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Abstract. Very large wildfires can cause significant economic and environmental damage, including destruction of
homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large
wildland fires (VLWFs $50 000 acres, or ,20 234 ha) in the western contiguous USA. We used composite records of

climate and fire to investigate the spatial and temporal variability of VLWF–climatic relationships. Results showed
quantifiable fire weather leading up and up to 3 weeks post VLWF discovery, thus providing predictors of the probability
that VLWF occurrence in a given week. Models were created for eight National Interagency Fire Center Geographic Area

Coordination Centers (GACCs). Accuracy was good (AUC. 0.80) for all models, but significant fire weather predictors
of VLWFs vary by GACC, suggesting that broad-scale ecological mechanisms associated with wildfires also vary across
regions. These mechanisms are very similar to those found by previous analyses of annual area burned, but this analysis

provides a means for anticipating VLWFs specifically and thereby the timing of substantial area burned within a given
year, thus providing a quantifiable justification for proactive fire management practices to mitigate the risk and associated
damage of VLWFs.
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Introduction

Very large wildland fires (VLWFs) have occurred throughout
the western contiguous US (also known as CONUS) in the past
several years, setting modern records for the largest fires in

several states (e.g. High Park, Colorado (2012), Long Draw,
Oregon (2012), Wenatchee Complex, Washington (2012),
Wallow Fire, Arizona (2011),Whitewater BaldyComplex, New
Mexico (2012) and Rim Fire, California (2013); http://www.

nifc.gov, September 2013). Such fires may have long-lasting
effects including property damage, firefighting costs, loss and
degradation of habitat and air quality reductions (Jaffe et al.

2008) leading to bronchitis or even premature mortality. Also,
fires contribute to global warming, including both direct
greenhouse gas emissions and secondary effects of black carbon

and other emissions (Bond et al. 2013). During VLWFs, par-
ticularly if there are multiple VLWFs in a region, firefighting
resources within the region may become strained and additional

resources may be needed from other areas. More positively,
large wildfires have been shown to provide a tool for regional
ecological restoration in fire-dominated landscapes and have
reduced fuel hazards (Keane et al. 2008).

Investigation and quantification of the mechanisms and

climatic drivers of VLWFs is a first step towards providing
justification for proactive fire management that could mitigate
negative effects while encouraging restoration efforts. Past

studies have focussed on quantifying factors influencing total
annual area burned within a region (Westerling et al. 2002;
Flannigan et al. 2005: Flannigan et al. 2009; Littell et al. 2009),
and the probability of a fire of any size across North America

(Parisien et al. 2012), or a single-day fire-growth event (Podur
and Wotton 2011). Many of these studies have aggregated fires
over an entire fire season and have not addressed factors

influencing the possibility of individual VLWFs, thus they do
not provide asmuch insight into the timing of large areas burned,
which can be useful to develop proactive management strate-

gies, such as fuel reduction or prescribed burning during periods
with reduced risk of VLWF occurrence.

Studies investigating fire probability or fire behaviour across

a range of fire sizes may fail to capture relationships with
VLWFs because VLWFs may behave differently from smaller
fires (Alvarado et al. 1998) and are often the consequence of
uncommon circumstances; for example, extreme fire weather
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with abundant fuels and limited resources for suppression in
their early stages. Studies addressing individual large fires have
been geographically specific (Abatzoglou and Kolden 2011:

Irland 2013; San-Miguel-Ayanz et al. 2013; Tedim et al. 2013),
not extending across the western CONUS, or have examined
only fire danger without linking it to actual events (Liu et al.

2013). Our study addresses this knowledge gap by (1) quantify-
ing relationships between climate and the top 2% of fire sizes
representing,33% of all area burned from 1984 to 2010 in the

western CONUS, and (2) quantifying intra-annual relationships
between preceding and concurrent weather and the probability
of VLWF occurrence across the western CONUS.

We analyse and quantify antecedent and concurrent weather

and fire danger associations with VLWFs. We hypothesise that
VLWFs are associated with an identifiable climatology; that is,
individual VLWFs can be quantitatively linked to specific

weather both leading up to and during these events. Using
climate data (daily and monthly data over the record) and the

Monitoring Trends in Burn Severity (MTBS) database of fire
perimeters and burn severity, which has fire date of discovery,
perimeter and burn severity classifications from 1984 to present,

we focus on three questions. (1)What is the spatial and temporal
distribution of VLWFs ($50 000 acres, or ,20 234 ha) from
1984 to 2010 across the western CONUS? (2) Do antecedent and

concurrent fuel conditions and fire danger for VLWF occur-
rence differ from those for other large wildfire ($10 000 acres,
or $4047 ha but ,20 234 ha) occurrence? (3) How does this

spatial and temporal variation affect the probability that a
VLWF will occur?

Data and methods

Study area

Our analysis grouped climate and fire information within
existing regional, operational management boundaries across

the West CONUS (Fig. 1). Specifically, we examined the
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Fig. 1. Spatial patterns of four fire statistics across the study domain from 1984 to 2010. Smaller polygons

indicate Predictive Service Areas by which statistics are calculated to show finer scale variability, whereas

larger polygons in bold indicate Geographic area Coordination Centers: (a) total number of fires in Monitoring

Trends in Burn Severity (MTBS)$404 ha, (b) number of fires in MTBS$20 234 ha, (c) hectares burned between

1984 and 2010 by all fires and (d) total area burned between 1984 and 2010 for fires$ 20 234 ha divided by total

area burned by all fires.
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geographic areas defined by the US National Interagency Fire
Center as Geographic Area Coordination Center (GACC).
GACCs are operation management units used in decision

making and regional forecasting for air qualitymanagement that
do not coincide directly with ecological boundaries or vegeta-
tive fuel types. Each GACC is broken into smaller polygons

called Predictive Service Areas (PSAs) (http://psgeodata.fs.
fed.us/data/gis_data_download/static/PSA_2009.zip, accessed
1 October 2011). To study wildland fires specifically, we

excluded PSAs within each GACC for which large fires are
primarily agricultural (defined by the Terrestrial Ecoregion L1
boundaries, Olson et al. 2001), but wildland fires include fires
that burn in non-forested and forested areas. There are eight

GACCs in the study area: Southern California (SCAL), North-
ern California (NCAL), Pacific Northwest (PNW), Northern
Rockies (NROCK), Rocky Mountains (RM), Western Great

Basin (WGB), Eastern Great Basin (EGB) and Southwest (SW).
We modelled VLWFs at the GACC scale because the rarity of
VLWFs makes finer scale analyses difficult with sample sizes

too small to develop predictive models.

Fire data

For fire area, we used fire perimeters from the MTBS dataset
produced by the US Forest Service (http://www.mtbs.gov,
accessed 1 October 2012). MTBS spans 1984–2010 and
includes area burned and burn severity data within nearly 6000

fire perimeters$405 ha across the domain. Any areas within the
fire perimeter, categorised as ‘unburned/unchanged’ by MTBS,
were excluded in burned area calculations to achieve a more

accurate estimate (Kolden et al. 2012).
We used past records of fire discovery date to define the core

fire season within each GACC and excluded data outside the

season from the analysis. Statistical analyses often assume that
data classes are balanced, but this is not the case with rare events
such as VLWFs (He and Garcia 2009). Consequently, we
reduced each year to the core fire season, creating a more

balanced dataset and improving inference from statistical anal-
yses. The core fire season was defined for each GACC as the
time window within which fires accounting for the middle 95%

of the area burned in an average year over the record (Fig. 2;
i.e. Abatzoglou and Kolden 2013).

Each week of the core fire season was classified as a ‘VLWF

week’, ‘large fire week’ or ‘no fire week’. Because VLWFs are
rare, there were many fewer VLWF weeks than weeks in which
noVLWFs occurred (e.g. RMhas threeVLWFweeks out of 621

weeks available for analysis). Analysis was aggregated to weeks
to maintain the fine temporal resolution that makes this analysis
so unique. Unfortunately, daily resolution would have created
even more of an imbalance in the data and is more subject to

temporal autocorrelation. Also, MTBS provides dates of dis-
covery, but there is some uncertainty in that estimate, thus
aggregating data to the week made the most sense.

Climate data and derived indices

Climate data were averaged spatially across all pixels (800m for
monthly data, 4 km for daily data) within each GACC perimeter
(excluding PSAs within the Great Plains). This aggregation

assumes homogeneity of fire regime, vegetation, climate and
weather within a GACC. Two gridded climate datasets over the

record were considered: (1) monthly temperature (8C) and pre-
cipitation from Parameter-elevation Regressions on Indepen-
dent Slopes Model (PRISM, Daly et al. 2008), and (2) daily

surface meteorological data from Abatzoglou (2013). Multiple
biophysical metrics were also available and used for this
analysis because, as Abatzoglou and Kolden (2013) suggest,

biophysical metrics are more directly linked to fuel flamma-
bility than meteorological variables. Furthermore, biophysical
metrics provide a means by which short- and long-term effects

of moisture in a system are represented in the window of
vulnerability that defines the ‘VLWF climatology’, the focus
of this study.

Biophysical metrics used include the Palmer Drought Sever-

ity Index (PDSI) and fire danger indices, calculated from the
daily surface meteorological data, of the National Fire Danger
Rating System (NFDRS) and the Canadian Forest Fire Danger

Rating System (CFFDRS). PDSI, calculated from the monthly
data, is a time-averaged measure of drought believed to track
soil moisture (Mika et al. 2005). NFDRS calculations used fuel

model G (dense conifer stand with heavy litter accumulation) to
maintain consistency with previous studies (Andrews et al.

2003) and greenup dates to initiate each year defined as the first

day when the normalised growing season index is .0.5 (Jolly
et al. 2005; M. Jolly, pers. comm.). CFFDRS used greenup
defined as when maximum temperature is .128C for 7 conse-
cutive days. Both CFFDRS and NFDRS are used because each

has been shown to be more effective depending on the region
(Fig. 3, Xiao-rui et al. 2005).

We used six indices from the NFDRS and CFFDRS:

(1)NFDRS–100-h fuelmoisture (FM100) represents themoisture
content of dead fuels 2.5–7.6 cm in diameter or approximately
the moisture content of 1.9–10.2 cm of soil; (2) NFDRS–1000-h

fuel moisture (FM1000) represents moisture content of dead
fuels 7.7–15.2 cm in diameter. Lower values of FM100 and
FM1000 represent drier conditions; (3) NFDRS–energy release
component (ERC) represents the daily worst-case scenario of

total available energy per unit areawithin the flaming front at the
head of a fire; (4) NFDRS–burning index (BI) represents the
difficulty of fire control as a function of spread rate and ERC.
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Fig. 2. Core fire season and extended fire season by Geographic Area

Coordination Center. Seasons are defined by the average middle 95% of

annual area burned (inside white rectangle) in the historical record. The

shaded grey region denotes the middle 75% of annual area burned. The

points represent very large wildland fire events by discovery date.
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Higher values of ERC and BI represent higher fire danger;
(5) CFFDRS–fine fuel moisture content (FFMC) represents
the relative ease of ignition and flammability of fine fuels;

(6) CFFDRS–duff moisture code (DMC) represents average
moisture content of loosely compacted organic layers of
moderate soil depth. Higher values of FFMC and DMC

represent drier conditions. These indices were selected because
exploratory data analysis suggested strong associations with
the fire data.

Large fire v. VLWF climatology

A composite analysis was used to answer our second question:
do antecedent and concurrent fuel conditions and fire danger

differ for VLWFs than for other large wildfires and for weeks
during the fire season without large fires? Composite analysis
compares fire climatology between GACCs by showing the

climate and fire danger percentiles for fires classified as large
v. VLWF relative to the date of discovery. As explained under
Fire data, the analysis is aggregated by weeks, whereby weeks

are defined by day of year, for example, week 1¼ 1–7 January.
This shows the difference in mean (and 95% confidence inter-
vals estimated using bootstrapping with n¼ 1000) of biophys-

ical conditions for all fires within a given classification for a
GACC from 10 weeks before and after the discovery of the fire

(when the number of weeks before or after discovery (x) is zero,
i.e. the week of discovery). Temperature and PDSI were used to
examine fire climatologies up to 1 year before discovery and to

provide insight into longer term lagged effects of weather.

Probability of a VLWF week

We built logistic regression models for each GACC to estimate
the probability of a VLWF week. Predictor variables included
climate and fire danger indices as described previously. The

hypothesised mechanisms relating each predictor variable to
VLWF probability suggest a variety of potential time lags. For
example, weather several weeks in advance of ignition could
influence fire risk through reduced fuel moisture, whereas

weather after ignition could influence VLWF probability by
spread from wind and lack of significant precipitation. To allow
for these time lags during model building, we used composite

graphs to identify predictor variables at multiple time lags. Note
that PDSI and temperature (TEMP) are monthly indices that
were assigned to all days of the month. Furthermore, explanatory

variables used in this analysis were raw values rather than the
percentiles applied by managers for fire danger ratings. Percen-
tiles are dependent on the range of values in the model database

used to generate them. Thus, using percentiles over-calibrates
models to the dataset used to generate them by influencing
regression coefficients in the model selection process.

We applied the following binomial logistic regression model

selection procedure independently for each GACC. We built
models by minimising the Akaike Information Criterion (AIC),
then removing insignificant (P. 0.05) variables one at a time;

re-estimating the model after each elimination. Next, we exam-
ined the resultant models for any correlated predictors (Pearsons
correlation coefficient$0.8) retaining the first occurrence of the

correlated predictors. We confirmed that all predictor variables
retained in the model still met the significance criterion
(P, 0.05). Forward stepwise regression using AIC avoids
corruption of a levels usually associated with forward selection
(Anderson et al. 2000; Anderson and Burnham 2002; Mundry
and Nunn 2009). We used standard odds ratios (OR) to estimate
each predictor’s influence on the probability of a VLWF week.

To understand how sensitive model selection and accuracy
statistics were to the choice of VLWF threshold, we built an
additional two models for each GACC using alternative defini-

tions of VLWF ($10,000 acres, or ,4407 ha and $25 000
acres, or ,10 117 ha).

We evaluated each model using a combination of precision,

recall and area under the (receiver operating characteristic) curve
(AUC). Precision is ‘a measure of exactness’ returning the
probability of correctly classifying a VLWF, whereas recall is
‘ameasure of completeness’ returning the probability of correctly

classifying a VLWF that is actually a VLWF (He and Garcia
2009). There is generally a trade-off between precision and recall.
To calculate precision and recall, the model output – probability

of a VLWF week – was converted into binary predictions of
VLWFweek (Table 1).We used a sliding classification criterion,
in increments of 0.05, to translate model output into binary

VLWF predictions. For example, a classification criterion of
probability $0.5 categorises any probability $0.5 as a VLWF
week. We evaluated model predictive accuracy across all thresh-
olds using AUC, which quantifies the relative trade-offs between
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true positives (benefits) and false positives (costs) (He andGarcia
2009). An AUC of 0.5 indicates that the model predicts no better
than random, whereas a value of 1.0 indicates that the model

makes perfect predictions (Harrell 2001).

Results

Large fire v. VLWF climatology

In all GACCs, unlike monthly PDSI values, monthly tempera-

ture anomalies are highly variable and show limited evidence of
meaningful differences in conditions between VLWFs and large
fires (Fig. 4). One exception is that fire season temperatures

coincident with VLWFs inNROCKandRMhave,28Cwarmer
temperature anomalies than during large fires. In contrast, PDSI
values for VLWFs in several GACCs (most notably inWGBand

less so in EGB and SCAL) show a transition from pluvial con-
ditions (PDSI .2¼wet) the year before fire discovery to

moisture deficits during the fire season. VLWFs in SW occur
during periods of drought and after negative PDSI the summer
previously. VLWFs in RM and NROCK appear to occur during

drought.
In contrast to the limited and disparate relationships observed

for VLWFs using monthly metrics, strong commonality across

GACCs was observed in the composite analysis for weekly fire
danger indices (Fig. 5). Elevated fire danger generally occurs
during and up to 3 weeks following the week of VLWF

discovery. Fire danger indices with slower response times (i.e.
FM1000, ERC, DMC) sustain conditions in the upper decile in
the weeks following the discoveryweek. For large wildfires, fire
danger indices were more moderate and typically subsided the

week following fire discovery. In many of the GACCs, there is
higher fire danger and drier fuels 2 weeks before the discovery
week of VLWF than other large fires. These differences are

used to define predictor variables as time durations of calculated
indices both before and after fire discovery driving fire growth.

Probability of a VLWF week

Models to predict the probability of a VLWF week and the
effect of predictors on the output probability differed by GACC
(Tables 2, 3). In general, models predicting VLWF probability

for all GACCs included seasonal drought signals (FM100,
FM1000, ERC, BI, DMC). Models for EGB and NROCK
included short-term, fire weather signals (FFMC). Models for

EGB and WGB included long-term moisture signals (PDSI).
The OR (Table 3) demonstrates the effect size of any one

predictor variable on the response by holding all other predictors

constant. In general, models for all GACCs show that hotter,

PNW
17 : 77 : 18

Te
m

p 
an

om
al

y 
(�

C
)

P
D

S
I

3

�3

2

�2

1

�1

0

3

�3

2

�2

1

�1

0

NROCK
11 : 63 : 33

EGB
19 : 83 : 18

RM
3 : 62 : 33

NCAL
9 : 73 : 25

Months prior to discovery month

15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0

SCAL
11 : 93 : 26

WGB
13 : 69 : 20

SW
6 : 78 : 42

VLWF
LF
NF

Fig. 4. Monthly composite plots of temperature anomaly and Palmer Drought Severity Index up to 21 months before and 2 months

post themonth of discovery. Solid lines denotemean conditions where red is very largewildland fires (VLWFs), blue is all other large

fires (LF,$405 ha) and grey is weeks in the fire season with neither VLWF nor LF – ‘no fire’. The dashed line is the VLWFmonth.

The numbers at the top are the ratios of the number of VLWF months to number of large fire months to number of VLWF months

with no fire. Note: EGB, Eastern Great Basin; NCAL, Northern California; NROCK, Northern Rocky Mountains; PNW, Pacific
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Table 1. Contingency table structure and associated model accuracy

statistics precision and recall

Note: TP, true positive; FP, false positive; TN, true negative; FN, false

negative. Recall¼TP/(TPþFN)¼ probability of predicting a very large

wildland fire (VLWF) that is actually a VLWF. Precision¼TP/(TPþ
FP)¼ probability of correctly classifying a VLWF

Observed

VLWF Large fire

Predicted VLWF TP FP

Large fire FN TN
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drier conditions increase the probability of a VLWF week.
EGB and WGB show PDSI with an OR .1, thus increased
long-term moisture increases the probability of a VLWF week.

The NROCK model also includes FFMC and DMC, which
have OR ,1, indicating that wetter conditions increase the
probability of a VLWF.

Models for all GACCs have AUC .0.8, suggesting that the

models have high predictive ability (Harrell 2001), but examin-
ing the trade-offs between precision and recall demonstrates that

model probabilities are classified as zero above low threshold
probabilities (Fig. 6). Because of the large zero inflation, the
model can achieve reasonably high predictive ability by simply

predicting a probability of zero. This phenomenen is most
obvious when the percentage of non-VLWF weeks $98 (e.g.
NCAL, SCAL and SW at 20 234 ha and RM at 10 117 and
20 234 ha).

Models predicting the odds of aVLWFusing smaller fire size
thresholds with more fire weeks are more balanced (smaller
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1¼ 1–7 January. The x-axis shows weeks from discovery week. The lighter shaded regions denote the 95% confidence interval of the mean.

The numbers at the top are the ratios of number of VLWF weeks to number of large fire weeks to number of weeks with no fire. Note: EGB,

Eastern Great Basin; NCAL, Northern California; NROCK, Northern Rocky Mountains; PNW, Pacific Northwest; RM, Rocky Mountains;

SCAL, Southern California; SW, Southwest; WGB, Western Great Basin.

Table 2. Models by Geographic Area Coordination Center (GACC) to calculate the probability of conditions during a given week being conducive

for fire growth to very large wildland fire (VLWF) size

AUC is the area under the receiver operating characteristic curve. Note: we defined explanatory variables as the calculated index averaged over the suffix such

that ‘.1’ denotes the week before discovery, ‘.0’ is the discovery week and ‘.n#’ is the number of weeks post discovery week. PDSI, Palmer Drought Severity

Index; TEMP, mean temperature; FFMC, fine fuel moisture code; DMC, duff moisture code; FM100, 100-h fuel moisture; FM1000, 1000-h fuel moisture;

ERC, energy release component;and BI, Burning index

GACC VLWF size (ha) P(VLWF)¼ 1/(1þ eb) where b¼ AUC

EGB 20 234 31.033� 0.226�FFMC.0� 0.260�TEMP.0� 0.015�DMC.n3� 0.238� PDSI.n1 0.84

NCAL 20 234 �8.500þ 1.290�FM1000.n1 0.86

NROCK 20 234 �13.951� 0.309�BI.n3þ 0.672�FM100.0þ 0.334�FFMC.n1þ 0.026�DMC.0� 0.366�TEMP.1 0.93

PNW 20 234 6.664� 0.514�TEMP.n1þ 0.468� FM1000.n1 0.86

RM 20 234 11.930� 0.057�DMC.n3 0.97

SCAL 20 234 18.660� 0.193�ERC.n1 0.80

SW 20 234 8.430� 0.017�DMC.0 0.92

WGB 20 234 �4.532þ 1.279�FM100.0� 0.392� PDSI.0 0.86
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portion of zeros), andmay bemore robust because they included

a larger sample of VLWFs. We identified similar predictor
variables for models across the three fire size thresholds within a
region in all GACCs except NCAL and PNW (Tables 2, 4).

Discussion

VLWFs across space and time

The spatial and temporal distributions of VLWFs show three
patterns. First, mapping the number of fires and percentage area

burned by VLWFs (Fig. 1) shows fine-scale variability at the
PSA scale such that many PSAs have no VLWF occurrence,
PSAs with the most fires also have the most VLWF occurrences

and PSAs with VLWFs have a substantial percentage of annual
fire area burned by VLWFs. Second, fire seasons are qualita-
tively different among GACCs (Fig. 2) and, with the exception

of SW, VLWFs occur throughout the fire season. Third, years
with the most annual area burned are years with not only a
substantial fraction of hectares burned by VLWFs (Fig. 7), but
also an increased number of VLWFs (Fig. 8).

VLWF climate space

This analysis is unique in that it specifically examines large
wildfire events and thus provides insight into what drives indi-

vidual VLWFs. We focus on the climate space (i.e. climate–
VLWF relationships), because although there are other controls

on fire size – such as fuel abundance and connectivity, and

topographic complexity (Hessburg et al. 2000; Littell et al.
2009; Kennedy and McKenzie 2010) – extreme climate and
weather can neutralise the effects of other controls (Turner

and Romme 1994; Bessie and Johnson 1995). We compared
findings from this analysis to those for annual area burned in
previous studies because similar broad-scale ecological

mechanisms were associated with VLWFs, thus suggesting that
the VLWF size class may substantially influence associations
found in aggregate analyses.

Identifying the VLWF climate space requires both examin-

ing the fire climatologies and interpreting the effect of predictors
on the probability of aVLWFweek. Fire climatologies provided
qualitative assessment of both short- and long-term fire danger

preceding and post-fire discovery across a variety of time lags
(Figs 4, 5). From these climatologies, we determined windows
of vulnerability during which fire weather leading up to and

following the discovery of fire is important for determining fire
growth to VLWF size. These qualitative findings provided a
foundation from which to develop quantitative models of
VLWF probability. Using these models and ORs (Table 3), we

interpret the effect of predictors on the probability of a VLWF
week despite incomplete independence between predictors – a
result of nonlinear relationships between meteorological data

and the biophysical metrics used to generate the predictors.
Because predictors are not completely independent, the sign and

Table 3. Table of odds ratio (OR, i.e. effect size) of explanatory variables for each Geographic Area Coordination Center (GACC) model

OR.1 indicates a positive relationship that an increase in the predictor results in an increase in the probability of a very large wildland fire (VLWF) week.

OR, 1 indicates a negative relationship that an increase in the predictor results in a decrease in the probability of a VLWFweek. Note: CI, confidence interval.

We defined explanatory variables as the calculated index averaged over the suffix such that ‘.1’ denotes the week before discovery, ‘.0’ is the discovery week,

and ‘.n#’ is the number of weeks post discoveryweek. PDSI, PalmerDrought Severity Index; TEMP,mean temperature; FFMC, fine fuelmoisture code; DMC,

duff moisture code; FM100, 100-h fuel moisture; FM1000, 1000-h fuel moisture; ERC, energy release component; BI, Burning Index

GACC Explanatory variable OR

EGB variable FFMC.0 TEMP.0 DMC.n3 PDSI.n1

OR 1.25 1.3 1.01 1.27

95% CI (0.98,1.61) (1.05,1.60) (1.00,1.03) (1.02,1.58)

NCAL variable FM1000.n1

OR 0.28

95% CI (0.12,0.64)

NROCK variable BI.n3 FM100.0 FFMC.n1 DMC.0 TEMP.1

OR 1.36 0.51 0.72 0.97 1.44

95% CI (1.14,1.63) (0.28,0.92) (0.58,0.89) (0.96,0.99) (1.06,1.97)

PNW variable TEMP.n1 FM1000.n1

OR 1.67 0.63

95% CI (1.15,2.43) (0.44,0.89)

RM variable DMC.n3

OR 1.06

95% CI (1.02,1.10)

SCAL variable ERC.n1

OR 1.21

95% CI (1.10,1.33)

SW variable DMC.0

OR 1.02

95% CI (1.01,1.02)

WGB variable FM100.0 PDSI.0

OR 0.28 1.48

95% CI (0.15,0.50) (1.15,1.90)
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Fig. 6. Trade-offs between precision and recall of two characteristic Geographic Area Coordination

Centers: Eastern Great Basin and Northern California, for each of the three very large wildland fire

(VLWF) size thresholds. The x-axis is the probability threshold for classifying a VLWF (i.e. a probability

.0.2 is a VLWF). Solid circles represent normalised precision (how well do the models predict VLWFs)
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numbers on the right of each graph denote the percentage of non-VLWF weeks. For a complete list of

precision and recall values, see Table A1 in the Appendix.

Table 4. Models by Geographic Area Coordination Center (GACC) to calculate the probability of conditions during a given week being conducive

for fire growth to very large wildland fire (VLWF) size for alternate size thresholds defining VLWF

AUC is the area under the receiver operating characteristic curve. Note: we defined explanatory variables as the calculated index averaged over the suffix such

that ‘.1’ denotes the week before discovery, ‘.0’ is the discovery week, and ‘.n#’ is the number of weeks post discovery week. PDSI, Palmer Drought Severity

Index; TEMP, mean temperature; FFMC, fine fuel moisture code; DMC, duff moisture code; FM100, 100-h fuel moisture; FM1000, 1000-h fuel moisture;

ERC, energy release component; BI, Burning Index

GACC VLWF size (ha) P(VLWF)¼ 1/(1þ eb) where b¼ AUC

EGB 10 117 0.004þ 0.501�FM1000.n3� 0.165�TEMP.n1� 0.181�PDSI.n3 0.78

4047 �1.393þ 0.550�FM1000.n2� 0.161�TEMP.n1� 0.202�PDSI.0 0.80

NCAL 10 117 64.410� 0.594�FFMC.0� 0.120�BI.0 0.84

4047 12.211� 0.153�ERC.0 0.79

NROCK 10 117 4.67� 0.158�BI.n3þ 0.567�FM100.0 0.93

4047 �8.822� 0.192�BI.n2þ 0.133� FM100.0þ 0.278� FFMC.n1� 0.021�DMC.n3� 0.199�TEMP.n1 0.93

PNW 10117 3.759þ 0.584�FM100.0� 0.322�TEMP.n1� 0.010�DMC.n3 0.88

4047 0.761þ 0.450�FM100.0� 0.103�BI.n3 0.81

RM 10 117 9.640� 0.045�DMC.n1 0.93

4047 1.450� 0.033�DMC.n2þ 0.483� FM1000.1 0.92

SCAL 10 117 �1.53680� 0.158�ERC.n1þ 0.175� FFMC.1 0.75

4047 10.460� 0.141�ERC.n1þ 0.101�TEMP.n3 0.74

SW 10 117 �2.938þ 0.753�FM1000.n2 0.89

4047 �1.500þ 0.599�FM1000.n1� 0.080�TEMP.n3 0.86

WGB 10 117 14.596� 0.012�DMC.0� 0.180�TEMP.n2� 0.345� PDSI.0� 0.080�BI.n2 0.81

4047 40.910� 0.366�FFMC.0 – 0.296�PDSI.0� 0.069�BI.n2 0.76
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magnitude of coefficients cannot be used to compare the relative
influence of predictors directly.

Confirming our hypothesis that VLWFs are associated with

an identifiable climatology, the climate space of VLWFs across
theWest CONUS shows very different fire danger leading up to
and during discovery of VLWFs than with large wildfires.

Despite commonality among GACCs, there is variability that
reflects either fuel-limited or flammability-limited fire regimes.
Fuel-limited fire regimes in extremely hot, dry climates are

enabled by fuel accumulation and connectivity developed
during wet conditions the year prior to fire (Veblen et al.

2000). Flammability-limited fire regimes in more moderate
climates and forested vegetation (Littell et al. 2009) have

sufficient fuel to burn under the right conditions. It is difficult
to classify a fire regime for entire GACCs because of finer scale
variability of climate, ecotypes (i.e. groupings of similar

ecosystems) and fire regimes within them (Fig. 1; Littell et al.
2009; Littell et al. 2010).

The composite plots (Figs 4, 5) show that mountainous and

Northern regions are generally flammability limited, in agree-
ment with the conceptual model of annual area burned and
climate (Littell et al. 2009). For example, in PNW, the most

influential predictor (defined using the magnitude of the OR) is
temperature the week following discovery. In agreement with
findings from Littell et al. (2010), which show annual area
burned increase with low summer precipitation and high

temperature, the probability of VLWF increases under hotter
(OR¼ 1.67) and drier (OR¼ 0.63) conditions (Table 3).
In NROCK, our models and the composite graphs suggest that
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drying of medium-sized fuels (FM100, OR¼ 0.51) during the
discovery week and increased temperature leading up to it
(OR¼ 1.44), as well as increased heat and rate of fire growth

(BI, OR¼ 1.36), increase the probability of occurrence of
VLWFs. Counter-intuitively, when FFMC and DMC increase
(i.e. drier conditions), the probability decreases. An increase in

FFMC probably decreases the probability because the model
uses both FM100 and FFMC, which are sufficiently correlated
(Pearsons correlation coefficient¼ 0.55) to have interacting

effects on the predicted probability, but not enough so to be
excluded from the model. Although an increase in DMC
decreases the probability of a VLWF, the OR for DMC is very
close to 1 and thus does not heavily influence the output

probability. In RM and NCAL, drying of fuels increases the
probability of VLWF occurrence.

NROCK and RM experience periods of warmer temperature

in the winter preceding VLWF occurrence, and it could be
argued that this relates to timing of snow melt and consequent
associations with fire incidence (Westerling et al. 2006).

Although the relationship between winter temperature anoma-
lies and timing of snow melt is beyond the scope of this
investigation, it is worth noting that PDSI does not discriminate

between snow and rain precipitation, thus examining the timing
of temperature anomalies and PDSI could provide some insight
into how the timing of snow melt affects moisture conditions in
the system. However, neither NROCK nor RM models select

PDSI as a dominant predictor and thus no conclusions can be
reliably drawn from this analysis relating snow melt and winter
temperature anomalies. It could be argued that a direct measure

of snow melt (i.e. snow water equivalent (SWE)) should have
been included in the analysis because it has been shown to
correlate with area burned during the first half of the fire season

for these areas (Abatzoglou and Kolden 2013). However,
preliminary analyses used to identify predictor variables for
model development showed no strong qualitative relationship
between VLWF occurrence and SWE, thus excluding SWE as a

predictor variable for the quantitative portion of this work. Lack
of a relationship between SWE and VLWF may be a result of
aggregating all VLWFs into one fire season rather than looking

at how VLWF climatology varies within a fire season, an
analysis that is not feasible because of limited samples of
VLWFs in some regions (notable RM).

Dry, fuel-limited areas such as WGB and parts of EGB show
similar dominant predictors with both long- and short-term
precipitation influencing the occurrence of VLWFs, in agree-

ment with findings from previous studies (Westerling and
Swetnam 2003; Littell et al. 2009). In WGB, seasonal drought
(i.e. dry conditions over the season, FM100, OR¼ 0.28) peaking
the week of discovery, and increased long-termmoisture signals

(PDSI, OR¼ 1.48) increase the probability of VLWF occur-
rence. Similarly, in EGB, increased short-term (FFMC, OR¼
1.25) and seasonal drought (DMC, OR¼ 1.01) during and

up to 3 weeks post the discovery week, as well as increased
temperature (OR¼ 1.3) and long-term moisture signal (PDSI,
OR¼ 1.27), increases the probability of VLWF. Although an

increase in long-term moisture signal (PDSI) to increase the
likelihood of VLWF may initially seem counter-intuitive, this
represents the fuel-limited fire regime over the regions. Because
PDSI values are influenced by values up to 10 months earlier

(Cook et al. 2007), increased values of PDSI indicate wet
conditions in the months preceding discovery of VLWF.
Although PDSI was designed for agricultural purposes in the

Midwestern US (Palmer 1965), and was not intended as a
panacea for long-termmoisture stress, the composite plots show
positive PDSI for at least 1 year prior in WGB and EGB for a

year to 6 months before the month of VLWF discovery con-
firming preceding wet conditions. Previous studies have shown
area burned in non-forested areas of EGB and WGB had

significant correlations with the previous year’s moisture
(Littell et al. 2009; Abatzoglou and Kolden 2013). EGB also
showed significant correlations between area burned in forested
areas and in-season fire danger (Abatzoglou and Kolden 2013),

thus demonstrating the mixed fire regime of EGB between fuel
and flammability limited.

Similar to EGB, SW has an intermediate fire regime

(Swetnam and Baisan 1996; Littell et al. 2009). In concurrence,
our model shows that increased seasonal drought (DMC,
OR¼ 1.02) peaking the week of discovery increases the proba-

bility of VLWF occurrence. There is a sharp decline in fire
danger indices the month following discovery of all fires in the
dataset for SW, especially VLWFs (Fig. 5), which is likely

attributable to monsoonal moisture responsible for curtailing
fire growth. In correspondence, Fig. 2 shows that most VLWFs
occur in the hot, dry months before the monsoon. It could be
argued that if precipitation events, such as monsoon, can occur

during periods of long-term drought and concurrent with fire
(thus affecting the likelihood of that fire growing to VLWF size)
they should be included as predictors in model development

independent of biophysical metrics. However, the time scale of
moisture variability not captured by biophysical metrics (e.g.
FFMC) is finer (e.g. diurnal) than this analysis examines for the

likelihood of VLWF occurrence (Viney 1991). Thus, although
short-term precipitation might indeed influence the likelihood
of VLWF occurrence, it would require a separate analysis at the
daily time scale, instead of weekly, which was selected here to

avoid uncertainties with autocorrelation (see Fire data).
Although biophysical metrics are most appropriate for this
analysis, which examines weekly time scales leading up to

and directly post-fire, evidence that VLWFs in the SW could
be influenced by the onset of monsoon warrants further investi-
gation of precipitation as a predictor of fire growth to VLWF

size, at the daily time scale.
Drivers of wildfire in SCAL differ from the rest of the

CONUS. In general, wildfires are driven by either Foehn-type

winds known as Santa Anas (Sergius et al. 1962; Westerling
et al. 2004; Keane et al. 2008; Parisien and Moritz 2009) or
decreased spring precipitation (Littell et al. 2009). Our models
do not include wind as a direct predictor, rather a component of

the calculated indices (e.g. BI) used to define explanatory
variables. Nevertheless, in agreement with the understanding
that seasonal drought influences the occurrence of wildfire, our

models found that the potential for how hot the fire burns (ERC,
OR¼ 1.21), a function of seasonal drought the week following
the discovery week, has a positive relationship with the proba-

bility of a VLWF week.
All of the models had higher accuracy (AUC $0.8) at the

highest VLWF size threshold than with smaller fire size thresh-
olds. However, similarity in models across fire size definitions
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provides confidence that our models are robust to the specifica-
tion of particular VLWF thresholds and to heavy zero inflation.
With this confidence inmodel output, we can now use preceding

and concurrent weather to predict specific fire growth to VLWF
size, and we can investigate intra-annual timing of VLWFs.

Domain of model applicability

Besides the intrinsic difficulties of modelling rare events
(Alvarado et al. 1998; Coles 2001), other factors limit the
domain of applicability of these models. First, these models

assume that area burned approximately equates to fire effects.
VLWFs are not always the most environmentally and socially
costly (Kasischke et al. 2005) as costs include lives lost, struc-

tures destroyed, economic cost and degradation of air quality.
Second, wildfires are controlled and driven by other factors
besides short- (i.e. concurrent) and long-term (i.e. up to a year

previous) weather. VLWFs can occur because of large areas of
continuous fuels, merging of multiple fires, time available for
spread, and ineffectiveness of suppression (Gill and Allan
2008), which can be taxed if there are multiple coincident

wildfires. In all GACCs, there was at least one VLWF week in
which more than one VLWF burned, but there are no indices or
metrics in this analysis that account for preparedness or avail-

ability of suppression resources. Third, the biophysical metrics
used here to regress the binary occurrence of a VLWF in a given
week do not include all climate influences, for example, atmo-

spheric stability (Werth et al. 2011). Fourth, there is an element
of uncertainty in these models associated with ignitions and
discovery date. Our models do not account for proximity to the

wildland–urban interface or the time between the fire start and
initial attack of suppression efforts (Gill and Allan 2008), which
can vary widely depending on the number of concurrent fires.
Multiple ignitions in different locations canmerge into one large

fire (Gill and Allan 2008), referred to as a complex fire, thus
there is some uncertainty about classifying the discovery date of
a VLWF. Lastly, thesemodels were developed at the scale of the

GACC as this is useful for management, but there is much fine-
scale variability both in vegetation type (e.g. in reference to
application of Fuel Model G for NFDRS calculations) and fire

regime that could affect the applicability of these models at a
finer resolution.

These confounding factors limit the domain of applicability
of these models to the coarse scale of the GACC. Predicting

VLWFs at finer scales will require explicit fire spread model-
ling, whether probabilistic or mechanistic, and acceptance of
even greater uncertainty about factors producing a VLWF.

Nonetheless, our models provide a foundation to begin investi-
gating ecological drivers and timing of specific VLWFs, rather
than using aggregate statistics such as annual area burned.

Conclusions

Because large wildfires have lasting ecological and social
effects, and future projections under a changing climate estimate
increased annual area burned (Flannigan et al. 2009; Littell et al.

2010) and certain types of weather and climate extremes
(Coumou and Rahmstorf 2012), there is a need to understand
how climate influences the occurrence of VLWFs. This analysis
not only assesses, but also quantifies the spatial and temporal

domain of VLWFs and related climate patterns. In general,
hotter, drier conditions both leading up to and during a VLWF
increase the probability of a fire being identified as a VLWF in

theWest CONUS. Climate drivers of VLWFs are similar to (but
not the same as) those of annual area burned, which is largely
attributable to broad-scale ecological mechanisms driving

wildfire. Years with large area burned have more VLWFs and a
substantial portion burned by VLWFs, thus demonstrating how
annual aggregates can be influenced by individual events.

A focus on individual fires can identify not only intra-annual
timing of large annual area burned that can aid managerial
preparedness – for example, to keep smaller fires small when the
probability of a VLWF week is high (Tedim et al. 2013) – but

also the specific conditions that support fire growth to VLWF
size. Short-term operational fire management uses fire danger
indices (Xiao-rui et al. 2005) or the probability that fire will

spread in a given day (Podur andWotton 2011). The application
of these models is that they quantify what we intuitively know
about VLWF (e.g. hotter and drier is more risky) and as such,

provide a quantifiable justification for proactive fire manage-
ment and policy. The predictive capability of these models
allows us to plan for the future by not only understanding

intra-annual timing of VLWFs, but also how weather leading
up to and during the event can support fire growth to VLWF
size. Proactive fire management includes carefully placing fuel
reductions averting the climatic potential of aVLWFoccurrence

(Williams 2013) and controlled burns during times of year with
lower VLWF risk.
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Appendix

Table A1. Tables of each Geographic Area Coordination Center (GACC) providing the numerical values of precision and recall given different

probability thresholds for classifying a very large wildland fire (VLWF)

Percentage imbalance is the percentage of non-VLWFweeks in the analysis. Note: EGB, EasternGreat Basin; NCAL,NorthernCalifornia; NROCK,Northern

Rocky Mountains; PNW, Pacific Northwest; RM, Rocky Mountains; SCAL, Southern California; SW, Southwest; WGB, Western Great Basin

Accuracy statistic Precision Recall Precision Recall Precision Recall

VLWF size (ha) 20 234 10 117 4047

GACC EGB

Percentage imbalance 93.9 87.1 76.5

Probability Threshold (for classifying a VLWF) 0.05 0.15 0.89 0.18 0.9 0.28 0.98

0.1 0.21 0.68 0.23 0.85 0.34 0.94

0.15 0.19 0.39 0.27 0.78 0.37 0.88

0.2 0.23 0.29 0.3 0.59 0.39 0.8

0.25 0.26 0.21 0.34 0.41 0.43 0.76

0.3 0.25 0.11 0.37 0.29 0.45 0.69

0.35 0.33 0.07 0.32 0.17 0.49 0.61

0.4 0.5 0.07 0.4 0.1 0.53 0.48

0.45 1 0.04 0.29 0.03 0.57 0.39

0.5 1 0.02 0.59 0.31

0.55 0.64 0.23

0.6 0.55 0.11

0.65 0.64 0.08

0.7 0.6 0.03

0.75

0.8

0.85

0.9

0.95

1

GACC NCAL

Percentage imbalance 98.4 97.2 93.7

Probability Threshold (for classifying a VLWF) 0.05 0.04 0.22 0.21 0.69 0.12 0.86

0.1 0.17 0.22 0.14 0.31 0.15 0.53

0.15 0 0 0.14 0.13 0.2 0.36

0.2 0.17 0.06 0.21 0.19

0.25 0.5 0.06 0.33 0.14

0.3 1 0.06 0.25 0.03

0.35 0 0

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GACC NROCK

Percentage imbalance 97 94.4 91.5

Probability Threshold (for classifying a VLWF) 0.05 0.18 0.81 0.23 0.9 0.27 0.89

0.1 0.26 0.75 0.29 0.8 0.33 0.78

0.15 0.32 0.69 0.37 0.73 0.39 0.72

0.2 0.42 0.59 0.39 0.63 0.46 0.7

0.25 0.35 0.44 0.42 0.57 0.51 0.65

0.3 0.5 0.38 0.44 0.5 0.55 0.63

0.35 0.67 0.25 0.52 0.47 0.54 0.56

0.4 0.67 0.25 0.62 0.43 0.58 0.5

0.45 0.8 0.25 0.67 0.4 0.63 0.48

(Continued )
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Table A1. (Continued)

Accuracy statistic Precision Recall Precision Recall Precision Recall

VLWF size (ha) 20 234 10 117 4047

0.5 0.8 0.25 0.64 0.3 0.71 0.44

0.55 1 0.25 0.56 0.17 0.83 0.41

0.6 1 0.25 0.67 0.13 0.81 0.37

0.65 1 0.19 0.6 0.1 0.88 0.3

0.7 1 0.06 1 0.1 0.92 0.26

0.75 1 0.06 1 0.07 1 0.17

0.8 1 0.11

0.85 1 0.09

0.9

0.95

1

GACC PNW

Percentage imbalance 95.8 91.7 80.8

Probability Threshold (for classifying a VLWF) 0.05 0.12 0.83 0.21 0.94 0.25 0.95

0.1 0.18 0.61 0.24 0.78 0.29 0.9

0.15 0.21 0.33 0.27 0.61 0.35 0.86

0.2 0.21 0.17 0.32 0.53 0.38 0.78

0.25 0.22 0.11 0.33 0.39 0.44 0.71

0.3 0 0 0.34 0.33 0.46 0.58

0.35 0 0 0.44 0.33 0.51 0.53

0.4 0.5 0.31 0.51 0.39

0.45 0.53 0.25 0.57 0.31

0.5 0.83 0.14 0.61 0.27

0.55 0.75 0.08 0.61 0.13

0.6 0.67 0.06 0.6 0.07

0.65 1 0.03 0.6 0.04

0.7 0 0

0.75

0.8

0.85

0.9

0.95

1

GACC RM

Percentage imbalance 99.5 98.9 96.9

Probability Threshold (for classifying a VLWF) 0.05 0 0 0.13 0.57 0.2 0.84

0.1 0 0 0.13 0.29 0.25 0.74

0.15 0 0 0.22 0.29 0.29 0.58

0.2 0 0 0 0 0.29 0.32

0.25 0 0 0.33 0.26

0.3 0 0 0.4 0.21

0.35 0 0 0.5 0.21

0.4 0.5 0.16

0.45 0.5 0.11

0.5 0.5 0.11

0.55 0.33 0.05

0.6 0.33 0.05

0.65 0.33 0.05

0.7 0.5 0.05

0.75

0.8

0.85

0.9

0.95

1

GACC SCAL

Percentage imbalance 98 95.4 90.2

Probability Threshold (for classifying a VLWF) 0.05 0.09 0.5 0.1 0.72 0.14 0.93

0.1 0.27 0.29 0.18 0.41 0.17 0.67

0.15 0.29 0.14 0.28 0.22 0.2 0.44

0.2 0.2 0.07 0.39 0.16 0.28 0.3

(Continued )
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Table A1. (Continued)

Accuracy statistic Precision Recall Precision Recall Precision Recall

VLWF size (ha) 20 234 10 117 4047

0.25 0 0 0.17 0.03 0.31 0.16

0.3 0 0 0.35 0.1

0.35 0.46 0.07

0.4 0.38 0.04

0.45 0.5 0.01

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GACC SW

Percentage imbalance 99.1 97.4 90.9

Probability Threshold (for classifying a VLWF) 0.05 0.13 0.43 0.12 0.76 0.21 0.93

0.1 0.18 0.29 0.1 0.29 0.27 0.87

0.15 0.17 0.14 0.1 0.14 0.29 0.68

0.2 0.25 0.14 0.23 0.14 0.31 0.53

0.25 0.33 0.14 0.5 0.1 0.32 0.43

0.3 0.33 0.14 0.35 0.37

0.35 0 0 0.36 0.28

0.4 0.41 0.19

0.45 0.57 0.16

0.5 0.69 0.12

0.55 0.88 0.1

0.6 1 0.03

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GACC WGB

Percentage imbalance 96.3 92.6 84.2

Probability Threshold (for classifying a VLWF) 0.05 0.12 0.67 0.15 0.9 0.19 0.98

0.1 0.21 0.47 0.21 0.6 0.23 0.89

0.15 0.27 0.4 0.25 0.4 0.27 0.73

0.2 0.31 0.33 0.31 0.37 0.3 0.59

0.25 0.3 0.2 0.32 0.27 0.39 0.5

0.3 0.5 0.13 0.4 0.2 0.52 0.34

0.35 0.33 0.07 0.33 0.1 0.47 0.22

0.4 0.33 0.07 0.33 0.1 0.5 0.14

0.45 0 0 0.33 0.07 0.43 0.09

0.5 0 0 0 0 0.4 0.06

0.55 0 0 0.17 0.02

0.6 0 0

0.65 0 0

0.7 0 0

0.75

0.8

0.85

0.9

0.95

1
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