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Chapter 12
Fire and Forests in the 21st Century: 
Managing Resilience Under Changing 
Climates and Fire Regimes in USA Forests
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Abstract Higher temperatures, lower snowpacks, drought, and extended dry peri-
ods have contributed to increased wildfire activity in recent decades. Climate change 
is expected to increase the frequency of large fires, the cumulative area burned, and 
fire suppression costs and risks in many areas of the USA. Fire regimes are likely to 
change due to interactions among climate, fire, and other stressors and disturbances; 
resulting in persistent changes in forest structure and function. The remainder of the 
twenty-first century will present substantial challenges, as natural resource manag-
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ers are faced with higher fire risk and the difficult task of maintaining ecological 
function in a rapidly changing biophysical and social landscape. Fuel treatments 
will continue to be important for minimizing the undesirable ecological effects of 
fire, and for enhancing firefighter safety; however, treatments must be implemented 
strategically across large areas. Collaboration among agencies, private landowners, 
and other organizations will be critical for ensuring resilience and sustainable forest 
management.

Keywords Wildfire risk · Prescribed fire · Ecological function · Drought · Stress 
complexes · Adaptation · Fuels treatment · Future range and variation

12.1  Introduction

Fire is perhaps the most influential natural and anthropogenic disturbance affecting 
the distribution, structure, and function of terrestrial ecosystems around the world 
(Bond and Keeley 2005; Bowman et al. 2009; Krawchuk et al. 2009; Scott et al. 
2014). Many plants and animals depend on fire for their continued existence; those 
that do not, such as rainforest and tundra plants, are largely intolerant of burning 
(DeBano et  al. 1998; Cochrane 2010). Spatial and temporal patterns of fire and 
resulting ecosystem effects, termed “fire regimes,” are governed by complex inter-
actions among climate, fuels, vegetation, and ignition pattern and frequency across 
multiple scales (Agee 1998; Bradstock et al. 2012; Keane 2013; Abatzoglou and 
Williams 2016; Abatzoglou et al. 2017) (Fig. 12.1). A sound understanding of the 
interactions between biotic and abiotic ecosystem elements of fire regimes, and the 
effects of fire regimes on structure and function, facilitates projections of the effects 
of climate change on fire as an ecological process (Agee 1993; Agee 1997; Mitchell 
et al. 2014; Scott et al. 2014; Halofsky et al. 2020).

Higher temperatures, lower snowpacks, drought, and extended dry periods have 
contributed to increased wildfire activity in recent decades, particularly in western 
USA forests (Freeborn et al. 2016; Holden et al. 2018; Vose et al. 2018). Drier and 
warmer conditions have also contributed to a longer fire season in some areas (Riley 
and Loehman 2016). For example, the duration of the wildfire season has increased 
by 80 days in some parts of the western USA as a result of increased temperature 
(Jolly et al. 2015; Westerling 2016). A longer burning season combined with dry 
fuels will promote larger (and longer-duration) wildfires relative to historical wild-
fire activity (Riley and Loehman 2016). Earlier onset of snowmelt in spring may 
also contribute to lower fuel moistures at higher elevations (McKenzie et al. 2004). 
Warmer and drier conditions (annual, intra-annual, and interannual) can also alter 
vegetation and fuel characteristics (i.e., flammability and spatial distribution) 
(Flannigan and Van Wagner 1991; Keane et al. 2018; Syphard et al. 2018; Hessburg 
et al. 2019). For example, wet periods preceding dry periods can increase fuels in 
dry years in the American Southwest (Grissino-Mayer and Swetnam 2000). Hence, 
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based on recent observations over the past few decades and model projections for 
the coming century, we anticipate that climate change will increase fire frequency 
and annual area burned compared with historical wildfire patterns in many areas of 
the USA (e.g., Bachelet et al. 2000; Krawchuk et al. 2009, Liu et al. 2010).

The remainder of the twenty-first century is likely to present substantial chal-
lenges for natural resource managers as they deal with the task of maintaining eco-
logical function and increasing resilience in a rapidly changing biophysical and 
social landscape. For example, changing drought regimes will make it more difficult 
to control wildfire and to use prescribed fire as a management tool (Mitchell et al. 
2014; Kupfer et  al. 2020). Options to increase resilience include activities that 
address engineering resilience (recovery to a previous condition), ecological resil-
ience (remaining within the prevailing system domain through maintaining impor-
tant ecosystem processes and functions or shifting to an alternative ecological 
domain), and socio-ecological resilience (the capacity to reorganize and adapt 
through multi-scale interactions between social and ecological components of the 
system) (Seidl et  al. 2016). Some approaches for achieving resilience focus on 
maintaining or re-establishing historical conditions (Keane et al. 2018), but chang-
ing biophysical conditions and disturbance regimes may make it difficult to main-
tain ecosystem structure and function in emerging, no-analog environments (Falk 
et al. 2019).

In this chapter, we examine how climate change could affect the structure and 
function of forest ecosystems in the USA through changes in fire regimes. We dis-
cuss (1) observed and anticipated changes in climate; (2) the effects of climate 
change on fire regimes; (3) the effects of changing fire regimes on ecosystem struc-
ture and function; (4) interactions of future fire regimes with other stressors and 

Fig. 12.1 An example of the complex interactions of a small set of ecosystem disturbances on 
vegetation with feedbacks. Although climate directly influences vegetation, most climate-mediated 
changes to forested landscapes will result from these interactions
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disturbances, and; (5) management options that can increase resilience to future fire 
regimes. We synthesize existing science and discuss how observed responses and 
model projections can be used to inform natural resource management and planning.

12.2  The Fire Regime

Fire regimes are often described by (1) type of fire (ground, surface, crown); (2) 
mean and variance in fire frequency, intensity, severity, and seasonality, and; (3) 
areal extent and pattern of a burn (Agee 1993; Keane 2016; Bond and Keane 2017). 
Fire frequency describes how often a fire burns in an area, commonly measured by 
mean fire-return interval (FRI) or fire rotation period associated with a particular 
landscape (Moritz et  al. 2005; Falk et  al. 2011). Fire severity is a general term 
describing the effects of a fire on an ecosystem (Morgan et al. 2014) that can be 
estimated from the amount of plant biomass consumed and/or killed (Keeley 2006). 
It is often confused with fire intensity, which is a physical measure that describes the 
energy released from a fire.

Fire severity in forests differs greatly across a given landscape, depending on 
scale, weather conditions, and the prefire condition and composition of live and 
dead biomass. Although the extent, pattern, and shifting mosaic of fire severity can 
be complex, fire regimes are commonly classified with percentages of (1) low- 
severity; (2) mixed-severity, and; (3) replacement- (high) severity fires (in reference 
to vegetation). In many ecosystems (e.g., dry forests), low-severity fires were his-
torically frequent, comprising surface fires with low intensities and causing low 
levels of mortality (<10%) of dominant vegetation. Replacement-severity fires kill 
the majority of the dominant vegetation (grass, shrubs, or trees) (Brown 1995) 
regardless of fire type (Agee 1993). Mixed-severity fires contain elements of both 
low-severity and replacement-severity fires (Arno et al. 2000; Perry et al. 2011).

Fire regimes are often characterized as having proportions of low-, mixed-, and 
replacement-severity events. Passive crown fires, patchy stand-replacement fires, 
and low-intensity understory burns are common in mixed-severity fire regimes 
(Marcoux et  al. 2015). Typically, mixed-severity is used to describe patterns of 
patchy burn-severity in an area created during one fire event. However, mixed- 
severity fire regimes can also describe mixed-severity fires over time (e.g., nonlethal 
surface fire followed by stand-replacement fire) (Shinneman and Baker 1997). 
Groundfires burn within surface and subsurface organic layers, typically occurring 
in forests with high soil organic matter, such as boreal forests (Chap. 7), pocosin 
swamps of the eastern USA (Chap. 3), and dry forests where fire suppression or 
exclusion has led to uncharacteristically high accumulations of litter and soil organic 
matter (Allen et al. 2002; Turetsky and Louis 2006).

Fire regimes are created by the interactions of bottom-up and top-down controls 
(Heyerdahl et al. 2001). Bottom-up influences, such as vegetation, wildland fuels, 
topography, and patch distributions dictate fire spread, intensity, and severity at fine 
scales (Skinner and Chang 1996). Some bottom-up controls can be manipulated 
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through land management activities (Keane 2015). Top-down controls are mostly 
driven by climate and weather that dictate fire frequency, duration, and synchrony 
(Swetnam 1990; Guyette et al. 2012). These top-down controls constrain the extent 
to which bottom-up controls, such as vegetation and fuel loading, can be manipu-
lated to alter fire regimes.

Climate and weather trends are often embedded in atmospheric teleconnections 
interacting with fire regimes (Swetnam and Betancourt 1990; Duffy et al. 2005). For 
example, drought-induced wildfires have been associated with global circulation 
anomalies, such as the El Niño-Southern Oscillation (Veblen et al. 2000; Chen et al. 
2011) and Pacific Decadal Oscillation (Heyerdahl et al. 2002). As a result, a fire 
regime is actually an aggregation of spatial disturbances that does not follow dis-
crete mapping units. Attempts to characterize fire regimes solely from past fires 
(Westerling et al. 2006), vegetation (Frost 1998), fuels (Olson 1981), or topography 
(Keane et al. 2004) have only partially succeeded, primarily because they failed to 
account for the complex spatial and temporal relationships of fire and the multi- 
scale interactions that control fire dynamics (Morgan et al. 2014) (Fig. 12.1).

The role of ignition in fire regimes is often misunderstood (Balch et al. 2017). 
Lightning ignitions are distributed somewhat randomly across landscapes over long 
temporal scales (Barrows et  al. 1977; Fuquay 1980; Balch et  al. 2017), whereas 
human ignitions are associated with locations where human activity is present 
(Balch et al. 2017; Keeley and Syphard 2018). Lightning ignitions in moist, produc-
tive ecosystems can be constrained by fuel moisture (Barrows et al. 1977; Fuquay 
1980). However, in these same ecosystems, human ignitions can occur year-round, 
potentially causing fires during short periods of dry weather (e.g., Chap. 1, Fig. 1.2, 
Fig. 1.4, Table 1.1).

Landscape fragmentation due to human development can also reduce fire fre-
quencies in some fire-prone ecosystems (Gill and Williams 1996). For example, 
land abandonment in European countries has led to successional changes producing 
contiguous, highly flammable vegetation (Moreira et al. 2001; Moreno and Oechel 
2012), increasing area burned in recent years (Pausas and Vallejo 1999). In many 
USA forests, exclusion of fires by active fire suppression and various land uses has 
led to an increase in understory trees and an accumulation of surface fuels, which 
can facilitate a transition from low-severity surface fires to mixed- or high-severity 
crown fires (Keane et al. 2002; Stambaugh et al. 2014).

12.3  Observed and Anticipated Changes in Climate

Most areas of the USA experienced warmer air temperatures over a recent 20-year 
period (1986–2015) compared to 1901–1960 (Vose et al. 2017). Changes in annual 
temperature have been highest (>1.5  °F [0.8  °C]) in the western USA, upper 
Midwest, northeastern USA, and Alaska, with winter temperatures showing even 
stronger warming patterns than in other seasons. The primary exception is the mid- 
South (Alabama, Arkansas, Louisiana, Mississippi), where temperatures have 
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generally been unchanged or even slightly cooler, especially during summer (Vose 
et al. 2017), although nighttime temperatures over much of the southern USA have 
been increasing (Carter et al. 2018). Temperature extremes are also increasing over 
most of the USA, with a greater frequency of record high temperatures in the last 
20 years (Vose et al. 2017).

Observed changes in precipitation indicate drying in many areas of the western 
USA, especially the Southwest, where recent (1986–2015) annual precipitation has 
decreased by 15% compared to 1901–1960 (Easterling et al. 2017). Lower annual 
precipitation has also been observed in the Interior West and parts of the southern 
USA, whereas the Midwest, Lake States, and Northeast have generally been wetter 
in recent years (Easterling et al. 2017). Altered seasonal patterns are also evident, 
with lower winter precipitation in the western USA and higher winter precipitation 
in the southeastern USA.  Many regions are experiencing greater precipitation 
extremes (Easterling et al. 2017). For example, in the southern USA, heavy rainfall 
events (e.g., precipitation events >7.5 cm) have been increasing (Easterling et al. 
2017; Carter et al. 2018). Less snow (Wehner et al. 2017) and earlier spring melting 
of snow is exacerbating summer drought conditions and drying fuels in some 
Western landscapes (Mote et al. 2018).

Model projections of future climate rely on assumptions about future greenhouse 
gas emissions and atmospheric concentrations. Consistent with the Fourth National 
Climate Assessment (USGCRP 2017), we focus on describing projections from a 
lower (RCP4.5 = peak in CO2 equivalent concentration around 2040, with a value of 
~550  ppm by 2100; where RCP  =  Representative Concentration Pathway) and 
higher (RCP8.5  =  CO2 concentration continues to increase, with a value of 
~1250 ppm CO2 by 2100) greenhouse gas concentration scenario (van Vuuren et al. 
2011). Projections indicate continued warming across the USA, with increased 
average annual temperature of 8–10 °F (4.4–5.6 °C) for much of the USA by the end 
of the century under RCP8.5 (Fig. 12.2). Increases of 2–6 °F (1.1–3.3 °C) are pro-
jected by the mid-twenty-first century under RCP4.5. A 2–6 °F temperature increase 
would have significant effects on wildfire occurrence and fire regimes, in many 
cases accelerating changes already observed (Freeborn et al. 2016). Furthermore, 
both emission scenarios project an increase in extreme temperatures, as high as 
14 °F (7.8 °C) on the warmest days.

Although the capacity of global climate models to project temperature is more 
certain than for precipitation, projections suggest generally higher precipitation (by 
as much as a 30% increase) in the upper Midwest, Northeast, Southeast and Pacific 
Northwest (especially in the winter months) under RCP8.5 by the end of the twenty- 
first century. Much drier conditions (30% decrease) are projected for the Interior 
West and Southwest and moderately drier conditions for much of the USA in sum-
mer (Fig. 12.3).

Few studies have examined the periodicity and magnitude of future drought 
events, due primarily to uncertainties in future climatic and environmental condi-
tions that cause drought (Cook et al. 2015; Ryu and Hayhoe 2017; Wehner et al. 
2017). Peters and Iverson (2019) used the Cumulative Drought Severity Index 
(CDSI) derived from a self-calibrated Palmer Drought Severity Index and future 
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temperature to project drought conditions in the USA. The CDSI suggested that 
more frequent and/or intense droughts are likely in the middle to latter parts of the 
twenty-first century across all regions of the USA. Similarly, Wehner et al. (2017) 
projected soil moisture conditions, finding decreased soil moisture over most of the 

Fig. 12.2 Projected changes in average annual temperatures (°F). Changes are the difference 
between the average for mid-century (2036–2065; top) or late-century (2070–2099, bottom) and 
the average for near-present (1976–2005). Each map depicts the weighted multimodel mean. 
Increases are statistically significant in all areas (>50% of the models show a statistically signifi-
cant change, and >67% agree on the sign of the change). (Figure source: CICS-NC and NOAA 
NCEI; USGCRP 2017, Fig. 6.7 in Vose et al. (2017))
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Fig. 12.3 Projected change (%) in total seasonal precipitation from CMIP5 simulations for 
2070–2099. The values are weighted multimodel means (RCP8.5) and expressed as the percent 
change relative to the 1976–2005 average. Stippling indicates that changes are assessed to be large 
compared to natural variations. Hatching indicates that changes are assessed to be small compared 
to natural variations. Blank regions are where projections are assessed to be inconclusive. Data 
source: World Climate Research Program’s (WCRP’s) Coupled Model Intercomparison Project. 
(Fig. source: NOAA NCEI; USGCRP 2017; Fig. 7.5 in Easterling et al. (2017))
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conterminous USA in all seasons, with the largest decreases in the Southwest and 
Interior West.

12.4  Effects of Future Fire Regimes on Ecosystems

The combination of higher temperature, reduced precipitation in some areas, and 
increased drought implies that wildfire risk will increase substantially in the future 
(Liu et  al. 2010), resulting in more and larger fires. Associated changes in fire 
regimes are likely to affect the composition and structure of vegetation and forest 
function, a process that will probably require many decades for substantial changes 
to occur across large landscapes (Halofsky et al. 2020). Repeated fires (lightning- 
and human-caused) that occur on fire-prone landscapes over time create a shifting 
mosaic of plant and animal communities and structures that often reflect species 
ability to survive fire or to colonize burned areas shortly after fire (Agee 1998; 
McKenzie et  al. 2011). In general, plant species with fire-adapted survival traits 
(e.g., thick bark, high crowns, serotinous cones, buried seeds, epicormic sprouting, 
and deep roots) tend to dominate landscapes with frequent fires, in the absence of 
co-occurring stressors such as extreme droughts, high-severity fires, and invasive 
species that can transform the landscape to non-forested conditions (Allen et  al. 
2002). In contrast, more frequent fire will likely decrease the abundance of shade- 
tolerant species, species with thin bark, and slow invaders after fire (Nowacki and 
Abrams 2008; Chmura et al. 2011; Vose and Elliott 2016). Fire-sensitive vegetation 
may be lost from a site if unable to regenerate in burned areas (Harvey et al. 2016).

In many forests, tree species respond to differences in fire frequency, seasonality, 
and fire severity (Gill and Williams 1996). Different fire intervals influence popula-
tion trends and patterns of succession (Agee 1993; Schoennagel et  al. 2003). In 
forests adapted to crown fire regimes, the effects of fire depend on demographic 
attributes of the species. For example, population size of nonsprouting species may 
fluctuate more than that of sprouting species, and local extinction of nonsprouting 
species may be common after a single fire (Keeley et al. 2011; Pausas et al. 2018). 
In frequent surface-fire regimes, lengthening fire intervals can quickly affect func-
tional group dominance and long-term survival of resprouting species (Knapp et al. 
2015). Species that are slow to mature are particularly vulnerable to more frequent 
fire, because populations killed by fire before they have flowered and set seed may 
be unable to regenerate at small spatial scales (Schlaepfer et al. 2014).

Tree populations are also negatively affected where intervals between fires pro-
mote dominance of more competitive species or exceed the lifespan of a species or 
its seedbank. Seasonality of fire can have a profound effect on forests, because 
phenological state at the time of fire influences the ability of a species to regenerate 
(Flannigan et  al. 2000; Arthur et  al. 2012). Where intensity of fires exceeds the 
capacity of dominant prefire species to survive or regenerate, dominance may shift 
to other species, such as the increase in deciduous species over conifers observed in 
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some boreal and temperate forests (Barrett et al. 2011; Hollingsworth et al. 2013; 
Stambaugh et al. 2017).

Variation in fire regime characteristics affects vegetation structure at multiple 
spatial scales (Reilly et al. 2018). At the stand scale, frequent fire tends to reduce 
forest height, favor shrublands over woodlands, promote flammable or fire-tolerant 
species and communities, and reduce tree density and biomass (Whelan 1995; Scott 
et al. 2014). For example, species composition across eastern USA forests has been 
shifting from fire-tolerant xerophytic species (oaks, hickories, and pines) to less 
fire-tolerant mesophytic species (maples and yellow – poplar (Liriodendron tulip-
ifera)) (Nowacki and Abrams 2008). Reasons for this shift are complex (McEwan 
et al. 2011; Nowacki and Abrams 2015), but fewer fires in recent decades may be an 
important driver (Kreye et al. 2013; Hanberry et al. 2020). Climate change may alter 
future fire regimes in these systems to create forests with lower overall densities and 
higher proportions of fire-tolerant species (Jenkins et al. 2011; Vose and Elliott 2016).

Fire can also directly influence the spatial mosaic of forest patches across large 
landscapes (Box 12.1), and climate-mediated changes in disturbance regimes and 
management interactions may cause landscape heterogeneity to increase (e.g., 
Marlon et al. 2009). For example, more frequent low- and mixed-severity fires may 
reduce fuels in drier forest ecosystems (e.g., dry mixed conifer), leading to lower- 
intensity fires, and a finer-scale patch mosaic (Loudermilk et al. 2019). However, 
factors that are both directly and indirectly related to climate change could decrease 
landscape heterogeneity. Continued fire exclusion, coupled with a warmer, drier 
climate, may promote landscape conditions in which late-seral communities domi-
nate but are stressed from competition and drought (van Mantgem et  al. 2009; 
Stephens et al. 2018). Simulations from global vegetation models suggest that for-
ests might at least double in extent in the absence of fire, particularly in the flam-
mable savanna biome (Daly et  al. 2000). Wildfires that eventually burn these 
landscapes may become large and burn intensely, potentially creating large patches 
of homogeneous postburn conditions (Haugo et  al. 2019) that may convert to 
savanna, shrub, or grassland communities, especially in areas that are too dry for 
tree establishment or where seed sources are eliminated (Kuenzi et al. 2008; Stroh 
et al. 2018).

The complexity of feedbacks among climate change, fire regime, and forest 
structure and function makes it challenging to project the effects of climate change 
on future forests. However, examining how historical and contemporary fire regimes 
influence forest dynamics provides some insight into how forests may respond to 
climate-altered fire regimes. In the following sections, we examine some of these 
feedbacks using examples of climate-fire relationships in boreal forests of Alaska 
and Canada, mesic pine forests of the Southeast, and dry conifer forests of the 
southwestern USA.
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Box 12.1 Landscape Heterogeneity, Restoration, and Resilience
Settlement, development, and land management practices have altered the 
temporal and spatial characteristics of most USA forests during the past 200 
years. Timber management practices have modified vegetation patch shape 
and structure, and fire exclusion has modified patch size and diversity. 
Homogeneous Western landscapes generally have low resilience to distur-
bance (Keane et al. 2002, 2018) and may have little ability to buffer potential 
climate impacts because of the high tree densities and an abundance of shade- 
tolerant trees (Vanderwel and Purves 2014). Wildfires and harvest activities 
over the last decade have returned some heterogeneity to forest landscapes, 
especially in wilderness areas (Campbell and Shinneman 2017; Hessburg 
et al. 2019). However, most are well outside of the historical range of vari-
ability in landscape structure.

It is challenging for land managers to identify an appropriate level of het-
erogeneity for a given landscape. Reference conditions can help prioritize and 
design actions that facilitate landscape heterogeneity and mitigate climate 
change effects. One method for estimating optimal heterogeneity uses the his-
torical range and variation (HRV) of landscape characteristics as a reference 
(Morgan et al. 1994; Keane et al. 2009). Although the HRV of landscape met-
rics may not be representative of future conditions (Millar and Woolfenden 
1999), it can approximate landscape conditions under which ecosystems have 
developed over the past thousand years. It is reasonable to assume that these 
historical conditions produced resilient systems and landscapes (Landres 
et al. 1999).

The departure of landscapes from historical compositions and structures 
must be known in order to design effective restoration actions (Keane et al. 
2009, 2019; Dickinson 2014). Simulation modeling can be used to generate 
both HRV time series and future management effects (Loehman et al. 2020). 
For example, simulation modeling has been used to determine the efficacy of 
wildland fire suppression activities in the future by comparing with past HRV 
time series (Keane et al. 2019).

Increased stress associated with climate change—higher temperatures, 
more droughts, more disturbances—means that restoration (based on past 
conditions) may need to transition to resilience building. This can be accom-
plished by considering the future range and variation (FRV) of landscape 
characteristics as altered by climate change (Keane et al. 2018, Peterson and 
Halofsky 2019). FRV can be informed by climate projections integrated with 
ecosystem modeling to understand the environment in which future forests 
will regenerate and grow. Land managers can then consider which species, 
genotypes, structures, and spatial patterns are likely to be resilient several 
decades into the future.
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12.4.1  Boreal Forests

Fire is the dominant disturbance regime in boreal forests (Chapin et  al. 2006; 
Johnstone et  al. 2010; Brown and Johnstone 2012; Hollingsworth et  al. 2013). 
Paleorecords indicate that millennial-scale fire-climate relationships are highly 
influenced by vegetation dynamics (Hu et al. 2006). For example, during cooler, 
wetter climatic conditions in the Holocene (ca. 4000–7000 ybp), fires occurred rela-
tively frequently compared with preceding millennia, likely because these condi-
tions favored establishment of black spruce (Picea mariana) over forests of Populus 
species or white spruce (P. glauca) (Lynch et al. 2004; Hoecker et al. 2020). Black 
spruce forests are more flammable than white spruce or mixed white spruce- 
deciduous forests due to lower crown-base heights, persistent fine branches, and 
association with flammable species of understory vegetation (Hu et al. 2006). Little 
is known about how fire regimes changed in response to major biome shifts before 
the establishment of black spruce, but following establishment of the modern boreal 
forest, high-intensity crown fires occurred at intervals of 80–150 years (de Groot 
et al. 2013).
Under historical climate and fire regimes, boreal forest regeneration following wild-
fires occurs as (1) self-replacement of the same dominant prefire tree species in the 
postfire environment, or (2) multiple successions of tree species that assume postfire 
canopy dominance (Kurkowski et  al. 2008). Boreal tree species adaptations for 
postfire regeneration include cone serotiny (black spruce), rapid resprouting (birch 
and poplar species), and wind-dispersed seeds (white spruce) (de Groot et al. 2013; 
Greene and Johnson 2000). Successional pathways depend on soil conditions, pre-
fire species composition, and fire severity and frequency, all of which are affected 
by variation in temperature and precipitation (Kasischke et  al. 2000; Johnstone 
et al. 2011).

The boreal region of North America is warming twice as fast as the global aver-
age (Scheffer et al. 2012; IPCC 2014). Wildfires and seasons with heightened wild-
fire activity have increased in boreal Alaska over the past 40 years, in association 
with above-average summer temperatures and prolonged drought (Xiao and Zhuang 
2007). Climate change is expected to increase fire season length, increase area 
burned, and intensify fire weather (Zhang and Chen 2007). Climate-induced shifts 
in boreal fire regimes can lead to a third successional pathway: species replacement, 
in which atypically frequent or severe wildfires extirpate prefire canopy species, 
allowing for new species to dominate (Kurkowski et al. 2008; Johnstone et al. 2010). 
Increased fire severity may fundamentally reshape future landscapes of Alaska, 
because high-severity fires can promote conversion of coniferous spruce ecosys-
tems to deciduous hardwoods, leading to broad-scale transformations of forest com-
munity composition and structure that may persist for centuries (Johnstone et al. 
2010). A shift from conifer forest to less flammable, deciduous-dominated forest 
could result in a negative feedback to future fire or a shift from canopy- to surface- 
dominated fire regimes (Johnstone et  al. 2011; Hudspith et  al. 2015; Hart et  al. 
2019), unless a warmer climate reduces fuel moisture sufficiently to carry fire in 
deciduous fuel types (Flannigan et al. 2005).
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12.4.2  Fire-Prone Forests in the Southeast

Fire-prone forests in the southeastern USA (Chap. 3) have among the shortest FRIs 
in the world (1–4 year) (Christensen 1981), but forest change in the past two centu-
ries has been driven largely by forest conversion, development, landscape fragmen-
tation, and reduced fire frequency through fire exclusion (Landers et al. 1995). Fire 
regimes in this region are now dominated by human ignitions in the form of pre-
scribed fire (Melvin 2018). Maximum temperatures have not risen significantly 
regionally (Carter et al. 2018), but models project temperatures will increase by the 
mid-twenty-first century, potentially causing more wildfires (Prestemon et al. 2016).

In this human-dominated landscape, climate change influences on fire regimes 
are mediated through the filters of human intervention. Managed fire regimes target 
FRIs of 1–5 years; some studies suggest that managed fire regimes should include 
months during which lightning ignitions were historically dominant (Platt et  al. 
1988; Slocom et al. 2007). Climate change is projected to reduce prescribed burning 
opportunities in the spring and summer due to elevated risks of escape (Kupfer et al. 
2020), so the trajectory of ecosystem change in frequently burned communities may 
increasingly be driven by wildfire. For example, drier and hotter weather conditions 
will alter fire potential across most ecoregions in the southern USA, which may 
increase fire season length (Liu et al. 2014) and reduce the number of days when 
weather conditions are within prescribed fire prescriptions (Kupfer et al. 2020).

Altered prescribed fire frequency has feedbacks on fuel loading, which will 
increase as the interval between burning widens. Compared to current prescribed 
fire behavior, prescribed fires in the future may be more severe, kill more and larger 
trees, and produce more smoke (Mitchell et al. 2014). Although fuel accumulations 
and consecutive drought years have increased wildfire in some areas (e.g., Georgia) 
(Terando et al. 2016), other areas in the Southeast may become less flammable as 
fire is removed from the landscape (Glitzenstein et al. 2012). This alternate stable 
state in the absence of prescribed fire produces a more mesic forest with longer fire- 
return intervals and altered ecosystem properties that may perpetuate reduced flam-
mability (McKay and Parker 2001; Kreye et al. 2013; Carpenter et al. 2020) under 
future climates, although this transition is uncertain (Vose and Elliott 2016).

12.4.3  Fire-Prone Forests in the Southwest

Fire regimes in fire-prone forests of the southwestern USA (Chap. 11) have been 
altered by a combination of land management and drought. Historically, low- 
severity fires in dry forests occurred frequently, spreading in grassy surface fuels 
coincident with an alternating pattern of increased cool-season precipitation (result-
ing in fuel growth) followed by cool-season drought (resulting in fuel flammability) 
(Swetnam and Betancourt 1998; Margolis et  al. 2017). A hundred-plus years of 
livestock grazing, logging, and fire exclusion have led to less frequent fire in dry 
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conifer forests compared with the presettlement period, creating increased surface 
fuel loads, dense forests, and reduced structural and spatial heterogeneity of vegeta-
tion (Allen et al. 2002; Reynolds et al. 2013). Fires in these forests can be more 
intense with larger patches of high-severity fire than occurred historically (Allen 
2016; Singleton et al. 2019), reducing biodiversity, eliminating tree seed sources, 
and altering ecological function and resilience (Guiterman et  al. 2018; Haffey 
et al. 2018).

Climate change has increased the length of fire seasons and lowered fuel mois-
tures, making large portions of the landscape flammable for longer periods of time 
(Riley and Loehman 2016), and widespread, regional fire years have been associ-
ated with prolonged droughts (Heyerdahl et al. 2008). However, at some point in the 
future, increased fire activity in these low-productivity ecosystems may be self- 
limiting, such that fuel consumption limits frequency, extent, and effects of subse-
quent fires (Collins et al. 2007; Parks et al. 2015).

12.5  Interactions of Future Fire Regimes and Other 
Stressors and Disturbances

Direct and indirect interactions among fire and other stressors and disturbances will 
result in persistent changes in forest composition and structure under climate change 
(Fig. 12.1). In the context of future fire regimes, these changes are especially impor-
tant for how they influence fuel loads, fire severity, and flammability.

12.5.1  Native Insects and Diseases

Insects and diseases influence forest ecosystem structure and function in complex 
ways, regulating primary production, nutrient cycling, ecological succession, and 
the distribution and abundance of plants and animals (Mattson and Addy 1975; 
Castello et  al. 1995). The effects of insects and diseases are most influenced by 
abiotic factors (e.g., weather, wildfires, avalanches, windstorms) and management 
activities.

Climate change is expected to increase the effects of some insects and diseases 
in USA forests and reduce the effects of others (Vose et al. 2018). The effects of 
insects and diseases can be low level/chronic or acute/episodic. Many USA states 
have at least 10% of their forested landscapes at risk to forest insects and diseases, 
in which at least 25% of standing live basal area >2.5 cm in diameter will be killed 
in the next 15 years in the absence of remediation (management actions applied to 
increase resistance and resilience). Based on the latest National Insect and Disease 
Forest Risk Assessment, four tree species are expected to suffer substantial mortal-
ity across their extent, including redbay (Persea borbonia) (90% of total basal area), 
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whitebark pine (Pinus albicaulis) (58%), limber pine (P. flexilis) (44%), and lodge-
pole pine (P. contorta var. latifolia) (39%) (Krist et al. 2014).

Bark beetles cause most of this tree mortality, and several species have under-
gone notable outbreaks in recent years (Fig. 12.4; Chaps. 8, 9, 10). This is primarily 
due to climate and human-caused changes in forest structure and composition 
(Fettig et al. 2007; Bentz et al. 2010; Kolb et al. 2016), which influence host suscep-
tibility, and beetle survival and population growth. For example, increased densities 
of grand fir (Abies grandis) and white fir (A. concolor) in the Cascade Range and 
Sierra Nevada, which are largely due to fire exclusion and selective harvest of pines, 
have led to increased impacts by fir engraver (Scolytus ventralis), especially during 
periods of elevated temperatures and drought (Fettig et al. 2021).

Increased wildfire and bark beetle outbreaks raise concerns about the effects of 
wildfires on bark beetles, and the effects of bark beetle outbreaks on fuels and fire 
regimes (Hicke et al. 2012; Fettig et al. 2020). Following fire, tree mortality can be 
immediate, or it can occur over multiple years as a result of fire injuries to the 
crown, bole, or roots (Hood et al. 2018). Levels of delayed tree mortality caused by 
bark beetles depend on tree species, tree size, tree phenology, degree of fire-caused 
injuries, initial and postfire levels of tree vigor, the postfire environment, and the 
scale, severity and composition of bark beetle populations and other tree mortality 
agents. Trees moderately injured by fire are generally most susceptible to bark 

Fig. 12.4 Bark beetles and wildfire are principal drivers of change in conifer forests. This figure 
shows the area affected by native bark beetles in the western USA, where impacts are most severe, 
2000–2016. About 10.3 million ha were affected by mountain pine beetle (Dendroctonus pondero-
sae) alone, which represents almost half of the total area for all bark beetles combined in the 
western USA (Fettig et al. 2021). Values represent the effect observed each individual year and 
should not be summed across years (i.e., there may be overlap in areas affected from year to year). 
Note that the line for D. jeffreyi is overlapped by the line for D. pseudotsugae. Fig. developed using 
data from the National Insect and Disease Survey database, USDA Forest Service (Fettig 
unpubl. data)

12 Fire and Forests in the 21st Century: Managing Resilience Under Changing…

https://doi.org/10.1007/978-3-030-73267-7_8
https://doi.org/10.1007/978-3-030-73267-7_9
https://doi.org/10.1007/978-3-030-73267-7_10


480

beetles. High-severity fires kill large numbers of potential host trees, often reducing 
bark beetle populations (Fettig et al. 2020). Bark beetles routinely cause additional 
tree mortality after low- to moderate-severity fires.

Altered fire behavior in forests that have experienced beetle outbreaks are mani-
fest through changes in fuel loadings (Fig. 12.5), depending on the severity of the 
outbreak (the proportion of trees colonized and killed by bark beetles) and the 
amount of time since the outbreak occurred. Altered foliar moisture following bee-
tle colonization affects flammability, but this change is short-lived. For example, the 
needles and twigs of lodgepole pine killed by mountain pine beetle lose 80–90% of 
their water content within one year. Loss of moisture increases flammability by 
shortening time to ignition, lowering temperature at ignition, and raising heat yields 
when burned (Page et al. 2012). Over time, canopy bulk density and canopy cover 
decline as beetle-killed trees shed needles, then small twigs and larger branches 
(Fig. 12.5). Bark beetle outbreaks can increase wildfire rates of spread, with crown 
fire potential peaking 1–3 years after outbreaks (Fig. 12.6), although outbreaks have 
little effect on the extent of area burned (Hart et al. 2015) or likelihood of wildfire 
occurrence (Bebi et al. 2003; Meigs et al. 2015).

Defoliating insects can influence fire behavior and severity (Hummel and Agee 
2003), but these relationships are still being explored. Fire potential in balsam fir 
(A. balsamea) forests affected by eastern spruce budworm (Choristoneura 

Fig. 12.5 Much of California experienced a severe drought in 2012–2015, inciting a large tree 
mortality event in the central and southern Sierra Nevada. Much of the tree mortality was attributed 
to western pine beetle (Dendroctonus brevicomis) (Fettig et al. 2019). Bark beetle outbreaks can 
alter fuels sufficiently to affect fire regimes and firefighter safety (photo L.M. Mortenson, USDA 
Forest Service, Pacific Southwest Research Station)
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Fig. 12.6 Conceptual diagram showing changes in fuel profiles and wildfire behavior following 
severe drought and a bark beetle outbreak in a Sierra Nevada mixed-conifer forest without (a) and 
with (b) periodic fuel reduction treatments. Similar trends may be observed for other disturbances 
that cause similar patterns and levels of tree mortality. A greater potential for “mass fires” now 
exists in the central and southern Sierra Nevada, driven by the amount, size, and continuity of dry 
combustible woody fuels. Adapted from Stephens et al. (2018)
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fumiferana) was shown to be significantly higher for several years following tree 
mortality (Stocks 1987). Fire potential peaked 5–8 years after tree mortality and 
decreased gradually as surface fuels began to decompose. Flower et al. (2014) pro-
posed that if there is a relationship between defoliators and fire, it is a subtle syner-
gistic relationship in which climate determines the probability of occurrence of each 
disturbance, and each disturbance dampens the severity but does not alter the prob-
ability of occurrence of other disturbances. Forest diseases can also affect fire 
regimes, although this relationship is not well studied. In Oregon, fire reduced the 
area infested by laminated root rot (Phellinus weirii) by favoring less susceptible 
host species and reducing the modal size of dead roots and logs, but infestations 
enhanced the probability of stand-replacing fires (Dickman and Cook 1989).

12.5.2  Invasive (Nonnative) Plants

Although most studies indicate that climate change will accelerate establishment of 
non-native plants in the USA (Finch et al. 2021), projecting how individual taxa will 
respond to different climate change scenarios and interact with fire regimes is dif-
ficult. Invasive plants, which may exert important effects on fire regimes, generally 
respond more favorably to elevated CO2 than native plants (Bradley et al. 2010a), 
whereas responses to altered temperature and precipitation are variable (Dukes 
et al. 2009). Many invasive species arrive as stowaways in cargo ships. In the USA, 
current inspection of cargo ships for invasive species involves examining a low per-
centage of imports (<2%) for a small subset of federally-listed species (Finch et al. 
2021). Hence, it is likely that the influx of invasive species will continue, although 
their effects on future fire regimes is uncertain.

Cheatgrass (Bromus tectorum) is an annual species that dies and dries out in 
spring, increasing the flammability and continuity of surface fuels (Brooks et al. 
2004). Its rapid growth rate, ability to photosynthesize at low temperatures (Rice 
et  al. 1992; Chatterton et  al. 1993), and competitiveness under drought stress 
(Melgoza and Nowak 1991) contribute to its dominance. Cover by cheatgrass is 
now >15% on over 210,000 km2 in the Intermountain West (Bradley et al. 2018). 
These lands are twice as likely to burn as those with a low abundance of cheatgrass, 
and four times more likely to burn multiple times within a 15-year period. Even 
small amounts of cheatgrass (1–5% cover) increase fire risk (Balch et  al. 2013; 
Bradley et al. 2018), which is concerning given that the density and distribution of 
cheatgrass are projected to increase with climate change (Zelikova et  al. 2013; 
Finch et al. 2021).

In the southeastern USA, cogongrass (Imperata cylindrica) is an invasive grass 
that can alter fire regimes by increasing fine-fuel loads, expanding horizontal fuel 
continuity, and increasing fuel depth, causing higher fire temperature at greater 
heights (Lippincott 2000). The current distribution of cogongrass is limited (at least 
in part) by cold; however, higher temperatures may expand its range northward and 
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westward, increasing its role in altering fire regimes in more areas of the eastern 
USA (Bradley et al. 2010b).

A related concern is the increased demand for nonnative plants with greater tol-
erances to warmer temperatures and drought for use in landscaping (Bradley et al. 
2012). The risk of these plants escaping and becoming invasive is increasing with 
urbanization (Marco et al. 2010). These concerns are most relevant to wildfire in the 
West, especially in areas with a Mediterranean climate where fires can be frequent 
(Chap. 9). In the eastern USA (especially in Southern forests) where the majority of 
prescribed burning occurs, nonnative and native invasive trees, shrubs, and grasses 
can confound restoration activities that use prescribed fire.

12.6  Managing for Resilience

Managing for ecological resilience, defined broadly as the ability of a system to 
recover after disturbance, is a strategy intended to mitigate the environmental chal-
lenges caused by climate change, shifting fire regimes, nonnative flora and fauna, 
industrialization, urbanization, and their interactions (Seidl et al. 2016; Keane et al. 
2018). Some strategies for achieving resilience focus on maintaining or re- 
establishing historical conditions (Keane et  al. 2018). However, rapid climate 
change and altered disturbance regimes will make it difficult to maintain ecosystem 
functionality in emerging, no-analog environments (Falk et al. 2019).

Resilience management focuses on improving the long-term response of a sys-
tem by focusing on specific attributes or drivers, and developing principles for 
human actions (Benson and Garmestani 2011). Management actions that can 
increase resilience in forest landscapes typically balance multiple and often compet-
ing objectives. Managed fire regimes are a critical element of these activities for 
conservation outcomes and ecosystem resilience (Stephens et  al. 2018; Freeman 
et  al. 2019). Specifically, management options can be crafted to conserve fire- 
dependent species, reduce wildfire risks, and address climate-related effects and 
influences (Carter et al. 2018; Vose et al. 2018).

Planning and sequencing of management activities at relevant scales are critical 
for managed fire regimes, enhancing resilience in fire-prone ecosystems (Krofcheck 
et al. 2018). For example, forest thinning can increase tree vigor as well as reduce 
fuels, thus minimizing the intensity and severity of future wildfires (Reinhardt et al. 
2008; Hurteau et al. 2019). Thinning guidelines may need to be revised with fewer 
residual trees for some cover types (e.g., ponderosa pine [Pinus ponderosa]) to 
maintain adequate levels of resilience to drought and disturbances (e.g., bark beetle 
outbreaks) that influence fire regimes (Peterson et  al. 2011a,  b). Fuel reduction 
treatments may need to be more aggressively applied in the future at large spatial 
scales to yield effective outcomes in treated stands. In addition, more extreme fire 
weather conditions associated with climate change (Collins 2014) will likely require 
higher biomass removals to achieve resilience and fuel management objectives.
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The near-term challenge in using restoration or fuel treatments is to apply thin-
ning and managed fires in landscapes of highest priority. For example, aggregation 
and prioritization of treatments in the Lake Tahoe Basin (California) have reached a 
stage that, according to model results, will alter large wildfire potential (Loudermilk 
et  al. 2014). However, documentation of treatment effectiveness for modifying 
wildfire potential at large spatial scales in Western landscapes is minimal (with the 
exception of protecting communities with focused treatments), and few landscapes 
have been treated at sufficient levels to affect long-term resilience.

In the eastern USA, the intersection of prescribed fire, conservation, and restora-
tion is well developed, particularly in the southeastern USA Coastal Plain (Mitchell 
et  al. 2009; Chap. 3). Prescribed fire use in the southern Great Plains and the 
Southeast is comparable to or greater than the areal extent of wildfire in the West 
(Melvin 2018; Hiers et al. 2020). However, climate change is expected to challenge 
current practice and threaten established restoration management practices (Mitchell 
et al. 2014; Kupfer et al. 2020). Although prescribed fire is an effective mitigation 
strategy for reducing wildfire risk (Addington et al. 2015), increasing the capacity 
of resource managers to safely use this treatment is often constrained by degraded 
air quality and smoke emissions (Kobziar et al. 2015; Chiodi et al. 2018).

Reducing the effects of existing non-climatic stressors on ecosystems, such as 
landscape fragmentation and invasive plants, will also increase ecosystem resilience 
to climatic changes (Joyce et al. 2008). For example, tactics to minimize establish-
ment and spread of invasive species include early detection/rapid response for new 
invasions, implementing weed-free policies, preventing invasive plant introductions 
during projects, and planting locally-adapted species of native vegetation to com-
pete with invasive plants (Table 12.1).

12.6.1  Managing Wildfire

Wildfire management involves a broad range of ecological considerations and inter-
actions (Table  12.1, Fig.  12.5, Box 12.1). Wildfires can be actively suppressed 
(uncontrolled wildfires) or they can be allowed to burn under a prescribed set of 
weather conditions while being observed (wildfires for resource benefits). The latter 
option is rarely used, so fuels tend to accumulate well beyond what would occur 
under a “natural” fire cycle, thus perpetuating elevated fuels and fire hazard, espe-
cially in dry forests. In many landscapes, the unconsumed fuels remaining after a 
wildfire may be insufficient to support the spread of future fires, so previously 
burned areas act as a firebreak and impede fire spread (Ricotta et al. 1999; Agee 
et al. 2000; Peterson 2002; McKenzie et al. 2011). As a result, the continuity of 
flammable vegetation at large spatial scales influences the spread of future fires, and 
the pattern and amount of area burned influence fuel continuity (McKenzie et al. 
2011; Keane et al. 2012).

Wildfire suppression tactics, such as retardant and water drops, backfiring, and 
fireline construction, can also be used to protect infrastructure, property, and 
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Table 12.1 Key climate change vulnerabilities of forests related to fire and associated adaptation 
strategies and on-the-ground tactics. These adaptation options were developed by resource 
managers in adaptation workshops across the western USA, and are summarized in the Climate 
Change Adaptation Library (http://adaptationpartners.org/library.php)

Climate change 
vulnerability Adaptation strategy Adaptation tactic

Increased temperatures, 
drier summers, and lower 
snowpack will result in 
more fire (larger areal 
extent and more 
high-severity patches).

Plan and prepare for more 
area burned.

Incorporate climate change into fire 
management plans.
Anticipate more opportunities to use 
wildfire for resource benefit.
Plan postfire response for large fires.

Consider using prescribed fire to 
facilitate transition to a new fire regime 
in drier forests.
Consider planting fire-tolerant tree 
species after fire in areas with increasing 
fire frequency.
Manage forest restoration for future 
range of variability.

Increase resilience of 
existing vegetation by 
reducing hazardous fuels 
and forest density and 
maintaining low 
densities.

Thin and burn to reduce hazardous fuels 
in the wildland-urban interface.
Increase intentional use of lightning- 
ignited fires and management of 
re-ignition of lightning-ignited fires.
Consider using more prescribed fire 
where scientific evidence supports 
change to more frequent fire regime.
Use prescribed fire to maintain structure 
and promote fire-tolerant conifer species.
Increase interagency coordination and 
shared risk.
Conduct thinning treatments 
(precommercial and commercial).
Use regeneration and planting to 
influence forest structure.

Increase resilience 
through postfire 
management.

Consider climate change in postfire 
rehabilitation.
Determine where native seed may be 
needed for postfire planting.
Anticipate greater need for seed sources 
and propagated plants.
Experiment with planting native grass 
species to compete with invasive species 
after fire.
Increase postfire monitoring in areas not 
currently monitored.

(continued)
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Climate change 
vulnerability Adaptation strategy Adaptation tactic

Identify, prioritize, and protect values at 
risk; initiate programs to assess values 
and determine best protective actions.
Conduct prefire planning to improve 
response time and efficiency, prioritizing 
key areas at risk to geologic hazard.
Conduct postfire vegetation management 
and prevent invasives.

Manage forest vegetation 
to reduce severity and 
patch size; protect refugia 
(e.g., old trees).

Map fire refugia.
Include gaps in silvicultural 
prescriptions.
Identify processes and conditions that 
create fire refugia.

Use high-severity 
wildfires as opportunities 
to modify ecosystem 
structure.

Use postfire timber harvest to prevent 
uncharacteristic reburns.
Allow some burned areas to regenerate 
naturally.

Manage forest landscapes 
to encourage fire to play a 
natural role.

Implement fuel breaks at strategic 
locations.
Create incentives to encourage managed 
wildland fire.
Implement strategic density management 
through forest thinning.
Push boundaries of prescribed burning 
(e.g., burn earlier in spring, later in 
summer).

Disturbances will alter 
ecosystem structure, 
species distribution, and 
species abundance across 
large landscapes.

Increase knowledge of 
patterns, characteristics, 
and rates of change in 
species distributions.

Expand long-term monitoring programs.

Create landscape patterns 
that are resilient to 
expected disturb-ance 
regimes.

Continue research on expected future 
disturbance regimes; evaluate potential 
transitions and thresholds.
Improve communication across 
boundaries.
Manage for diversity of structure and 
patch size with fire and mechanical 
treatments.

Lack of disturbance has 
caused shifts in species 
composition and structure 
in dry mixed-conifer 
forest, creating a risk of 
high-severity fire with 
climate change.

Maintain and restore 
species and age class 
diversity.

Identify and map highest risk areas 
across large landscapes to provide 
context for prioritization.
Reduce stand density and shift 
composition toward species that are 
more fire adaptive and drought-tolerant.
Restore age class diversity while 
protecting legacy trees.

Tabel 12. 1 (continued)

(continued) 
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Climate change 
vulnerability Adaptation strategy Adaptation tactic

The frequency and scale 
of disturbance will likely 
increase with climate 
change.

Promote disturbance- 
resilient species.

Thin to favor disturbance-resilient 
species.
Plant disturbance-resilient species.
Promote disturbance-resilient species 
with prescribed fire and/or managed 
wildland fire.

Areas with limited 
species and genetic 
diversity will likely be 
more susceptible to 
climate change stressors.

Promote species and 
genetic diversity.

Plant potential microsites with a mix of 
species.
Maintain species diversity during 
thinning.
Interplant to supplement natural 
regeneration and genetic diversity.

Current dry forest 
conditions (overstocked 
stands with more 
shade-tolerant species as 
a result of fire 
suppression) increase 
vulnerability to drought 
and wildfire.

Actively manage dry 
forest areas that are 
susceptible to fire and 
drought.

Conduct more intensive thinning.
Introduce frequent fire.
Promote ponderosa pine by favoring 
frequent fires.

Higher-elevation forests 
may burn more frequently 
with climate change.

Increase resilience of 
vegetation types at high 
elevations.

Increase landscape heterogeneity with 
prescribed fire.
Use fire behavior and spatial modeling to 
identify high-priority areas to reduce or 
maintain fuels.
Use silvicultural practices (e.g., 
prescribed fire, thinning) to reduce fire 
hazard.

Climate change may 
increase disturbance 
interactions, 
compounding effects.

Increase post-disturbance 
planning, management, 
and treatment 
implementation.

Create a strategy and develop criteria to 
prioritize areas that are more likely to 
recover after disturbance (e.g., critical 
habitats, population served by disturbed 
habitat).
Promote climate-adapted species 
(species resistant and resilient to 
disturbance) and genotypes.
Identify sites more susceptible to 
compounding disturbances (e.g., with 
high fuel loads, beetle-caused tree 
mortality, invasives); monitor 
disturbance occurrence; prioritize seed 
sources to preserve some sites; map sites 
across landscapes; conduct proactive 
treatments in areas more resistant to 
disturbance.

Tabel 12. 1 (continued)
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wildlife habitat (Reinhardt et al. 2008). Postfire activities that mitigate adverse wild-
fire impacts include erosion control, site stabilization, and planting trees when fire 
has killed the majority of seed sources. These actions can be implemented to protect 
ecosystem components that were burned by fire and to restore or maintain resil-
ience. The application of new coupled fire-atmospheric modeling tools to managed 
wildfires may offer firefighters and communities greater opportunities to use wild-
fires to increase resilience (Hiers et al. 2020; Linn et al. 2020).

Managing the resilience of fire-prone ecosystems in the USA will likely require 
more prescribed fire (Hiers et al. 2020). Unlike in the Southeast where prescribed 
burning is widespread, managed wildfire provides a flexible option for managing 
fire regimes and increasing resilience in the West. Expanding the use of managed 
wildfire in the West will be challenging due to risk aversion in decision making 
(relative to protecting human communities and values) and due to sociopolitical 
pressure to suppress fires (Hiers et al. 2020).

12.6.2  Wildland Treatments and Effects

In the USA, prescribed fires dominate fire management east of the Rocky Mountains, 
with nearly five million ha burned annually for a variety of objectives (Melvin 2018; 
Chap. 8). In the western USA, fuel treatments designed to reduce wildfire intensity 
and the severity of effects are rarely implemented at scales that are large enough to 
mitigate undesirable wildfire impacts (Hiers 2017; Kolden 2019). Efforts to reduce 
fuel loads at meaningful scales are critical but may promote invasive plants in some 
cases (Schwilk et al. 2009).

Despite the challenges of large-scale implementation of fuel treatments, proac-
tive treatments will undoubtedly play an increasingly important role in reducing 
wildfire impacts on living trees and in restoring the role of fire in forest ecosystems. 
However, treating fuels is only one of many objectives for planning and implement-
ing these treatments. Care should be given to maintain stand structures and compo-
sitions that facilitate the survival of fire-adapted plant species after wildfires and 
promote other desired outcomes, such as habitat quality for specific animals.

Eliminating vegetation that competes with fire-adapted trees can improve tree 
vigor. This will be increasingly important as the climate warms, because low soil 
moisture, insect outbreaks, and other stressors (including wildfire) will be more 
prevalent. Increased vigor may allow trees to remain on the landscape for a longer 
period of time, as well as increase the quality and possibly the quantity (e.g., fre-
quency of cone crops) of reproductive propagules.

Removal of fuels with mechanical treatments and prescribed fire can target spe-
cific portions of large landscapes, optimizing the social and ecological value of 
treatments (Table 12.1). Wildfires are often considered undesirable from a social 
perspective, but they can in some cases quickly create large-scale heterogeneity that 
would be difficult to achieve with prescribed fire and mechanical fuel treatments.
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Fuel treatments involve reducing canopy fuels by cutting, masticating, or burn-
ing living trees, and reducing surface fuels by burning or mechanical removal 
(Stephens et al. 2012; McIver et al. 2013). Reducing fuels in or near stands that 
contain ecologically valuable trees can be an important hedge against losing them 
to future wildfires. However, some fuel treatments, such as mastication, are not 
designed with ecological relationships in mind. Conversely, restoration treatments 
that do not remove a large quantity of fuels (including some live trees) may result in 
unnecessary overstory tree mortality and loss of seed sources when wildfires occur.

Tree harvests are used to remove competing species and to reduce stand density 
(Table 12.1). It is important that a large number of shade-tolerant trees be removed 
to optimize the growing environment of fire-tolerant, overstory species. Some cut-
ting treatments are followed with prescribed burning to kill residual (especially 
small in size and resprouting species) shade-tolerant trees and leave the more fire- 
tolerant individuals. However, prescribed fires are often highly variable across a 
given site, missing parts of the stand and severely burning other parts (including 
desirable trees). Although prescribed fires may be a more ecologically beneficial 
and less expensive treatment, mechanical removal of trees and fuels is more precise. 
Combining prescribed burning and mechanical removal is an effective method of 
achieving multiple desired outcomes (Stephens et al. 2012), and appropriate sched-
uling can enhance the effectiveness of treatments.

12.6.3  Planting Trees

To mitigate loss of fire-adapted tree species due to climate-mediated changes in 
disturbance regimes, planting key species might be appropriate when seed sources 
have been lost because of large, severe fires (Stevens-Rumann et  al. 2018) 
(Table 12.1). Hotter, drier conditions will likely result in postfire regeneration fail-
ures in some locations in the future (Littlefield 2019). Increasing postfire seed 
sources by reducing fire severity (through fuel treatments) and increasing the num-
ber of live residual trees can increase natural postfire regeneration in some dry for-
ests (Dodson and Root 2013). Regeneration in the driest topographic locations will 
generally be slower in a warmer climate than in the past (Boag et al. 2020). Some 
areas are likely to convert from forest to non-forest vegetation, particularly in eco-
tones and drier ecoregions.

Resource managers may want to supplement natural regeneration after fire in 
some locations, for example, in locations farther than 200 m from living trees, and 
where costs are not prohibitive because of remoteness or topography (North et al. 
2019). Potential adaptation strategies include varying planting densities by site 
microclimate, and creating spatial discontinuity in fuels with variable tree densities.

Fire and large-scale tree mortality events provide opportunities to plant diverse 
species and genotypes (including genotypes adapted to drought) and to modify for-
est structure. Through postfire management, managers may be able to help transition 
ecosystems to warmer conditions by promoting species that will be adapted to the 
likely future conditions in a particular forest type and setting (Halofsky et al. 2020) 
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or alter fuel characteristics that affect fire regimes (Stephens et  al. 2012; McIver 
et al. 2013). Managers may want to consider moving seed zones to elevation- and 
temperature-appropriate locations (within a current species distribution), and modi-
fying genetic movement guidelines to allow more flexibility (Kilkenny et al. 2013). 
Care should be taken to identify species hybridization and its potential influence on 
the assumed fire adaptations and tolerance of planted trees (Tauer et al. 2012). Tools 
such as the Seedlot Selection Tool (https://seedlotselectiontool.org/sst) can help 
identify seedling stock that will be adapted to a given site in the present and future.

12.6.4  Working Across Boundaries

Fire and other stressors associated with climate change cross boundaries, so imple-
menting climate-smart practices across different ownerships is needed for effective 
adaptation (Peterson et al. 2011a,b) (Table 12.1). Agencies can coordinate by align-
ing budgets, priorities, and work, and by better communicating about projects on 
adjacent lands (Halofsky and Peterson 2016). Agencies and landowners can also 
coordinate and share monitoring data, which can detect changes in plant species 
regeneration, growth, and mortality, and help determine adaptation treatment effec-
tiveness (Joyce et al. 2008). With the uncertainty of climate change and its influence 
on managed fire regimes, collaborative learning will be critical for adapting man-
agement strategies to increase resilience.

12.7  Conclusions

Climate change is expected to increase the frequency of large fires, cumulative area 
burned, and fire suppression costs and risks in many areas of the USA (McKenzie 
et al. 2004; Vose et al. 2018). Hence, the remainder of the twenty-first century is 
likely to present substantial challenges, as natural resource managers are challenged 
by higher fire risk (Fig. 12.7) and the difficult task of maintaining ecological func-
tion and increasing resilience in a rapidly changing biophysical and social land-
scape. Furthermore, no-analog climatic conditions are likely to strain the 
applicability of current climate-fire regime concepts (e.g., Flatley and Fulé 2016), 
creating novel ecosystems and forest conditions (Vose et al. 2018; Falk et al. 2019). 
Uncertain feedbacks may result from the historical legacy of altered fire regimes 
(e.g., McKay and Parker 2001; Kreye et al. 2013; Carpenter et al. 2020).

The notion of “managing wildfire” to achieve desired outcomes is an emerging 
concept (Hiers et  al. 2020); however, social acceptance of allowing wildfire and 
associated risks may limit widespread application, especially in the western 
USA. As a result, fuel treatments will likely play an increasingly important role for 
minimizing the undesirable ecological effects of fire, and for enhancing firefighter 
safety (Reinhardt et al. 2008). However, except in the Southeast where prescribed 

J. M. Vose et al.

https://seedlotselectiontool.org/sst


491

burning is institutionalized and relatively inexpensive, financial resources for fuel 
treatments will likely never be sufficient to reduce fuels across large landscapes 
with elevated fuel loadings. Therefore, fuel treatments must be implemented strate-
gically across large spatial and temporal scales to optimize spatial patterns that pro-
tect valued resources and confer resilience to climate change. Collaboration among 
agencies, private landowners, and other organizations will be increasingly impor-
tant to ensure large-scale resilience and long-term sustainable management of forest 
resources in the USA.
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