 4.44 215.93

Delta Fire 63,311 22.47 130.53 0.082 69.55 2.07 87.37 2.80 86.05

Nuns Fire 56,556 21.79 179.27 0.207 104.24 5.34 265.42 9.62 433.16

Zogg Fire 56,338 18.72 97.58 0.126 87.14 3.61 192.35 7.66 277.40

Walker Fire 54,612 14.25 98.88 0.060 69.18 1.07 52.32 2.98 83.76

Atlas Fire 51,624 21.00 153.37 0.091 99.89 6.56 311.03 11.70 484.32

River Fire 48,920 22.27 103.62 0.130 76.56 2.22 120.12 3.22 145.82

Loyalton Fire 47,029 16.36 97.71 0.139 83.60 3.04 131.65 3.42 121.98

Hirz Fire 46,150 32.66 138.43 0.116 74.06 1.54 90.28 2.04 89.34

Tubbs Fire 36,807 21.61 164.91 0.150 102.03 4.87 261.89 9.57 456.60

Redwood
Valley Fire 36,523 18.69 157.03 0.142 102.73 3.20 165.77 4.70 189.12

Donnell Fire 36,450 15.73 115.93 0.192 89.38 2.55 107.80 2.66 96.35

Slink Fire 26,759 13.88 100.15 0.197 101.51 2.76 97.79 2.49 53.16

Gold Fire 22,634 24.28 147.03 0.160 99.82 2.49 97.92 2.96 79.28

Helena Fire 18,709 29.55 191.36 0.126 107.71 1.72 99.48 1.75 70.85

Pocket Fire 17,357 15.36 127.74 0.138 99.03 1.38 82.84 1.73 83.47

As shown in Table 2, for 21 wildfires (87.5%), the fire-year VPD was greater than
the non-fire-year averaged VPD. Although the fire-year VPD was shown to be smaller
than the non-fire-year averaged VPD for three fires (Zogg Fire 2020, Walker Fire 2019,
and Loyalton Fire 2020), the differences were less than 3%. Table 2 also shows that, for
19 wildfires (79.2%), the fire-year soil moisture was smaller than the non-fire-year averaged
soil moisture. On the other hand, as shown in Table 2, the comparisons of the wind speed
and wind gust speed between the fire-year and non-fire-year did not show very consistent
results. Fire-year values were larger than non-fire-year averaged values for 15 wildfires
(62.5%) in the wind speed and for 14 wildfires (58.3%) in the wind gust speed.

In order to evaluate the hydrological/meteorological controls on the wildfire burned
areas more comprehensively, we also analyzed the characteristics of the proposed indices
(MDI, MDIWIND, and MDIGUST) at the ignition location on the ignition date for each
fire. Table 3 shows the comparison results between the fire-year indices and non-fire-year
averaged indices for the target wildfires.
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Table 3. Daily averaged hydrological/meteorological indices at the ignition location on the ignition date for each target
wildfire. Each index’s ratio represents the ratio of the daily averaged ignition location index in the fire-year to the
corresponding non-fire-year averaged index.

Target
Wildfires

Burned Area
(Acres) MDI (hPa) Ratio (%) MDIWIND

(hPa m s−1) Ratio (%) MDIGUST
(hPa m s−1) Ratio (%)

August
Complex Fire 1,032,648 251.12 181.75 689.41 258.95 1163.61 449.75

Ranch Fire 410,203 184.43 142.60 449.78 161.64 627.40 226.94

Claremont-
Bear Fire 318,935 213.80 141.52 584.40 162.45 883.62 250.60

Hennessey Fire 317,909 254.67 212.94 363.33 108.10 413.25 114.27

Carr Fire 229,651 205.12 143.08 398.40 118.64 342.16 74.75

Camp Fire 153,336 94.19 378.28 468.40 839.02 772.60 1021.12

County Fire 90,288 161.62 133.22 448.32 189.40 505.13 177.86

Kincade Fire 77,758 234.25 402.39 893.63 991.89 1665.33 1667.50

Glass Fire 67,484 161.90 192.95 527.13 322.17 910.47 464.44

Delta Fire 63,311 274.03 186.33 630.44 186.15 901.47 191.67

Nuns Fire 56,556 105.47 173.97 563.86 372.21 986.66 600.56

Zogg Fire 56,338 148.61 104.98 505.38 190.91 1113.06 334.52

Walker Fire 54,612 236.66 130.07 301.53 72.79 898.50 131.15

Atlas Fire 51,624 230.13 154.21 1520.95 419.85 2593.35 645.94

River Fire 48,920 171.85 134.49 431.45 160.31 592.11 217.68

Loyalton Fire 47,029 117.70 113.74 447.49 154.31 529.74 144.75

Hirz Fire 46,150 280.96 185.98 469.02 182.74 585.65 172.26

Tubbs Fire 36,807 143.71 163.51 690.65 350.05 1294.55 597.46

Redwood
Valley Fire 36,523 131.60 153.87 430.17 253.28 622.89 308.12

Donnell Fire 36,450 81.94 128.24 243.79 135.24 256.76 122.56

Slink Fire 26,759 70.62 98.04 201.82 104.37 196.66 53.50

Gold Fire 22,634 151.42 147.51 458.43 151.44 502.67 120.39

Helena Fire 18,709 234.68 174.20 413.19 146.12 483.70 125.54

Pocket Fire 17,357 111.48 130.10 195.27 115.54 231.50 114.92

As shown in Table 3, the fire-year ignition point MDI was larger than the non-fire-year
averaged ignition point MDI for all the target wildfires except for Slink Fire 2020. This
result implies that the ignition location grids for the target wildfires generally had moisture
deficit tendencies on the land and in the atmosphere during the fire-years compared to
non-fire-years. Table 3 also shows that the fire-year values were larger than non-fire-year
averaged values for 23 wildfires (95.8%) in MDIWIND and for 22 wildfires (91.7%) in
MDIGUST, which were developed to comprehensively evaluate the effects of moisture
deficit and wind strength. Moreover, MDIWIND and MDIGUST showed significant
differences between very large fires (>50,000 acres) and relatively small fires (<50,000 acres)
in the target wildfires. Table 4 summarizes the average values and their standard deviations
of the aforementioned ignition location indices for wildfires whose burned areas were
larger than 50,000 acres and smaller than 50,000 acres.
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Table 4. Average values and their standard deviations of the daily averaged ignition location indices.

MDI (hPa) MDIWIND
(hPa m s−1)

MDIGUST
(hPa m s−1)

1. Average value for wildfires > 50,000 acres
(standard deviation)

196.86
(55.83)

596.07
(304.8)

984.04
(573.22)

2. Average value for wildfires < 50,000 acres
(standard deviation)

149.60
(65.52)

398.13
(150.0)

529.62
(312.32)

Ratio of increase from 2 to 1 (%) 31.6 49.7 85.8

p-value in the difference between 1 and 2 p = 0.082 p = 0.048 p = 0.021

As shown in Table 4, the average ignition location MDIWIND and MDIGUST for
wildfires > 50,000 acres showed 49.7% and 85.8% larger values (p < 0.05) than the average
ignition location indices for wildfires < 50,000 acres, respectively. We can see that using the
wind gust speed information lets us see a greater difference in the index values between
very large fires and relatively small fires. It should be noted that the significant differences
between very large fires and relatively small fires were not found in MDI and in the
variables listed in Table 2. Furthermore, any statistically significant correlation between the
ignition location variables/indices listed in Tables 2 and 3 and burned areas was not found.
We further investigate the correlation between these variables/indices and burned areas at
a longer time scale and larger spatial scale in Section 3.4.

3.2. Time Series of Ignition Location Hydrological/Meteorological Indices for the Target Wildfires

As shown in Section 3.1, the ignition location indices (MDI, MDIWIND, and MDI-
GUST) showed marked differences between the fire-year and non-fire-years for the target
wildfires. Therefore, we examined the time series of these indices during the period around
the ignition date in order to discuss their ability to identify when the large wildfire occur-
rence is likely. Figure 2 shows the time series of the daily averaged ignition location indices
for the three largest wildfires in this study: (a) August Complex Fire 2020, (b) Ranch Fire
2018, and (c) Claremont-Bear Fire 2020, as well as (d) the deadliest wildfire in California’s
history, Camp Fire 2018.

Fire 2021, 4, x FOR PEER REVIEW 9 of 17 
 

 

in the variables listed in Table 2. Furthermore, any statistically significant correlation be-
tween the ignition location variables/indices listed in Tables 2 and 3 and burned areas was 
not found. We further investigate the correlation between these variables/indices and 
burned areas at a longer time scale and larger spatial scale in Section 3.4. 

3.2. Time Series of Ignition Location Hydrological/Meteorological Indices for the Target Wildfires 
As shown in Section 3.1, the ignition location indices (MDI, MDIWIND, and 

MDIGUST) showed marked differences between the fire-year and non-fire-years for the 
target wildfires. Therefore, we examined the time series of these indices during the period 
around the ignition date in order to discuss their ability to identify when the large wildfire 
occurrence is likely. Figure 2 shows the time series of the daily averaged ignition location 
indices for the three largest wildfires in this study: (a) August Complex Fire 2020, (b) 
Ranch Fire 2018, and (c) Claremont-Bear Fire 2020, as well as (d) the deadliest wildfire in 
California’s history, Camp Fire 2018. 

 
Figure 2. Time series of the daily averaged ignition location indices for each wildfire. (a) August Complex Fire 2020, (b) 
Ranch Fire 2018, (c) Claremont-Bear Fire 2020, and (d) Camp Fire 2018. The ignition date for each wildfire is shown as a 
thick orange line. 

These disastrous four wildfires are targeted for the analysis in Sections 3.2 and 3.3. In 
Figure 2, the ignition date for each wildfire is shown by the thick orange line. As shown 
in Figure 2, for the above-mentioned four wildfires, MDIGUST showed its greatest value 
on the ignition date during the specified 4 week period (from three weeks before the igni-
tion date to one week after the ignition date). For August Complex Fire 2020 (Figure 2a), 
MDIGUST gradually increased towards the ignition date from about 10 days before the 
ignition date, showing a more rapid increase around the ignition date.  

Figure 2 shows that, for these selected wildfires, MDIWIND also became higher 
around the ignition date. Although MDIWIND essentially showed a trend similar to the 
MDIGUST trend, it peaked on the ignition date for only Camp Fire 2018 during the spec-
ified period, as shown in Figure 2d. For August Complex Fire 2020 and Claremont-Bear 
Fire 2020, MDIWIND peaked two days before the ignition date, showing a decreasing 
trend towards the ignition date. 

Meanwhile, MDI did not show its greatest value on the ignition date for all the four 
target wildfires, although it became relatively large around the ignition date for the three 
largest wildfires in this study (Figure 2a–c). Furthermore, when MDI showed its large 

Figure 2. Time series of the daily averaged ignition location indices for each wildfire. (a) August Complex Fire 2020,
(b) Ranch Fire 2018, (c) Claremont-Bear Fire 2020, and (d) Camp Fire 2018. The ignition date for each wildfire is shown as a
thick orange line.
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These disastrous four wildfires are targeted for the analysis in Sections 3.2 and 3.3.
In Figure 2, the ignition date for each wildfire is shown by the thick orange line. As
shown in Figure 2, for the above-mentioned four wildfires, MDIGUST showed its greatest
value on the ignition date during the specified 4 week period (from three weeks before
the ignition date to one week after the ignition date). For August Complex Fire 2020
(Figure 2a), MDIGUST gradually increased towards the ignition date from about 10 days
before the ignition date, showing a more rapid increase around the ignition date.

Figure 2 shows that, for these selected wildfires, MDIWIND also became higher
around the ignition date. Although MDIWIND essentially showed a trend similar to
the MDIGUST trend, it peaked on the ignition date for only Camp Fire 2018 during the
specified period, as shown in Figure 2d. For August Complex Fire 2020 and Claremont-Bear
Fire 2020, MDIWIND peaked two days before the ignition date, showing a decreasing
trend towards the ignition date.

Meanwhile, MDI did not show its greatest value on the ignition date for all the four
target wildfires, although it became relatively large around the ignition date for the three
largest wildfires in this study (Figure 2a–c). Furthermore, when MDI showed its large
value, MDIWIND and MDIGUST were not necessarily high since wind was considered
not to be very strong on those days (e.g., 18 July 2018, in Figure 2b; 3 November 2018, in
Figure 2d). At the ignition location of Camp Fire 2018 (Figure 2d), we can see that MDI did
not correlate strongly with MDIGUST or MDIWIND.

On the basis of the above results, we were able to find the date and time when
the risk of large wildfire occurrence was high at a certain location by using the indices
that comprehensively evaluate the effects of both moisture deficit and wind strength.
Specifically, MDIGUST peaked on the ignition date and showed a more rapid increase
around the ignition date compared to MDIWIND during the periods shown in Figure 2.
These findings suggest that MDIGUST may identify the date with a high risk of disastrous
wildfires at a certain location.

3.3. Spatial Distributions of Hydrological/Meteorological Index and Locations of the Target Wildfires

In this section, we analyzed the spatial distribution of MDIGUST and locations of the
selected wildfires in order to assess whether we can identify the areas with a high risk of
disastrous wildfire occurrences on a specified date. Figure 3 shows the spatial distributions
of daily averaged MDIGUST over the study area on the ignition date of (a) August Complex
Fire 2020, (b) Ranch Fire 2018, (c) Claremont-Bear Fire 2018, and (d) Camp Fire 2018.

In Figure 3, gray-filled areas represent the burned areas of the wildfires that occurred
before and had already been contained on the ignition date shown in each panel. For
instance, the gray-filled areas in Figure 3a showing the MDIGUST distribution on 16 August
2020 are the burned areas of the wildfires that occurred during 2017–2019 and of Gold
Fire 2020, which was extinguished on 12 August 2020. Unfilled wildfire perimeters in
Figure 3 are the burned areas of the wildfires that were still active (not fully contained)
on the ignition date shown in each panel. Black square dots in each panel are the grid
points whose daily averaged MDIGUST peaks on the shown date (i.e., ignition date for
each fire) during the time period shown in Figure 2. Namely, the black square dots in each
panel also include the ignition location grid of each selected wildfire, which is enclosed
in a black circle. Moreover, black dotted lines in Figure 2 show the contours of daily
averaged MDIGUST that were equal to or greater than the 80th percentile of daily averaged
MDIGUST in North Coast and Sierra Nevada on the ignition date. These black square
dots and black dotted lines allow us to identify areas where MDIGUST becomes high with
respect to spatial distribution and where MDIGUST temporally peaks on the ignition date
of each selected wildfire. We call the area where the black square dots are located and
which is enclosed in a dotted line the “overlapping area” in the following.
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2020, (b) Ranch Fire 2018, (c) Claremont-Bear Fire 2018, and (d) Camp Fire 2018. Gray-filled areas represent the burned
areas of the wildfires that occurred before and had already been contained on the ignition date. Unfilled wildfire perimeters
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Black dotted lines in Figure 2 show the contours of daily averaged MDIGUST that were equal to or greater than the 80th
percentile of daily averaged MDIGUST in North Coast and Sierra Nevada on the ignition date. The ignition location grid
point is enclosed in a black circle.

Figure 3a shows that the overlapping areas were mainly distributed in the middle to
northern North Coast or the north-western Sierra Nevada on the ignition date of August
Complex Fire 2020. An overlapping area can be found in the Northern Central Valley,
which is lightly forested but not in the region of interest in this study. We can see that
the ignition location of August Complex Fire 2020, enclosed in a circle, was located in
the identified overlapping area in the middle of North Coast, although there were some
other overlapping areas where MDIGUST became higher. In Figure 3c, on the ignition date
of Claremont-Bear Fire 2020, the overlapping area was not really found over the North
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Coast, despite the distribution of the large overlapping area on the day before (Figure 3a).
It should be noted that the spatial distribution of MDIGUST changed drastically in one
day. Figure 3c shows that the overlapping areas were mainly found in the south-western
Sierra Nevada. Although the ignition location of Claremont-Bear Fire 2020 did not show a
very large MDIGUST compared to the south-western Sierra Nevada, it was also located
in the overlapping area. In Figure 3b, the overlapping areas can be found in the northern
North Coast and southern North Coast on the ignition date of Ranch Fire 2018. Figure 3b
shows that the ignition location of Ranch Fire 2018 was not located in the overlapping area
since it showed moderate MDIGUST. Figure 3d shows that, on the ignition date of Camp
Fire 2018, the overlapping areas were distributed mainly in the eastern North Coast and
the western Sierra Nevada. The overlapping areas in Central Valley, again, were not the
regions of interest in this study. Although the overlapping areas in the eastern North Coast
showed much greater MDIGUST, the ignition location of Camp Fire 2018 was also located
in the overlapping area in the western Sierra Nevada.

In summary, our analysis showed that August Complex Fire 2020, Claremont-Bear
Fire 2020, and Camp Fire 2018 occurred in the identified overlapping areas. Ranch Fire 2018
occurred in the area that was not within the overlapping area but a short distance away
from the overlapping area in the southern North Coast. On the basis of the above results,
this analysis suggests that it may be possible to narrow down, to some extent, the potential
locations with high risks of disastrous wildfire occurrences by using spatial and temporal
hydrological/meteorological information, such as MDIGUST. As shown in Figure 3, these
wildfires did not necessarily occur in the overlapping areas with the largest MDIGUST in
the study area. It should be noted that the hydrological/meteorological conditions that
are required for large fire occurrences and growths are location-dependent since the land
cover, such as forest type, varies with location. Hence, the areas with the largest MDIGUST
do not necessarily represent the largest wildfire risk areas.

3.4. Relationships between Burned Area Sizes and Hydrological/Meteorological Variables and
Indices for the Target Wildfires

In this section, we further examined the correlation between hydrological/meteorological
variables/indices and burned area sizes of the target wildfires at a longer time scale and
larger spatial scale than the ignition date and ignition location scales. Figure 4 shows the
correlation between the logarithms of burned area size and the hydrological/meteorological
variables/indices for the target wildfires.

We used time-averaged daily spatial maximum (spatial minimum for soil moisture)
variables/indices within the burned area during the 2 week period after the ignition date
for each target wildfire. In Figure 4, although soil moisture content and burned area
size showed a relatively weak correlation that was not statistically significant (R = −0.37,
p = 0.087; Figure 4a), VPD correlated more strongly with the burned area (R = 0.60, p = 0.003;
Figure 4b). Furthermore, horizontal wind speed showed stronger correlation with burned
area size (R = 0.61, p = 0.002; Figure 4c) than wind gust speed (R = 0.43, p = 0.049; Figure 4d).
Therefore, it can be inferred that horizontal wind speed controls the area sizes (i.e., growths)
of the target wildfires more significantly than the wind gust speed does, while the wind
gust speed explains the wildfire ignition better, as shown in Figures 2 and 3.

Compared to the above variables, the proposed indices overall showed higher correla-
tions with burned area sizes. MDI, which evaluates the degree of comprehensive moisture
deficit, correlates with burned area sizes slightly stronger than VPD (R = 0.62, p = 0.002;
Figure 4e). The indices including moisture deficit and wind strength information, MDI-
WIND and MDIGUST, showed an even higher correlation with burned area sizes. Among
the hydrological/meteorological variables/indices considered, burned area sizes correlated
most strongly with MDIWIND (R = 0.72, p < 0.001; Figure 4f), while MDIGUST showed
a slightly weaker correlation with burned area sizes (R = 0.68, p < 0.001; Figure 4g). Ac-
cording to the above, the area sizes of the target wildfires are explained better by using the
indices that evaluate the comprehensive moisture deficit and wind strength information.
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4. Discussion and Conclusions

This study was designed to evaluate the hydrological/meteorological controls on
the recent large wildfires during 2017–2020 in Northern California at spatial and tem-
poral scales of the wildfires’ occurrence or growth. The main findings of this study are
summarized below.

(1) Our analysis showed that the ignition location grids of the target wildfires gen-
erally have moisture deficit tendencies in fire-years compared to non-fire-years
(Tables 2 and 3). Further, the ignition location MDIWIND and MDIGUST showed
larger values in fire-years compared to non-fire-years for most of the target wildfires
(95.8% and 91.7%, respectively). Other recent studies also reported that moisture
deficits are strongly associated with wildfire regimes in the western United States [5,6].
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(2) It was shown that the indices that comprehensively evaluate the effects of moisture
deficit and wind strength explain the ignition timings better than MDI, which eval-
uates moisture deficit degree (Figure 2). Specifically, the MDIGUST peak’s timing
coincided with the ignition date for August Complex Fire 2020, Ranch Fire 2018,
Claremont-Bear Fire 2020, and Camp Fire 2018. This finding suggests that when the
risk of large wildfire occurrence becomes high at a certain location could be identified
by using the comprehensive information of moisture deficit and of wind strength,
which agrees with the finding of Srock et al. [22].

(3) The analysis of the spatial distribution of MDIGUST showed that August Complex
Fire 2020, Claremont-Bear Fire 2020, and Camp Fire 2018 occurred in the identified
overlapping areas where MDIGUST becomes spatially and temporally high (Figure 3).
Although this analysis did not identify the exact ignition locations of the selected
wildfires, it may be used to narrow down, to some extent, the potential locations with
high risks of disastrous wildfire occurrences. In other words, this analysis is expected
to provide useful information for identifying the regions to be monitored for high risk
of catastrophic wildfire occurrences in the study area.

(4) We examined the correlation between the logarithms of burned area size and time-
averaged daily spatial maximum/minimum variables and indices within the burned
area during the 2 week period after the ignition date for target wildfires. We found
strong relationships between burned area sizes of the target wildfires and VPD
(R = 0.60, p = 0.003), MDI (R = 0.62, p = 0.002), MDIWIND (R = 0.72, p < 0.001;
Figure 4f), and MDIGUST (R = 0.68, p < 0.001; Figure 4g). These results suggest that
the combination of hot, dry, and windy weather and dry soil conditions strongly
drive large wildfire activities in the study area. Similarly, Williams et al. [5] reported a
strong correlation between burned area sizes and VPD (R = 0.72, p = 0.003) over the
North Coast and the Sierra Nevada regions for summer wildfires during 1972–2018
in California.

The above findings could contribute to a more temporally and spatially detailed
forecast of wildfire risks by using a regional climate model since these findings are ob-
tained using the NCEP NAM 12 km Analysis that is produced by a regional climate
model. Furthermore, these findings could lead to better management of future wildfire
risks or a better understanding of wildfires’ occurrence and growth mechanisms. There
are some limitations, however, to this study. The limitations and future directions are
summarized below.

First, although the analysis was conducted using NCEP NAM 12 km Analysis, it
might be possible to clarify more robust hydrological/meteorological controls on the
target wildfires by using finer resolution data. One may argue that the spatial resolution
of 12 km is coarse for analyzing hydrological/meteorological conditions at the ignition
locations. Thus, future work should include the downscaling of the historical atmospheric
data for further analysis, as in the work of Abatzoglou and Brown [46] or in that of
Carvalho et al. [47].

Second, the proposed indices, such as MDI, MDIWIND, and MDIGUST, were de-
veloped by simply multiplying or dividing the hydrological/meteorological variables.
Although this simplicity can be interpreted as an advantage for practical use, there is a
possibility that indices that more strongly account for wildfire regimes could be developed
by using more complex functions. Future work should examine developing other indices
that could explain wildfire regimes better.

Third, this study did not investigate the effect of fuel conditions on wildfire regimes.
Besides hydrological/meteorological conditions, spatial and temporal information on fuel
availability is considered to explain the wildfire regimes in more detail [48–50]. For instance,
even under the ideal hydrological/meteorological condition for wildfires, the spread of
wildfires can be limited by fuel availability [43]. Future work should examine large wildfire
growths using spatial and temporal fuel information, such as fuel availability, fuel types,
and fuel moisture [51].
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Lastly, we compared the hydrological/meteorological conditions in fire-years and
non-fire-years by focusing on the time period of 2012–2020 due to the data availability.
Yet, consideration of a longer period could lead to a more evident differences in hydro-
logical/meteorological conditions between fire-years and non-fire years. Hence, a longer
study period should be considered in future work. However, even when focusing on only
relatively recent years (i.e., usually too short a period to discuss the climate change effects),
fire-years still showed distinctive hydrological/meteorological conditions compared to
non-fire-years, as shown in Tables 2 and 3. Therefore, investigating causes of those unusual
hydrological/meteorological conditions, such as moisture deficit conditions, is another
important subject for future studies.

It should also be noted that, in order to achieve a better forecast of wildfire risks
or strategic fire management, considering not only hydrological/meteorological factors
but also human factors is of significant importance. In fact, Faivre et al. [52] showed that
the distance to a road and distance to housing were important determinants of ignition
frequency in Southern California. Yang et al. [53] found that human accessibility and land
ownership were primary factors in shaping clustered fire origin locations. Therefore, in
future work, it would be of great interest to incorporate the effect of human factors into the
hydrological/meteorological controls found in this study.
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