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A B S T R A C T   

This study examines the post-fire biogeophysical and biochemical dynamics after several high-severity wildfires 
that occurred in mixed conifer and ponderosa pine forest types in the Sierra Nevada and Klamath Mountains 
regions between 1986 and 2017. We found a consistent pattern of reduced leaf area index (LAI) in the first year 
after fire, followed by gradual recovery over the subsequent 25 years. Recovery rate varied between forest types. 
For example, average summer LAI for 16-25 years post-fire was 88% of the pre-fire average for mixed conifers in 
the Sierra Nevada, 64% for ponderosa pine in the Sierra Nevada, and 83% for mixed conifers in Klamath 
Mountains (63, 35, and 64% in winter, respectively). The slower recovery of LAI in ponderosa pine could be due 
to poor species diversity and drier climate. Summer and winter albedo increased progressively until 12 years 
post-fire in Sierra Nevada, while it continued to increase until 25 years post-fire in Klamath Mountains. Pon
derosa pine had the highest summer (0.148 ± 0.001) and winter (0.5 ± 0.0033) albedos. Post-fire changes in 
evapotranspiration (ET) and gross primary productivity (GPP) were consistent with the changes in LAI. Both 
summer and winter ET and GPP returned to pre-fire levels by 25 years after fire in mixed conifers of both regions, 
while the ET and GPP did not recover to pre-fire levels in ponderosa pine. Wildfires increased the land surface 
temperature (LST) immediately after fire in summer. This effect was significantly higher in mixed conifers of the 
Sierra Nevada (11 ± 0.03 ◦C) compared to Klamath Mountains (7 ± 0.01 ◦C). Our results suggest that reduced 
ET, consistent with less leaf area and its associated reduced evaporative cooling is the main factor controlling the 
immediate post-fire warming effect of wildfires in these regions. The findings reported here can be used to 
understand ecological responses to wildfire in these and nearby ecoregions as they represent mean historical 
behavior across multiple wildfire events.   

1. Introduction 

The last several decades have been marked by increases in both large 
wildfire frequency and intensity across the western US (Westerling et al., 
2006; Abatzoglou and Williams, 2016; Westerling, 2016), especially in 
the mountain ecoregions of California and Colorado, threatening life 
and property, modifying ecosystem functioning and services, and 
affecting climate (Ghimire et al., 2012; Dennison et al., 2014; Abatzo
glou and Williams, 2016; Williams and Abatzoglou, 2016; Williams 
et al., 2021). In California, the area burned by wildfire increased from 

0.6 million acres y− 1 to 0.75 million acres y− 1 from the 2000s to the 
2010s. Recently, in 2020 alone, wildfire burned more than 4 million 
acres in California, the most since 2002 (National Interagency Fire 
Center, 2020). While increased burned area in the mountains of the 
northwestern US have been driven by climatic factors such as increasing 
temperature, drier summers, below average winter precipitation, and 
earlier spring snowmelt (Westerling et al., 2006; Morgan et al., 2008; 
Littell et al., 2009; Westerling, 2016), changes in other aspects of fire 
regime (e.g., frequency, distribution, intensity, and duration) can be 
more directly influenced by human-caused ignitions (Balch et al., 2017) 
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and resource management decisions and actions related fire suppression 
beginning more than 170 years ago (Stephens et al., 2009; Hessburg 
et al., 2021). Wildfire events are becoming more severe than those 
experienced in the last two centuries (Parks and Abatzoglou, 2020) with 
ongoing fire suppression in some systems and the increased likelihood of 
climate extremes, which, together with altered post-fire climatic con
ditions, might already be altering the trajectories and rates of post-fire 
forest recovery, with the effects likely to become more pronounced in 
the coming decades (Rogers et al., 2011; Tepley et al., 2017; Guz et al., 
2021). 

Wildfire is a critical component in terrestrial and atmospheric dy
namics of our Earth system (Bowman et al., 2009; Ward et al., 2012; 
Archibald et al., 2018; McLauchlan et al., 2020). While wildfires, like 
many disturbances, catalyze ecological diversity (Stevens-Rumann and 
Morgan, 2019), today’s acceleration of disturbance regimes can pro
foundly alter a wide range of ecosystem characteristics such as stand 
structure, species composition, leaf area, canopy ecophysiology, and 
micro-climate (Liu et al., 2005). Disturbance-induced ecological change 
can have a large and long-lasting influence on ecosystem carbon fluxes 
(Amiro et al., 2000; Goulden et al., 2011; Ghimire et al., 2012; Williams 
et al., 2016), water fluxes (Chambers and Chapin, 2002; Liu et al., 2005), 
and energy fluxes (Liu et al., 2005; Amiro et al., 2006; Li et al., 2017; 
Williams et al., 2021). It takes several years, decades, or even centuries 
for ecosystem fluxes to return to pre-disturbance levels, and the timeline 
is contingent on stand structure and composition, as well as type and 
intensity of disturbance (Thornton et al., 2002; Dore et al., 2010). 
Therefore, the expected increase in the intensity and frequency of 
megafires and the associated long-lasting ecological effects require 
spatially explicit quantification of ecosystem responses to severe wild
fires to assess how these events are altering terrestrial ecosystems, how 
they are changing surface-atmosphere exchanges, and how the associ
ated changes influence the evolution of the climate system. 

To better understand how wildfires affect the functioning of forest 
ecosystems, post-fire characteristics need to be monitored continuously 
(Masek et al., 2013). Quantification of ecological responses to wildfire 
events can be achieved through either direct field measurements of 
ecosystem properties after fire or by using remote sensing observations. 
Field-based observations including flux tower measurements offer a 
valuable approach to documenting how carbon, water, and energy 
balances change with disturbance and recovery process (Williams et al., 
2014). Several field-based studies have summarized the effects of 
wildfires on land-surface fluxes (Chambers and Chapin, 2002; Jin and 
Roy, 2005; Amiro et al., 2006; Randerson et al., 2006; Dore et al., 2010; 
Ma et al., 2020). For example, Chambers et al. (2005) reported 
decreased net radiation over boreal ecosystem and increased net radi
ation over tundra ecosystem by using tower-based microclimatic and 
eddy covariance flux measurements to characterize net radiation be
tween boreal and tundra forest ecosystems before and after fire. 
Although local-scale insights into these ecological dynamics are 
emerging with the continued expansion of ecological and biophysical 
observation networks (e.g., AmeriFlux, NEON), these observations 
cannot directly quantify the larger, regional impacts on weather and 
climate given scale issues and limited sampling (Bonan, 2008). Remote 
sensing can be useful to overcome these limitations through its ability to 
regularly observe burned areas over time over large areas (Storey et al., 
2016). Remote sensing measurements of land surface properties provide 
a valuable means of quantifying spatial and temporal variability before 
and after wildfire events. Since the mid-1980s, satellite remote sensing 
measurements have allowed the development of novel techniques to 
address three different temporal fire-effects phases: pre-fire conditions, 
active fire characteristics, and post-fire responses (Rogan and Franklin, 
2001; Lentile et al., 2006; French et al., 2008; Veraverbeke et al., 2010; 
Chu and Guo, 2014). Many satellite sensors are capable of detecting and 
assessing burned areas (Miller and Thode, 2007; Lanorte et al., 2013). In 
recent years, the Moderate Resolution Imaging Spectrometer (MODIS) 
onboard the Terra and Aqua satellites, due to its high-quality temporal 

and spectral resolution and the availability of continuous data since 
2000, has been widely used for both active fire detection (Chuvieco 
et al., 2008; Giglio et al., 2010; Giglio et al., 2018; Loboda et al., 2011) 
and assessing changes in land surface properties in post-fire environ
ment (O’Halloran et al., 2012; Micheletty et al., 2014; Rogers et al., 
2015). For example, Jin et al. (2012) used MODIS Enhanced Vegetation 
Index (EVI) product (MOD13A1) (Huete et al., 2002) during 2000-2011 
to study the influence of burn severity on post-fire vegetation recovery 
in North American boreal forests. They found that the most severe burns 
had the greatest reduction in summer MODIS EVI in the first year after 
fire which recovered to within 90%-108% of pre-fire levels by 5-8 years 
after fire. Similarly, O’Halloran et al. (2014) used MODIS broadband 
shortwave blue-sky albedo data (MCD43A, 500m spatial resolution) 
(Schaaf et al., 2002) combined with field surveys of vegetation after fire 
in the Oregon Cascade Range to examine the hypothesis that snag 
attrition exerts a significant control on albedo in addition to vegetation 
recovery following fire. This study reported strongest correlations be
tween albedo perturbations and vegetation densities with snags. 

Most landscape-scale information, to date, on ecological impacts of 
wildfires comes from chronosequence studies of land surface properties 
in post-fire environments using multi-spectral satellite data, coupled 
with field data with a focus on Mediterranean (Veraverbeke et al., 
2012a, 2012b; Meng et al., 2014; Yang et al., 2017) and boreal eco
systems (Amiro et al., 2000; Chambers and Chapin, 2002; Randerson 
et al., 2006; Lyons et al., 2008; Amiro et al., 2010; Jin et al., 2012; 
Rogers et al., 2013); other forest types have been less studied with only a 
few studies focusing on mixed conifers and ponderosa pine of western 
US (Chen et al., 2011; Dore et al., 2012; Meng et al., 2015; Roche et al., 
2018). Moreover, most previous studies have tended to focus on indi
vidual fires and land surface components, thus providing only a partial 
characterization of the surface states and fluxes after fire. To our 
knowledge, no study has documented patterns of LAI, albedo, LST, ET, 
and GPP dynamics as they unfold after severe wildfire events across 
forest types and eco-climatic settings over large areas using satellite 
data, especially in the mountain ecoregions of western US. The current 
study aims to broaden the investigation of post-fire ecological effects 
and recovery patterns through application of MODIS land-surface 
products to a series of wildfires that occurred between 1986 and 2017 
in the Sierra Nevada and Klamath Mountains. Specifically, the goals of 
this study were to evaluate the post-fire vegetation recovery processes 
over time using MODIS-derived LAI, quantify post-fire changes in sur
face states and fluxes based on forest types, ecoclimatic setting, 
snow-cover condition, and year since burn, and examine relationships 
between LAI and other land surface properties in these post-fire 
environments. 

2. Methods 

2.1. Study area 

We focused our study in the Sierra Nevada and Klamath Mountains 
regions of the western US, areas that are severely disturbed by wildfires 
in recent decades. We considered the footprints of 409 wildfires that 
occurred in the study area from 1986 to 2017 (Fig. 1). Both regions 
contain a wide diversity of bioclimatic gradients, forest types, and 
disturbance regimes. The climate of California is Mediterranean, with 
cool-wet winters followed by a long summer drought, which creates 
conditions conducive to wildfires (Westerling et al., 2006). California’s 
Sierra Nevada climate varies with elevation and latitude, as well as with 
a strong rain shadow effect that leads to wetter conditions on the 
western side of the mountain chain. Sierra Nevada forests are home to 
diverse range of forest species (North, 2012). Vegetation in the Sierra 
Nevada ranges from grassland and oak savannah at lower elevations, to 
pine-oak forest, mixed-conifer forest (e.g., Pinus ponderosa, Pseudotsuga 
menziesii, Pinus attenuate, Quercus chrysolepis, Quercus kelloggii), and 
subalpine forest at higher elevations (Roche et al., 2020). The dominant 
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vegetation in Sierra Nevada is mixed conifer followed by lodgepole pine 
and ponderosa pine (Ruefenacht et al., 2008). The precipitation in Sierra 
Nevada varies with elevation, with annual precipitation ranging from 
800 mm at lower elevation to more than 1700 mm at higher elevations 
where most precipitation occurs during the winter as snow (Lutz et al., 
2009). 

The Klamath Mountains is also characterized with high topographic 
relief and steep climatic gradient. The climate is Mediterranean, with 
substantial variation in precipitation with elevation and distance from 
the Pacific coast (Grabinski et al., 2017). The type of vegetation and fire 
regime in this region are influenced by both topographical and geolog
ical complexity. The Klamath Mountains is dominated by broadleaf 
hardwood at the lower elevation and Douglas-fir, Ponderosa pine, and 
mixed conifer at higher elevations (Whittaker, 1960). The dominant 
vegetation in Klamath Mountains is mixed conifer followed by 
Douglas-fir and spruce/fir/hemlock (Ruefenacht et al., 2008). 

Due to insufficient availability of high severity burn samples for 
some forest types, we considered only mixed conifer (SN-mixed conifer) 
and ponderosa pine (SN-ponderosa pine) in the Sierra Nevada, and 
mixed conifer (KM-mixed conifer) in the Klamath Mountains to allow for 
comparison of post-fire ecological responses between and within two 
different regions. 

2.2. Remote sensing data and data products 

Data on burned areas and burn severity were obtained from Moni
toring Trends in Burn Severity (MTBS) for the period of 1986–2017 
(Eidenshink et al., 2007). Although some subjectivity can be introduced 
in the classification of burn severity by MTBS into low-, moderate-, and 
high-severity (Eidenshink et al., 2007), in general, low-severity relates 

to significant damage to and consumption of low vegetation and some 
understory shrubs or trees; moderate-severity corresponds to total 
damage to and consumption of understory vegetation with some over
story tree mortality; and high-severity indicates greater or complete 
overstory tree mortality (Keeley, 2009). We resampled the original 
MTBS dataset from its 30 m resolution to 500 m resolution, and only 
retained 500 m pixels that had at least 75% of the 30 m pixels burned to 
remove noise from pixels with an unclear mix of burn and unburn 
conditions. We ignored pixels that were burned more than once between 
1986 and 2017 as such pixels can add noise to the post-fire trajectory of 
ecosystem properties. We stratified our analysis of post-fire recovery by 
forest type as defined by a USFS forest type group map (Ruefenacht 
et al., 2008). We retained only those pixels that had at least 75% of their 
forest within a single forest type according to the 250 m forest type 
group map. We intersected the forest type map and fire severity map to 
obtain pixels that were burned with high severity in each forest type, 
yielding 2245, 151, and 1696 pixels in SN-mixed conifer, SN-ponderosa 
pine, and KM-mixed conifer, respectively. 

This study utilized several spatially and temporally consistent 
MODIS products (Table 1) to assess the biogeophysical and biogeo
chemical effects of fire-induced change in vegetation in the study area. 
We obtained all MODIS satellite data tile subsets (tiles h8v4 and h8v5) 
from 2000 to 2019 from the MODIS data archive (https://www.earth 
data.nasa.gov/). The main advantage of using of MODIS products over 
reflectance values is that these products convert reflectances into bio
geophysical and biogeochemical processes more usable in and compa
rable to other observation and modeling studies (Bright et al., 2013). 
The MODIS products used in this study are provided with a sinusoidal 
projection and each geographic data tile covers an area of approximately 
1200 × 1200 km. Within each data tile, we used quality assurance (QA) 

Fig. 1. Map of the Sierra Nevada and Klamath Mountains study regions within the western U.S. overlain by wildfires that burned between 1986 and 2017 
(Eidenshink et al., 2007). 
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flags to ensure that only the highest-quality values were included, 
removing all retrievals involving cloud cover and those flagged for low 
quality. 

For albedo, we used the MODIS collection 6 BRDF/Albedo daily 500 
m product (MCD43A3). The MODIS albedo product provides both black- 
sky and white-sky albedos for MODIS bands 1-7 as well as three broad 
bands spanning the visible, near-infrared, and the shortwave frequencies 
(Schaaf et al., 2002). The black sky (BSA) and white sky albedos (WSA) 
represent the fraction of radiation reflected by the surface under two 
extreme conditions. BSA represents the fraction of reflection in the 
absence of a diffuse component and is a function of solar zenith angle. 
WSA represents the fraction of reflection in the absence of a direct 
component when the diffuse component is isotropic (Schaaf et al., 
2002). Since BSA depends on the incident solar geometry, it is intensely 
affected by complex terrains like those in our study area leading to 
biased albedo values. To partially ameliorate this bias, we examined 
shortwave broadband white-sky albedo for all the dates available be
tween 2000 and 2019 as it is less sensitive to view and solar angles (Gao 
et al., 2005). 

Data on LAI were derived from MODIS collection 6 LAI/fraction of 
photosynthetically active radiation (fPAR) 8-day 500 m product 
(MCD15A2H) (Myneni et al., 2002). The MODIS LAI algorithm includes 
a main look-up-table (LUT)-based procedure that exploits the spectral 
information contained in red and NIR bands, and a back-up algorithm 
that uses an empirical relationship between the Normalized difference 
vegetation Index (NDVI) and canopy LAI, and fPAR (Myneni et al., 
2002). 

Similarly, we used the MODIS version 6 GPP 8-day 500 m product 
(MOD17A2H) and ET 8-day 500 m product (MOD16A2), to estimate 
surface energy, carbon, and water cycle processes in the post-fire envi
ronment. The GPP product is based on radiation use efficiency concept 
(Running et al., 2004). Previous studies confirmed that there exists no 
consistent overestimation or underestimation in MODIS GPP compared 
to productivity from field-based measurements. A direct validation 
comparison work by Martel et al., (2005) on MOD17A2 that used 38 
years of site-observation showed a high correlation and low bias (r =
0.859 ± 0.173; relative error = 24%). However, MOD17 GPP still ex
hibits inaccuracies due to inaccuracies in input datasets like MODIS land 
cover, fPAR/LAI, and daily meteorological data. 

The MODIS ET product (MOD16A2) is based on the Penman- 
Monteith equation (Mu et al., 2011). The performance of MOD16A2 
has been assessed by several authors in different parts of the globe based 
on comparisons with flux tower measurements. A number of studies 
have reported an underestimation of actual ET in arid and semi-arid 
regions of Europe (Feng et al., 2012; Hu et al., 2015), and an 
improved performance in European sites located in temperate and fully 
humid climates (Hu et al., 2015) and forest ecosystems (Kim et al., 2012; 
Bhattarai et al., 2018). Another study suggests that inaccuracies in 
MOD16A2 are mainly due to spatial variability of input data required by 

retrieval algorithm and the coarseness of the Global Modeling and 
Assimilation Office (GMAO) climate outputs (Kim et al., 2012). 

Finally, to document changes in land surface temperature resulting 
from wildfires, we used MODIS version 6 LST daily product (MYD11A1; 
Wan, 2008) produced at a spatial resolution of 1 km. The MYD11A1 
algorithm uses the classification-based emissivity method to estimate 
the emissivity in MODIS bands 31 and 32, and then uses generalized 
split-window LST retrieval algorithm to generate the LST product under 
clear sky condition, while under cloudy sky condition, the algorithm 
does not retrieve LST (Wan, 2008). The accuracy of this LST product is 
about 1K under clear sky conditions, according to ground validation 
results, and could meet the accuracy requirement of most modeling 
applications on LST (Wan, 2014). 

We stratified the sampling of albedo and LST by snow-free and snow- 
covered conditions based on the corresponding snow cover condition 
defined at a pixel level by the MODIS snow cover daily 500 m product 
(MOD10A1; Salomonson and Appel, 2004). The snow product uses the 
Normalized Difference Snow Index (NDSI) to identify snow cover. For 
this study, we assigned a snow-free condition when snow cover was less 
than 30%, and a snow-covered condition when the snow cover was 
greater than 75%. We chose a threshold of 30 and 75% because it 
maximized data quality by removing noise from pixels with an unclear 
mix of snow and snow-free conditions. The summer albedo and LST used 
in this study were snow-free, while the winter albedo was snow-covered. 
We did not create snow-covered summer albedo and snow-covered 
summer and winter LST due to insufficient sample availability within 
the high severity burn conditions. 

2.3. Analyzing biophysical and biochemical responses to fires 

MODIS estimates of LAI have shown unrealistic variation between 
eight-day composites in coniferous forest (Cohen et al., 2006). To con
trol for unrealistic variation in LAI, albedo, ET, GPP, and LST, as a 
preliminary step in our analysis, we computed mean monthly (e.g., LAI, 
albedo, and LST), or total monthly (e.g., ET and GPP), values that we 
could later sample with time since burning (in years) by compositing all 
samples within our stratified design. We computed average monthly 
summertime values of LAI, albedo, ET, GPP, and LST for each year by 
adding June, July, and August grids and dividing by the number of 
composites in these months. Yearly winter values of these variables were 
computed the same way using data from December, January, and 
February. In the case of albedo and LST, we first sampled burned pixels 
based on snow-free and snow-covered conditions using the threshold 
mentioned above and then computed mean monthly values within those 
strata, separately. Initial preprocessing involved transforming spatial 
resolutions and projections, clipping the dataset to the appropriate lo
cations of study, and creating associated intermediate time series data 
stacks of monthly maps. 

We then analyzed how surface properties like albedo, LST, LAI, ET, 
and GPP change post-fire relative to pre-fire by sampling each product as 
an annual time series from pre-fire years to post-fire and analyzing for 
differences at least three years before wildfire events and for all years of 
record after wildfire events. Samples from each fire event were pooled 
according to strata of forest type, climate setting, and snow cover con
ditions and compared across these classes. Within these classes, burn 
events from different years were composited together and temporally 
aligned to represent three years prior to and all years after burning. For 
example, we used MODIS data products from 2001 to 2019 and there
fore, the one-year post-fire composite includes pixels that were burned 
between 2000 and 2017 (final year of fire data) as 2001 MODIS data 
serves as one-year post-fire for 2000 fires, 2002 MODIS data serves as 
one-year post-fire for 2001 fires and so on. This enabled us to examine 
how satellite-derived biophysical properties vary with wildfire events. 
The trajectory of surface properties for mixed conifer and ponderosa 
pine within the Sierra Nevada region were compared to assess within- 
region variability, while the trajectory of mixed conifers in Sierra 

Table 1 
MODIS datasets analyzed and their resolutions, temporal coverages, and 
sources.  

Surface 
Property 

Dataset Resolutions Time 
Span 

Source 

Albedo MCD43A3 500 m; daily 2000- 
Present 

Schaaf et al., (2002) 

LST MYD11A1 1 km; daily 2002- 
Present 

Wan, (2008) 

fPAR/LAI MCD15A2H 500 m; 8- 
day 

2002- 
Present 

Myneni et al., (2002) 

ET MOD16A2 500 m; 8- 
day 

2001- 
Present 

Mu et al., (2011) 

GPP MOD17A2H 500 m; 8- 
day 

2000- 
Present 

Running et al., 
(2004) 

Snow Cover MOD10A1 500 m; daily 2000- 
Present 

Salomonson and 
Appel, (2004)  
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Nevada and Klamath mountains were compared to assess among-region 
variability. In addition, changes in land surface properties were aver
aged within preset time-intervals of 0-5, 6-15, and >15 years post-fire, 
and by season. The width of the time intervals was based on the 
notion that there will be abrupt change in the first few years post-fire 
and gradual change in subsequent years. Since the directionality of 
post-fire albedo changes rapidly in the first few years, we further cate
gorized 0-5 years post-fire interval into 0-3 years post-fire and 4-5 years 
post-fire to capture the diverse pattern of albedo perturbation post-fire. 
This approach generated seasonal curves for changes in surface prop
erties that ensue with time since fire and for specific forest types and 
ecoregions. We calculated the group means for pre-fire and preset time- 
intervals and tested their difference through combining one-way anal
ysis of variance (ANOVA) and Tukey’s honest significant differences 
(HSD). 

To detect forest type-specific anomalies in surface properties due to 
wildfire in the seasonal trajectory of burned sites, the seasonal differ
ences between average pre-fire values and post-fire values for each year 
were calculated as: 

ΔXi,j = Xpost− fire,i,j − Xpre− fireavg ,i  

Where Xpost− fire,i,j is post-fire biophysical property under study for forest 
type i (i = SN-mixed conifer, SN-ponderosa pine, KM-mixed conifer) and 
post-fire year j (j = 1, 2, …, 25) and Xpre− fireavg ,i is an average value of pre- 
fire biophysical property for forest type i. The difference metric can be 
used to provide insight into the post-fire ecological response to wildfire. 

Pearson’s correlation coefficient was used to examine variance in 
annual ecosystem properties explained by LAI, with statistical signifi
cance set at ∝ = 0.05. 

3. Results 

3.1. Effects of wildfire on post-fire vegetation recovery 

LAI values were substantially reduced by fire, with a gradual re
covery toward the pre-burn LAI values, but remaining diminished even 
25 years later (Fig. 2a–c). The magnitude of decline post-burn, and the 
rate of post-burn recovery varied by forest type. Leaf area exhibited a 
simple seasonal cycle in all three examples, with a mid- to late-summer 
peak and a winter minimum. Pre-fire LAI continued to increase through 
the growing season to a late season peak for mixed confers in both re
gions, but post-fire LAI peaked in the early summer season. For pon
derosa pine stands, the seasonal timing of the peak in LAI was largely 
unaltered by burning. The largest difference between pre-fire and post- 
fire LAI occurred during the growing season (Fig. 2a–c). The increase in 
LAI from 0–5 years since fire to 16–25 years since fire indicates vege
tative recovery over post-fire years. However, the LAI was consistently 
lower in post-fire years compared to pre-fire LAI for all months in each 
forest type. The mean LAI during both summer and winter differed 
significantly among pre-fire and preset time-interval groups (considered 
representative of the recovery trends) for all forest types; large sample 
sizes gave statistical tests considerable power so that even small differ
ences were significant (Fig. 2a–c). 

Turning to annual time series, we found that LAI varied little across 
the three pre-burn years, decreased abruptly immediately after burning, 
and gradually increased thereafter for all forest types. LAI did not return 
to the pre-fire condition by 25 years after fire. The rate of LAI recovery 
was slowest for SN-ponderosa pine, intermediate for SN-mixed conifer, 
and fastest for KM-mixed conifer during both summer and winter 
(Fig. 2d, f). Recovery of winter LAI was slower than for summer LAI, and 
recovery of ponderosa pine LAI was slower than for mixed conifers 
(Fig. 3d and f, Table 2). The average summer LAI for 16–25 years since 
fire category was 88 ± 0.8, 64 ± 1.8, and 83 ± 1.1% of the pre-fire LAI, 

Fig. 2. Seasonal dynamics (a–c) of vegetation recovery as defined by LAI in mixed conifers and ponderosa pine forest types of Sierra Nevada and Klamath Mountains. 
Pre- and post-fire LAI and its anomaly during summer (d and e) and winter (f and g), where lines show means and error bars represent plus and minus one stan
dard error. 
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Fig. 3. Seasonal dynamics of snow-free (a–c) and snow-covered (d–f) pre-and post-fire albedo in mixed conifers and ponderosa pine forest types of Sierra Nevada and 
Klamath Mountains. The temporal trajectory of summer albedo (g) and its anomaly (h) represent snow-free albedo while wintertime albedo (i) and its anomaly (j) 
represent snow-covered albedo, where lines show means and error bars represent plus and minus one standard error. 

S. Shrestha et al.                                                                                                                                                                                                                                



Agricultural and Forest Meteorology 320 (2022) 108939

7

for SN-mixed conifers, SN-ponderosa pine, and KM-mixed forest, 
respectively (63 ± 1.2, 35 ± 2.5, and 64 ± 1.8% in winter, respectively) 
(Table 2). The post-fire LAI of KM-mixed conifers was consistently 
higher than those of SN-mixed conifers and SN-ponderosa pine. The KM- 
mixed conifer experienced the largest difference between pre- and post- 
fire LAI among the forest types in the first post-fire year during summer, 
with a mean LAI difference of 2, while ponderosa pine experienced 
largest difference after 25 years since fire, with an LAI difference of 0.7 
(Fig. 2e). 

3.2. Effects of wildfires on surface states and fluxes 

Surface albedo was substantially altered by burning, with a general 
increase above the pre-fire values, and with a much larger response in 
snow-covered winter conditions than in summer. In some cases, albedo 
declined in the first few years after burning. For example, we found a 
significant decrease in average summer snow-free albedo in the first 
three years after fire for mixed conifers of the Klamath region which did 
not recover until five years post-fire (Fig. 3c). For 0–3 years post-fire, 
average snow-free albedo in mixed conifer forest of both regions was 

consistently lower than pre-fire values during winter months (Fig. 3a–c). 
Time series of albedo in summer also showed an initial decline after fire, 
but then at about 2 or 3 years after fire, albedo was elevated above the 
pre-fire, typically peaking at about 12 years post-burn, while it 
continued to rise until year 25 post-fire in KM-mixed conifer (Fig. 3g). 
Elevated post-burn albedo is presumably due to increasing canopy 
cover, the relative high albedo of grasses and shrubs that establish in 
early succession, and the loss of black carbon coatings on soil and woody 
debris (Chambers and Chapin, 2002). Snow-covered winter albedo 
increased immediately after burning, though with variability in the time 
series of SN-ponderosa pine and KM-mixed conifers likely related to 
greater noise associated with smaller sample sizes. Averaged over forest 
types with data from multiple fire events from different years, the albedo 
response was more than two-fold greater in winter than in summer and 
peaked at an absolute albedo of 0.5 ± 0.0033 in year 11 after fire 
(Fig. 3i). Summer albedo remained elevated above the pre-fire level 
even after 25 years (Fig. 3h). Winter albedo in mixed conifers returned 
to pre-fire level in year 22 after fire, while it was consistently higher than 
pre-fire level in SN-ponderosa pine even after 25 years since fire 
(Fig. 3j). 

The seasonal distribution of GPP was similar to that of LAI except 
that GPP peaked early in the growing season. GPP was much reduced in 
winter in all cases but rose to a peak in June for all forest types 
(Fig. 4a–c). The pattern of GPP post-burn was almost identical in all 
forest types with KM-mixed forest having highest average pre-fire (0.22 
kg C m− 2 month− 1) and post-fire (0.2 kg C m− 2 month− 1) values among 
forest types (Fig. 4c). Fire had a larger effect on GPP in the summer than 
in other seasons. The annual time series showed sharp declines in GPP 
immediately after fire which then increased gradually over time. The 
recovery of GPP was rapid in summer than in winter owing to vegetation 
regrowth (Fig. 4d and f). A maximum difference of 0.075 kg C m− 2 

month− 1 occurred in SN-ponderosa pine which accounted for 65% of 
loss in GPP in the first year since fire (Fig. 4e). The summer and winter 
GPP of mixed conifer returned to the pre-fire level within 25 years after 

Table 2 
Average percent LAI recovery by forest type and time since fire  

Average Post-fire LAI relative to pre-fire aggregated by years since burn (%)  
Summer Winter 

Forest Type 0 to 5 
Years 

6 to 15 
Years 

16 to 25 
Years 

0 to 5 
Years 

6 to 15 
Years 

16 to 25 
Years 

SN-mixed 
conifer 

46 ±
0.2 

64 ±
0.4 

88 ±
0.8 

21 ±
0.2 

33 ±
0.5 

63 ±
1.2 

SN- 
ponderosa 
pine 

38 ±
1.2 

51 ±
1.2 

64 ±
1.8 

17 ±
1.3 

22 ±
1.3 

35 ±
2.5 

KM-mixed 
conifer 

47 ±
0.2 

72 ±
0.6 

83 ±
1.1 

26 ±
0.3 

50 ± 1 64 ±
1.8  

Fig. 4. Seasonal dynamics (a–c) of pre- and post-fire GPP in mixed conifers and ponderosa pine forest types of Sierra Nevada and Klamath Mountains. Pre- and post- 
fire GPP and its anomaly during summer (d and e) and winter (f and g), where lines show means and error bars represent plus and minus one standard error. 
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fire, while the winter albedo of SN-ponderosa pine was 50% below pre- 
fire level in year 25 after fire (Fig. 4g). 

As with GPP, evapotranspiration was substantially reduced in the 
year immediately after fire, with a gradual recovery over two decades. 
The largest response was seen in summer and autumn when ET was 
relatively high (Fig. 5a–c). The pattern followed that of LAI, which is a 
key input to the MODIS ET algorithm. The declines in ET also correspond 
with increases in LST, which is an independent measure of land surface 
response and consistent with the removal of transpiring vegetation. The 
recovery rate of both mixed conifers was consistent until 13 years 
following fire, after which KM-mixed conifer trailed behind SN-mixed 
conifers (Fig. 5d, f). By 25 years after fire, summer and winter ET 
reached the pre-fire level in both mixed conifers (ET Anomaly > 0), 
while SN-ponderosa pine remained lower than the pre-fire ET 
throughout the 25-year period (ET Anomaly<0) (Fig. 5e, g). 

Summer LST increased markedly 1 year after fire, with peak values of 
40.5 ± 0.13 ◦C and 35.4 ± 0.14 ◦C for mixed conifers of Sierra Nevada 
and Klamath mountains, respectively, presumably due to the removal of 
overstory and understory vegetation and associated evaporative surface 
(Fig. 6c). LST post-fire was elevated by as much as 11 ± 0.03 ◦C in SN- 
mixed conifers to 7 ± 0.01 ◦C in KM-mixed conifers (Fig. 6d). As leaf 
area and vegetative cover recovered, the elevation of LST diminished. 
However, it remained consistently higher than pre-fire LST throughout 
the 25-year period for all three ecoclimatic settings (Fig. 6a, b). 

3.3. Correlation analysis 

Although the winter and summer albedo anomalies varied substan
tially in magnitude, they both had a similar trend throughout the post- 
fire years except that summer albedo declined immediately after fire. 
As shown above, in the 25 year time series post-fire, albedo tended to be 
initially lower than pre-fire, then rose above the pre-fire value, peaked 

and ultimately declined again toward the pre-fire values. Therefore, the 
correlation analysis between albedo and LAI does not uncover the trends 
but rather the degree to which two variables show commensurate in
creases or decreases (Figs. 7a, 8a). Changes in summer albedo were 
positively correlated with LAI for all forest types (p < 0.05) (Table 3). 
Among forest types, KM-mixed conifer showed strong significant posi
tive correlation between LAI and albedo (r = 0.98, p < 0.0001)(Fig. 7a 
and Table 3). Wintertime albedo dynamics were not as clearly correlated 
with LAI and the relationship was statistically significant (p < 0.05) 
only for mixed conifer forest type in Sierra Nevada (Fig. 8a and Table 3). 

Both ET and GPP had strong positive relationships with LAI during 
both summer and winter seasons, with ET and LAI (r > 0.71, p < 
0.0001) and GPP and LAI (r > 0.84, p < 0.0001) for all forest type 
during both summer and winter (Figs. 7, 8 and Table 3). This suggest 
that increase in ET and GPP is partially explained by the re- 
establishment of young vegetation. LST increased markedly with 
decreased LAI in the first year after fire and decreased gradually in the 
following years as LAI recovered, resulting in significant negative cor
relation between LST and LAI for both SN-mixed conifer (r = -0.98, p < 
0.0001) and KM-mixed conifer (r = -0.89, p < 0.0001) (Fig. 7d and 
Table 3). 

4. Discussion 

We described post-fire vegetation recovery using MODIS LAI time 
series and the associated biogeophysical responses to wildfire using 
MODIS albedo, ET, GPP, and LST time series for multiple fires that 
occurred between 1986 and 2017 in Sierra Nevada and Klamath regions 
of the western United States. We documented a large decline in LAI due 
to fire with a multi-site average LAI recovery reaching 88% in 16-25 
years post-fire in SN-mixed conifer, 83% for KM-mixed conifer, but 
only 64% for SN-ponderosa pine (Table 2). We expect that LAI recovery 

Fig. 5. Seasonal dynamics (a–c) of pre- and post-fire ET in mixed conifers and ponderosa pine forest types of Sierra Nevada and Klamath Mountains. Pre- and post- 
fire ET and its anomaly during summer (d and e) and winter (f and g), where lines show means and error bars represent plus and minus one standard error. 
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Fig. 6. Seasonal dynamics (a and b) and temporal trajectory (c and d) of pre- and post-fire LST in mixed conifers and ponderosa pine forest types of Sierra Nevada 
and Klamath Mountains, where lines show means and error bars represent plus and minus one standard error. 

Fig. 7. Scatterplots of mean post-fire biophysical dynamics and post-fire change in LAI during summer.  
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to the pre-fire state continues to unfold over time beyond the 25-year 
period of observation available for this study. This pattern of vegeta
tion recovery is in agreement with the recent synthesis by Bright et al. 
(2019) showing the post-fire recovery of Landsat Normalized Burn Ratio 
(NBR). Their study arrayed data from 12 wildfires that occurred be
tween 2000 and 2007 in three different forest types of western North 
America by each forest type’s time since disturbance to study the tem
poral trajectory of vegetation recovery following wildfire disturbances. 
They reported consistently higher NBR recovery of mixed conifers 
compared to ponderosa pine with average recovery of 68% and 54% in 
year 13 after fire for mixed conifer and ponderosa pine, respectively. 
Other existing studies in different ecosystem types have reported similar 
or faster recovery, for example, Viedma et al. (1997) for a Mediterra
nean ecosystem with mean recovery time of 1 to 18 years, Epting and 
Verbyla (2005) for a Boreal (Alaska) ecosystem with mean recovery time 

of 8 to 14 years, and Hope at al. (2007) for a Chaparral (California) 
ecosystem with mean recovery time of 10 years. Existing studies in these 
regions have reported that the variation in post-fire vegetation recovery 
is strongly related to pos-fire climate (Meng et al., 2015; Bright et al., 
2019) as temperate forests of western North America are limited by 
summer precipitation and cold temperatures (Nemani et al., 2003). In 
addition, more rapid post-fire recovery in mixed conifer compared to 
ponderosa pine forests could be possibly due to richer species diversity 
and also because mixed conifers tend to exist in a wetter climate (Bright 
et al., 2019). In addition, the regeneration of ponderosa pine could be 
impacted by secondary factors like competition with other species. For 
example, in a post-fire regeneration study of ponderosa pine in Arizona, 
Stoddarrd et al. (2018) reported absence of ponderosa pine seedlings 
and dominance of aspen sprouts 15 years after fire in both low- and 
high-severity plots as the harsh post-fire climatic condition favors aspen 
establishment. In year 16, ponderosa pine seedlings were found on one 
(13%) medium-severity plot. Such a continued lack of conifer regener
ation may, with time, lead to the novel ecological conditions (Stoddarrd 
et al., 2018). Likewise, the faster recovery rate of mixed conifers in 
Klamath Mountains than in Sierra Nevada (Fig. 2d, f) might have been 
due to greater post-fire precipitation as it lies further north-west of Si
erra Nevada and in closer proximity to Pacific Ocean. 

Post-fire vegetation growth significantly affected the LAI, reflecting 
an alteration of carbon, water, and energy balance. Our post-fire anal
ysis supports previous findings that post-fire albedo increases with time 
since fire (Montes-Helu et al., 2009; Gleason et al., 2019). Here we 
observed an immediate post-fire decrease in summer albedo which is 
consistent with previously published findings that report albedo drops in 
the range of 0.01–0.05 (Beringer et al., 2003; Jin and Roy, 2005; Amiro 
et al., 2006; Randerson et al., 2006; Lyons et al., 2008; Veraverbeke 
et al., 2012b). Lyons et al., (2008) and Randerson et al., (2006), based on 

Fig. 8. Scatterplots of mean post-fire biophysical dynamics and post-fire change in LAI during winter.  

Table 3 
Pearson correlation coefficients between post-fire pertubation of ecosystem 
properties and LAI during summer and winter seasons. (Forest Types: SN_MC =
Sierra Nevada mixed conifer; SN_PP = Sierra Nevada ponderosa pine; KM_MC =
Klamath Mountains mixed conifer).  

Surface 
Properties 

Summer Winter  

SN_MC SN_PP KM_MC SN_MC SN_PP KM_MC 

Albedo 0.42*** 0.44*** 0.98* -0.53** 0.32 -0.05 
GPP 0.86* 0.99* 0.84* 0.97* 0.91* 0.92* 
ET 0.97* 0.99* 0.95* 0.93* 0.71* 0.84* 
LST -0.98*  -0.89*     

* significant at 0.0001, 
** significant at 0.01, 
*** significant at 0.05 
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MODIS imageries, observed a slight decrease in summer albedo (~ 
0.012), whereas Jin and Roy (2005) and Veraverbeke et al. (2012b) 
reported the average summer albedo drop of 0.024 and 0.032, respec
tively which closely approximates our values. The main reason for the 
immediate post-fire decrease in albedo is the large-scale replacement of 
living vegetation with black carbon on soil surfaces and on dead boles. 
The charred surface strongly absorbs the incoming solar radiation 
causing a significant reduction of the reflection-to-incoming sunlight 
ratio (Veraverbeke et al., 2012b). Additionally, the initial decline in 
summer albedo can also be attributed to post-fire increase in soil water 
content, consistent with observed decrease in ET (Montes-Helu et al., 
2009). As the soil water content increases, the albedo decreases due to 
darkening of soil (Domingo et al., 2000) and an increase in understory 
leaf area in wet season (Thompson et al., 2004) based on results from 
other ecosystem types. Both mixed conifer and ponderosa pine showed a 
consistent but modest increase in summer albedo until 12 years 
post-fire, probably from increased grass and shrub cover and partial loss 
of black carbon that initially coated soil surfaces and dead boles. The 
increase in winter albedo in both mixed conifers and ponderosa pine in 
response to wildfire was likely due to increased snow exposure associ
ated with tree mortality and loss of canopy. Our findings regarding 
maximum changes in snow-covered winter albedo were quite similar to 
those documented by Gleason et al. (2019), who documented an in
crease in snow-covered winter albedo by 0.31 at 13 years post-fire in 
western US burned forests. However, the SNICAR-modeled snow-cov
ered winter albedo change (0.06) by Gleason et al. (2019), attributed to 
the deposit of black carbon on snow, was substantially lower than what 
we report here from empirical study. We can also compare the albedo 
impact of forest fires to the impact of mountain pine beetle attacks, 
another disturbance type common to mountainous ecosystem of the 
western US. Our finding of post-fire summer albedo is consistent with a 
small increase in summer albedo following bark beetle attack reported 
by O-Halloran et al. (2012) and Vanderhoof et al. (2014). Unlike after 
fire, where winter albedo consistently increased with time in the first 12 
post-fire years, winter albedo significantly increased by 4 years after 
beetle attack due to loss of needles followed by decrease in albedo for 
about 9 years after attack due to initial release of surviving and under
story trees and subsequent increase in albedo until 12 years after attack 
as fine branches and the smallest snags began to fall (O-Halloran et al., 
2012). In regard to the role of forest type, both mixed conifers and 
ponderosa pine showed similar seasonal response to wildfire; however, 
SN-ponderosa pine showed substantially higher winter and spring 
albedos in 16–25 years post-fire (Fig. 3a–f), compared to SN-mixed 
conifer. This difference may be attributed to slower post-fire recovery 
of ponderosa pine (Bright et al., 2019) which is characterized by a more 
open canopy for a longer period of time, and which in turn elevates 
illumination of the ground’s snow cover which is highly reflective. 

GPP as estimated with MODIS showed a pronounced decline post-fire 
with a pattern of GPP recovery that well-captured early- to mid- 
succession stages of the conceptual secondary succession model by 
Chapin et al. (2002). GPP was initially low and recovered faster during 
the first 3-4 years post-fire, with a second turning point around 9-10 
years post-fire. GPP in SN-mixed conifer peaked in years 19 and 22 
after fire in summer and winter, respectively, while it continued to rise 
in SN-ponderosa pine and KM-mixed conifer (Fig. 4d and f). We specu
late that this may be followed by stable or slightly reduced GPP at the 
end of succession that would be associated with forest LAI reaching its 
maximum. Our results of post-fire GPP recovery are consistent with the 
dominant patterns of post-fire GPP by Goulden et al. (2011) who showed 
that the GPP continued to increase until year 23 after fire, after which it 
stabilized. In reality, a steady-state in productivity could be achieved 
between 20–60 years, and the required time increases with increasing 
latitude and correspondingly colder temperatures (Amiro et al., 2000). 

Changes in ET in these sites following wildfire were observed to be 
consistent with changes in LAI and GPP which is unsurprising as LAI is 
essentially an input to the MODIS ET algorithm and a direct driver of the 

ET estimate. Most of the existing site-based observation studies on the 
impacts of wildfire on ET in Mediterranean ecosystems are limited to 5 
to 15 years following fire (Dore et al., 2012; Ma et al., 2020), whereas a 
full recovery to pre-fire level may take longer. Here we have examined 
the change in ET, not only immediately following wildfire, but through 
25 years post-fire. Our results showed a decrease in ET immediately after 
fire and gradual increase beginning with year 2 since fire. Decline in ET 
following wildfire have been documented in many studies (Amiro et al., 
2006; Bond-Lamberty et al., 2009; Nolan et al., 2014; Roche et al., 2018) 
with consistent trends regardless of whether they occur in wet or dry 
years (Maina and Siirila-Woodburn, 2019). In this study, the mixed 
conifer in both ecoregions showed complete recovery to pre-fire ET 
levels within the 25 years post-fire (ET Anomaly > = 0) (Fig. 5e, g). Our 
results of post-fire recovery for mixed conifer are in line with the 
post-fire recovery of Roche et al. (2018) and Ma et al. (2020), who 
documented a post-fire ET recovery of ~90% (20 years post-fire) and 
~80% (15 years post-fire), respectively for areas that burned with high 
severity with dominant vegetation comprising mixed conifers. 
Comparing with neighboring deciduous forest (mainly oak species) 
(Cocking et al., 2014; Nemens et al., 2018), our results of absolute ET 
reduction were higher. This may be due to other studies having lower 
mortality and rapid recovery by resprouting, common for oak species as 
present in those other study areas. Our results showed that the 
SN-ponderosa pine only recovered ~75% of pre-fire levels in year 25 
after fire, consistent with less leaf area and higher albedo, both of which 
have been shown to reduce net radiation at post-burn sites (Dore et al., 
2012). Lower ET after fire in ponderosa pine contrasted with other 
studies that documented an increase in ET after fire (Chamber and 
Chapin, 2002; Santos et al., 2003). One potential explanation that could 
explain the differences in findings between this and prior studies in
cludes our study being conducted on semiarid region with a low LAI and 
limited post-fire understory grass and herbaceous expansion, unlike 
prior studies. In this study, we focused on a 25-year post-fire window, 
whereas a full recovery to stable ET conditions may require longer, 
particularly in case of ponderosa pine. The recovery may vary with 
post-fire climate, vegetation type, and ecological processes (Meng et al., 
2015). Additionally, changes in biomass, density, tree size, and species 
composition may impact post-fire ET (Roche et al., 2018; Saksa et al., 
2020); removing versus leaving woody debris on the ground can change 
the evaporative demand by altering land surface albedo and wetness 
(Walker et al., 2006; Knapp et al., 2017). The largest ET and GPP re
covery occurred in regions where wildfire burned dense forest i.e., 
mixed conifers (Seidl et al., 2016, 2017) as these forest types that lie in 
wetter areas with sufficient water availability to support high primary 
productivity (Goulden and Bales, 2014). 

We observed an increase in land surface temperature immediately 
after fire in both regions due to the loss of leaf area. Although the post- 
fire increase in albedo leads to a decrease in amount of net shortwave 
radiation that can contribute to surface cooling, the loss of leaf area 
greatly reduces the partitioning of net radiation into latent heat and 
associated cooling leading to heating of land surface (Chambers and 
Chapin, 2002). Post-fire increases in surface temperature have been 
documented well for several biomes in past studies (Bremer and Ham, 
1999; Chambers and Chapin, 2002; Veraverbeke et al., 2012b; Liu et al., 
2018, 2019). The magnitude of post-fire LST increase depends on 
location. Our results of post-fire LST showed an increase of LST by 11 ±
0.03 ◦C and 7 ± 0.01 ◦C in year 1 after fire in SN-mixed conifer and 
KM-mixed conifer, respectively (Fig. 6c). This is very similar to, if not 
greater than, the 5–12 ◦C immediate post-fire surface temperature in
crease reported by other studies (Amiro et al., 1999; Wendt et al., 2007; 
Montes-Helu et al., 2009; Veraverbeke et al., 2012b). During the sub
sequent post-fire summer seasons, mean LST declined sharply. This 
attenuation can be attributed to the recovery of LAI and char removal. 
Since the change in post-fire albedo is not substantial between SN-mixed 
conifer and KM-mixed conifer, the increase in mean LST after fire over 
SN-mixed conifer indicates reduction in leaf area and associated 
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evaporative cooling, although lower soil moisture level in Sierra Nevada 
region due to less precipitation would also be a contributing factor. 

Finally, we must recognize errors intrinsic to land surface variables 
based on moderate resolution remote sensing. Although several vali
dation comparison works have evaluated MODIS land surface products 
and reported that those products provide reasonable estimations of LAI, 
albedo, ET, GPP, and LST, these studies also showed differences between 
MODIS and ground-based observations due to inaccuracies in input 
datasets or from the coarseness of the spatial scale and interpolated 
meteorological inputs, increasing the uncertainty of our conclusions 
(Cohen et al., 2003; Heinsch et al., 2006; Coll et al., 2009; Jensen et al., 
2011; Wan, 2014; Hu et al., 2015). It is important to note that MODIS 
biogeophysical and biogeochemical variables are inferred from the 
measure of surface reflectances rather than directly observed, and as a 
result, LAI, ET, and GPP covary. Additionally, the MODIS product al
gorithm relies on biome-specific values, which following extensive 
fire-caused mortality, can introduce additional uncertainty. For 
instance, MODIS products like ET and GPP are based on fPAR/LAI and 
the inaccurate estimation of fPAR would necessarily lead to inaccurate 
estimation of ET and GPP. Since land cover map is one of the variables 
used in MODIS fPAR algorithm, the consistently high fPAR values after 
fire could arise from the use of biome specific parameters. As the pri
mary MODIS fPAR algorithm uses look-up-table (LUT) for different bi
omes, this could easily be a source of error in fPAR derivation if the 
wrong biome classification is used. Also, the MODIS GPP algorithm uses 
a set of biome-specific radiation use efficiency parameters (ℰ) that are 
extracted from a biome properties look-up table (BPLUT) to convert 
fPAR into GPP. Inaccuracies in biome classification, or within-biome 
variation in surface attributes, could lead to the inaccurate 
biome-specific radiation use efficiency parameter and ultimately poor 
GPP estimates. Such errors could bias our results high or low in absolute, 
but by calculating the change in land surface properties as an anomaly 
(relative to pre-fire), we obtain greater confidence in the directionality 
of changes over the observed time intervals. We used recovery of MODIS 
LAI as an indicator of vegetation recovery. LAI is a useful but imperfect 
indicator of vegetation change caused by wildfires. It captures some of 
the aggregate effects of mortality and regrowth but does not fully 
characterize ecosystem structural dynamics. Therefore, detailed, inten
sive field monitoring of vegetation structure before and after fires can be 
a useful complement (Williams et al., 2014), as can additional remote 
observations such as from lidar and radar. Moreover, relating field-level 
data and satellite observation can enhance the interpretability of satel
lite observations (Hudak et al., 2007), as well as provide a means to scale 
up ground observations to characterize full landscapes. Nonetheless, the 
strong correlation between LAI and other biophysical variables (Figs. 7 
and 8) suggests that it could be applied as a useful integrative measure 
and predictor of post-fire ecosystem physiology and function. Our 
approach and results have the potential to advance the land and Earth 
system models, for example by using patterns emerged from our data 
analysis to inform model parameters that describe wildfire impacts on 
vegetation, hydrobiogeochemical fluxes, and land-atmosphere in
teractions. Our study suggests that the parameter values related to 
equations that describe biophysical, hydrological, and biogeochemical 
processes such as LAI and albedo vary over space and environmental 
condition, even within a vegetation type. Therefore, subtle changes to 
response functions relating rates of carbon, energy, and water fluxes to 
disturbance events and parameterization can yield divergent modeled 
responses of ecosystems to disturbance events. These models currently 
lack robust representations of the ecological and biophysical legacies 
from wildfire events (Lawrence and Chase, 2007; Williams et al., 2009). 

5. Conclusions 

This study presents a detailed account of the 25-year temporal pat
terns of carbon, water, and energy fluxes following wildfire in ponderosa 
pine and mixed conifers of Sierra Nevada and Klamath regions of the 

western US, a region significantly affected by wildfires in recent de
cades. Our analysis revealed that complete post-fire recovery of LAI in 
these forest ecosystems takes longer than 25 years. Post-fire changes in 
albedo, ET, GPP, and LST depended on changes in post-fire LAI. Summer 
albedo changes were minimal and declined immediately after fire; 
however, summer albedo increased during the subsequent summer 
period, whereas during winter, albedo changed by more than two-fold 
over the same period. We found that both ET and GPP declined 
sharply below pre-fire levels immediately after fire in both regions and 
were highly dependent on seasonality. Mixed conifers in both regions 
exhibited the largest ET and GPP recovery following wildfire. LST was 
higher after fire where it rose by 11 ± 0.03 ◦C and 7 ± 0.01 ◦C in year 1 
after fire in SN-mixed conifer and KM-mixed conifer, respectively. The 
temperature increase became smaller as time elapsed as a consequence 
of vegetative regrowth. Although albedo is the main biophysical process 
regulating climate at high latitudes (Bonan, 2008), this study showed 
that strong decreases in ET and associated decreases in summer cooling 
outweigh the changes in post-fire albedo as the main factor controlling 
the immediate post-fire annual warming effect of wildfires in the 
mountainous regions of the western US. Our results can be used to 
predict ecological responses to wildfire in these and similar ecoregions 
as they represent mean historical behavior across several disturbance 
events. By aggregating across many fire events and arraying observa
tions along a 25-year chronosequence, these results provide a useful 
guide for assessing local fluxes of carbon, water, and energy associated 
with wildfire disturbance and forest recovery, and for advancing models 
to incorporate post-fire dynamics. Furthermore, future research on 
biogeophysical and biogeochemical impacts of wildfire guided by 
field-based observations, research that separates over- and understory 
impacts in particular, will increase the confidence of our findings. 
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