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Abstract
In the Western US, area burned and fire size have increased due to the influences of climate change,
long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence
is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn
unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire
refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge
to species and functioning as seed sources after fires. In this study, we evaluated whether the
proportion and pattern of fire refugia within fire events have changed over time and across
ecoregions. To do so, we processed all available Landsat 4–9 satellite imagery to identify fire refugia
within the boundaries of large wildfires (405 ha+) in 16 forested ecoregions of the Western US. We
found a significant change in % refugia from 1986–2021 only in one ecoregion—% refugia
increased within fires in the Arizona/New Mexico Mountain ecoregion (AZ/NM). Excluding
AZ/NM, we found no significant change in % refugia across the study area. Furthermore, we found
no significant change in mean refugia patch size, patch density, or mean distance to refugia. As fire
size increased, the amount of refugia increased proportionally. Evidence suggests that fires in
AZ/NM had a higher proportion of reburns and, unlike the 15 other ecoregions, fires did not occur
at higher elevation or within greener areas. We suggest several possibilities for why, with the
exception of AZ/NM, ecoregions did not experience a significant change in the proportion and
pattern of refugia. In summary, while area burned has increased over the past four decades, there
are substantial and consistent patterns of refugia that could support post-fire recovery dependent
on their spatial patterns and ability to function as seeds sources for neighboring burned patches.

1. Introduction

Extreme weather, rising temperatures, severe
drought, and increased ignitions (Westerling 2016)
are creating conditions conducive to fires, leading to
a global increase in burned area (Abatzoglou et al
2021) and forest loss (Tyukavina et al 2022). These
expanding burned areas are not uniform in sever-
ity; fire interacts with landscapes to form a complex
mosaic of burned and less affected areas. The islands
of unburned or minimally burned areas within fire
perimeters are commonly referred to as fire refugia

(Krawchuk et al 2020). Fire refugia play an import-
ant role in enhancing post-fire ecosystem function
and biodiversity, offering refuge to species during a
fire event and serving as a vital seed source in the
aftermath (Kolden et al 2017). As the world con-
tinues to warm, refugia could help promote forest
persistence and disturbance recovery by maintain-
ing legacy species from previous climate conditions
(Dobrowski 2011, Stevens-Rumann et al 2018, Coop
et al 2020). Fire behavior can shape the formation
of refugia. If climatic or fuel conditions favor higher
fire severity and a continuous supply of fuel, fires
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may burn more completely, resulting in fewer refugia
(Whitman et al 2022). Conversely, under moderate
fire weather the spatial heterogeneity of factors like
fuel moisture, temperature, wind, topography may
support the formation of refugia (Collins et al 2019).
Fire suppression efforts like backburning may also
play a role by reducing fire severity and generating
more patchiness (Stephens et al 2009).

Studies have hypothesized that climate change
and growing wildfire activity are leading to increases
in fire severity and distance to seed sources (Harvey
et al 2016) and a decrease in the proportion of
refugia within fire perimeters (Kolden et al 2017,
Collins et al 2019). There is some evidence of this.
For example, studies in the United States have doc-
umented increased fire severity in specific regions
(e.g. sites in the Northern Rockies, Parks et al 2018),
specific vegetation types (e.g. the southern Rocky
Mountain lower montane, Rocky Mountain sub-
alpine, and California chaparral vegetation types,
Picotte et al 2016), and within patch interiors
(Cansler and McKenzie 2014, Stevens et al 2017). In
Alberta, Canada unburned areas within fire perimet-
ers significantly have declined since 1985 (Whitman
et al 2022). However, other studies have not found
any consistent temporal trend in fire severity or pro-
portion of fire refugia (e.g. Meddens et al 2018b,
Chapman et al 2020). Thus, there is no scientific
consensus regarding whether the proportion of refu-
gia are changing across a wide swath of ecoregions
(Meddens et al 2018b, Parks et al 2020, Buonanduci
et al 2023).

One possible reason for the lack of scientific
consensus is that refugia studies typically focus
on narrow time frames and localized regions. For
example, previous studies in the United States have
focused on the Colorado Front Range (Chapman
et al 2020), the central Sierra Nevada (Blomdahl et al
2019), the Pacific Northwest (Krawchuk et al 2016,
Meddens et al 2018b, Meigs et al 2020) and else-
where. Furthermore, most refugia studies use indi-
vidual pixels or patches as units of analysis (e.g.
Krawchuk et al 2016, Meddens et al 2016, Meigs and
Krawchuk 2018, Blomdahl et al 2019, Collins et al
2019, Chapman et al 2020, Downing et al 2021, Meigs
et al 2020, Mackey et al 2021, Talucci et al 2022).
While the characteristics of pixels and patches are
important for refugia formation, so are event level
factors like fire-driven weather, fuel moisture condi-
tions, and fire suppression activities (such as back-
burning and slurry drops). Analyzing event-level pat-
terns of fire refugia is important for understanding
the spatial and temporal characteristics of fire regimes
(Chuvieco et al 2016, Balch et al 2020) and provide
valuable insights to guide land managers in planning
for post-fire recovery and pre-fire mitigation. Yet,
with a few notable exceptions (e.g. Kolden et al 2012,

Meddens et al 2018b), few studies analyze refugia at
the fire event level across ecoregions.

This study explores how fire refugia within for-
ested areas have changed over time and across eco-
regions between 1986 and 2021 across the Western
US. We focus the study on fire event-level refu-
gia metrics that reveal the area and patchiness (%
refugia, total refugia area, median and maximum
refugia patch size, number of refugia patches, refu-
gia patch density, median and maximum distance
to refugia). Our hypothesis is that in a preponder-
ance of fires within western US ecoregions, % refugia
has decreased over time while the distance to refu-
gia patches within the fire perimeter has increased.
This study has several distinctive characteristics that
advance our understanding beyond previous work.
First, it has the largest spatial and temporal extent
of any refugia study (16 ecoregions in the Western
US from 1986–2021). Secondly, it classifies fire refu-
gia using a fire severity measure that is spatially con-
sistent across ecoregions (bias corrected composite
burn index (CBI), Parks et al 2019) and derived from
image composites rather than single imagery. Third,
this study focuses on fires that took place in relat-
ively dense forest cover (>50% pre-fire forest), not
in lower density savannas or woodlands where man-
agement is more prevalent (Chapman et al 2020).
If refugia are becoming smaller and more fragmen-
ted, it may forecast a different successional pathway
for forest vegetation as the planet warms (Blomdahl
et al 2019).

2. Methods

To answer the research questions, we summarized
refugia characteristics of 2968 fires that met criteria
for inclusion in the study. We used the following
workflow to answer the research questions (figure 1).
The following sections follow each step of the
workflow.

2.1. Step 1: Select wildfires within the 16 forested
ecoregions in theWestern US
This study focuses on wildfires that occurred in for-
ested ecoregions in the Western US (figure 2). The
dataset we used to identify wildfires is theMonitoring
Trends in Burn Severity (MTBS) fire boundaries,
which comprise all large wildfires (405+ ha in the
Western US) starting in 1984 (Eidenshink et al 2007).
MTBS fire boundaries are manually digitized based
on standardized analysis of Landsat 4–9 imagery and
incident perimeters where available. While the MTBS
dataset omits smaller fires, it does not show a tem-
poral bias (Picotte et al 2020, Iglesias et al 2022).

We selected fires included in the MTBS database
(accessed November 2022) using the following cri-
teria:
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Figure 1.Methods workflow, corresponding to headings below.

Figure 2.MTBS fires within study area: 16 forested ecoregions in western US.

(1) Fires must be from the years 1986–2021 so that
all fires have adequate before and after imagery.

(2) The fire incident type must be MTBS type ‘wild-
fire’ (excluding the MTBS types ‘prescribed’,
‘wildland fire use’, and ‘unknown’).

(3) Fire boundaries must overlap forested level 3
ecoregions in the Western US (Omernick and
Griffith 2014).

(4) Fire boundaries must have 50%+ of the area
classified as forest cover in the year before the fire
(Harvey et al 2016, Meigs et al 2018). To identify
forest cover we used the USGS landscape change
monitoring system (LCMS) data (Healey et al
2018), which classifies pixels as trees if most of
the pixel’s area comprises trees and no other land
cover covers more than 10%.

2.2. Step 2: Mask out non-forest and edge pixels
within each event
For each of the selected wildfires, we masked out
pixels that were classified as non-forest one year

before the fire (LCMS land cover product, Housman
2021). This step removes savannas and open wood-
lands from the analysis. We also masked out all pixels
that were less than 100 m from the edge of the
fire perimeter. This excluded the approximate areas
where conifer seeds could readily spread from outside
the fire boundary (Steel et al 2018) and reduced edge
effects and digitizing errors (Parks et al 2018, Stevens–
Rumann et al 2018). Finally, pixels weremasked out if
there were no valid pre- or post-fire pixels (rare, but
evident in a few of the earliest fires).

2.3. Step 3: Classify refugia pixels based on CBI
within each event
Next, we classified all non-masked pixels as ‘for-
ested refugia’ or ‘forested non-refugia’ based on
CBI, a widely used and easily interpreted field-based
measure of fire severity. CBI was calculated using
the Parks et al (2019) method, which uses random
forests regression to predict CBI based primarily on
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Figure 3. Example refugia classification: the Waldo Canyon Fire near Colorado Springs, CO, USA in 2012.

relativized burn ratio (RBR) and secondarily on lat-
itude, climatic water deficit, and other factors. RBR
was calculated from pre- and post-fire image com-
posites, which comprise the mean of all valid pixel
values (i.e. no clouds, shadows, water, snow, or scan
line corrector gaps) in all available imagery (Landsat
4–9 collection 2) during a specified season (June–
September for most ecoregions) for one year prior to
and following the fire (see additional details, Parks
et al 2018, 2019). The number of images available
to create the composites was typically 10–20 images
for each pre- and post- fire composite. A bias cor-
rection was applied to the CBI calculation to pre-
vent overprediction at low values (Parks et al 2019).
Unlike the MTBS burn severity rasters, this CBI cal-
culation is adjusted for pre-fire vegetation, validated
acrossmany ecoregions, and based on image compos-
ites rather than single images.

Pixels with a CBI of less than 1.25 were classified
as ‘forested refugia’, and remaining pixels were clas-
sified as ‘forested non-refugia’ (figure 3). The 1.25
CBI threshold indicates little tree mortality (Miller
and Thode 2007), and is consistent with other studies
that include unburned forests and low severity burn
forests as refugia (Krawchuk et al 2016, 2020, Meigs
and Krawchuk 2018,Walker et al 2019, Chapman et al
2020, Meigs et al 2020, Downing et al 2021).

2.4. Step 4: Summarize event level refugia
characteristics
After classifying refugia, we summarized the refugia
characteristics within each fire in two ways. First we
classified the composition of each fire (e.g. the area
of each fire that was classified as forest refugia, forest

non-refugia, non-forest vegetation, unvegetated, and
no data). Secondly, we calculated fire refugia metrics
for each fire event:

• % refugia (proportion of pre-fire forest within
fire boundary that is classified as refugia (i.e.
CBI< 1.25)

• total refugia area
• median and maximum refugia patch size (patches
are groupings of adjacent refugia pixels, connected
by edge or diagonally).

• number of refugia patches
• refugia patch density
• median and maximum distance to refugia
(Euclidean distance from non-refugia pixel to refu-
gia pixel, up to a maximum of 1.5 km).

For each of the metrics, we then used two estimators
of the slope of change: OLS and Theil–Sen. The OLS
estimator is based on the weighted mean of slopes
between data pairs, while the Theil–Sen Slope is based
on the median slope between data pairs (Sen 1968).
Thus OLS slope is sensitive to extreme values while
Theil–Sen is robust, making it well suited for identi-
fying trends in climate and weather data (Fernandes
and Leblanc 2005). We calculate slope using both
estimators since we are interested in the trends in
refugia metrics both with and without extreme val-
ues. For % refugia and slope of % refugia, we also
summarized the result within ecoregions.

2.5. Step 5: Explore results for the Arizona/New
Mexico mountain ecoregion
We assessed two possible reasons for why AZ/NM
experienced a significant increase in % refugia, while
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the other 15 ecoregions did not. One possible explan-
ation is that re-burns and other forms of forest loss
(e.g. thinning and harvesting) could have increased in
AZ/NM, thus promoting refugia. Forests with lower
stand density that burn frequently tend to experi-
ence lower severity fires (Covington et al 1994), and
are associated with higher % refugia (Meddens et al
2018a). To evaluate this possibility, we calculated the
slope of change in the following: % of the fire bound-
ary that had experienced a fire in the previous 10 years
(henceforth: % reburn) and % of the fire boundary
that had experienced forest loss caused by a disturb-
ance other than fire in the previous 10 years (hence-
forth: % non-fire forest loss). We used the MTBS
database to calculate % reburn and the LCMS data-
base ‘fast forest loss’ layer (Housman 2021) to calcu-
late % non-fire forest loss (i.e. from harvesting, thin-
ning, windthrow, and other drivers). The slopes were
calculated for the AZ/NM ecoregion and for the 15
other ecoregions.

A second possible explanation is that fires in
AZ/NM could be increasingly occurring in forests
with characteristics that are conducive to refugia
formation (e.g. lower elevation, less green, or sparser
forests). Lower elevation forests tend to have fire
regimes with frequent, low severity fires associated
with refugia (Covington and Moore 1994). To eval-
uate this, we calculated slope of change in the follow-
ing within fire events: mean elevation, mean NDVI
in pre-fire forest, and % of fire boundary that com-
prised forest prior to the fire (henceforth: % pre-fire
forest). Note that % pre-fire forest ranges from 50%
to 100%, since fires with <50% pre-fire forest cover
were excluded from the analysis.

3. Results

3.1. Number, size, and composition of fire events
TheMTBS database containd 2968 fires thatmeet cri-
teria for inclusion in the study. Over the full time
series, the median fire size was 1398 ha, mean size
was 5721 ha, and interquartile range was 3368 ha. The
number of fires have increased over time (figure 4(a))
and so has the mean size of fires (figure 4(b)), though
size continues to be highly variable. As the total area
of MTBS perimeters increased, so did the area of
both refugia and non-refugia (figure 4(c)). Over the
full time series, the MTBS fire boundaries contained
27% forested refugia, 66% forested non-refugia, and
7% other (non-forest, non-vegetated, or no data).
These percentages remained fairly stable over time
(figure 4(d)). In summary, both fire perimeters and
the refugia within increased over time, but there has
been no obvious trend in % refugia.

3.2. Slope of change of fire refugia metrics
The slope of% refugia is significantly positive for both
OLS and Theil–Sen estimators, indicating that %
refugia has increased during the time period (table 1).

However, this change was driven entirely by the
increase in % refugia in the AZ/NM. When exclud-
ing AZ/NM, the slope of % refugia was not signific-
antly different from zero. For some refugia metrics
(total refugia area,maximum refugia patch size, num-
ber of refugia patches, andmaximumdistance to refu-
gia), results were equivocal. The OLS slope of change
was positive and significant but the Theil-Sen slope
was not significantly different from zero. The inter-
pretation is that the median slope shows ‘no change’
while the mean slope shows ‘positive increase’ driven
by fires with unusually high values. For the remain-
ing refugia metrics (refugia patch size, refugia patch
density, or mean distance to refugia), slope of change
was not significantly different from zero regardless of
the estimator (table 1).

3.3. Ecoregion-level results
Within the forested areas of each fire boundary, %
refugia varied considerably by ecoregion. Fires in
the Rockies, Cascades, and Sierra Nevada ecoregions
were characterized by median refugia of 30% or less,
while fires in AZ/NM and the Coast Range ecoregions
had much higher median refugia (figure 5(a)). While
there were big differences in % refugia between eco-
regions, there was no significant change over time
in most ecoregions (figure 5(b)). The Coast Range
ecoregion had a decrease (negative slope) in % refu-
gia, and the Cascades and Blue Mountain ecore-
gions had an increase (positive slope) in % refugia.
However, these changes were not significant with the
number of fires in the dataset. In AZ/NM, however,
the change in % refugia was positive and signific-
ant (figure 5(b)). In the following section, we explore
reasons why the trajectory of refugia was different
in AZ/NM.

3.4. Exploring the increase in refugia in the AZ/NM
ecoregion
To help understand why AZ/NM experienced a signi-
ficant increase in% refugia, we evaluated two possible
explanations. The first explanation is that re-burns
and other forms of forest loss (e.g. thinning and har-
vesting) could have increased in AZ/NM more than
elsewhere, thus promoting refugia. The data offers
some support to the idea that AZ/NM is experien-
cing a greater increase in reburning than the other 15
ecoregions. For both AZ/NM and the 15 other ecore-
gions, % reburn increased significantly with the OLS
estimator (mean slope) but not the Theil–Sen estim-
ator (median slope) (table 2). The AZ/NM ecoregion
had a much higher OLS slope than the 15 other eco-
regions, suggesting that the increase in % reburn was
higher there, driven by extreme values (table 2). The
change in % non-fire forest loss was not significant
with either estimator.

The second possible explanation is that fires in
AZ/NM could be increasingly occurring in forests
with characteristics that are conducive to refugia
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Figure 4. Change over time of (a) number of fires, (b) fire size, (c) area of fire perimeters in 5 classes, and (d) percent of
perimeters in 5 classes.

Table 1. Slope of change in event-level fire refugia characteristics 1986–2021 (full results in supplementary materials).

Variable OLS Slope (std err) Theil–Sen Slope (std err)

% Refugiab 0.188 (0.046)a 0.149 (0.048)a

% Refugia ex AZ/NM −0.007 (0.040) 0.040 (0.041)
Refugia total area (ha) 78.170 (15.950)a 13.150 (16.520)
Mean refugia patch size (m2)c 901 (551) 110 (563)
Maximum refugia patch size (m2)c 96 743 (27 666)a 12 600 (28 500)
Number of refugia patchesc 14.6 (2.8)a 1.2 (2.9)
Refugia patch density (patches per ha)c −1.169× 10−04 (7.436× 10−05) −1.027× 10−04 (7.612× 10−05)
Mean distance to refugia (m)d −0.075 (0.148) −0.186 (0.151)
Maximum distance to refugia (m)d 2.160 (0.772)a 0.310 (0.795)
a Significant at p< .01.
b % refugia is defined as the proportion of pre-fire forest within fire boundary that is classified as refugia (i.e. CBI< 1.25).
c Patches are groupings of adjacent refugia pixels, connected by edge or diagonally.
d Euclidean distance from non-refugia pixel to refugia pixel, up to a maximum of 1.5 km.

formation (e.g. lower elevation, less green, or sparser
forests). For fires in AZ/NM, elevation and pre-fire
NDVI did not change significantly (table 2). In con-
trast, for fires in the other 15 ecoregions elevation and
pre-fire NDVI increased significantly.

4. Discussion

We expected to observe a decrease in % refugia
in a preponderance of Western US forested ecore-
gions, but instead found a significant increase in 1
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Figure 5. (a) Median % refugia 1986–2021, and (b) slope of annual change for % refugia (full results in supplemental materials).

Table 2.Mean environmental characteristics of fire perimeters in AZ/NM versus 15 other ecoregions. (full results in supplementary
materials).

AZ/NM ecoregion 15 other ecoregions

OLS slope (std err) Theil–Sen Slope (std err) OLS slope (std err) Theil–Sen slope (std err)

Elevation (m) −1.907 (1.518) −2.551 (1.524) 6.366 (1.302)b 6.141 (1.302)b

Pre-fire forest NDVI 0.000 (0.000) 0.000 (0.000) 0.002 (0.000)b 0.002 (0.000)b

% pre-fire forest −0.201 (0.001)a −0.129 (0.070) 0.012 (0.026) −0.003 (0.027)
% reburnc 0.779 (0.186)b 0 (0.209) 0.105 (0.036)a 0 (0.038)
% non-fire forest lossc,d 0.015 (0.023) 0.000 (0.024) 0.004 (0.016) 0.004 (0.017)
a Significant at p< .05.
b Significant at p< .001.
c % of the fire boundary that had experienced a fire in the previous 10 years. Date range is 1995–2021.
d % of the fire boundary that had experienced forest loss caused by a disturbance other than fire in the previous 10 years. Non-fire forest

loss definition: pixels from the LCMS that were classified as ‘forest’ 10 years prior to the fire and then classified as ‘fast loss’ in

subsequent years up to the year before fire. ‘Fast loss’ can be caused by harvest, mechanical, debris (e.g. landslides), and fire. Pixels

within previous MTBS fire boundaries were excluded, so the forest loss excludes all but the smallest fires (Housman et al 2021). To

evaluate characteristics within the last 10 years of fire, date range is 1995–2021.

of 16 ecoregions. One possibility is that, contrary to
expectations, the expanded area of burning in recent
years has similar severity and refugia characteristics
to previous burning. Studies have documented an
increase in area burning at night (Balch et al 2022), a
lengthening of the fire season (Balch et al 2017), and
increased ignitions (Nagy et al 2018), but there is little
evidence that these fires are burning more severely
or homogeneously (Buoanduci et al 2023). This sug-
gests that fire behavior for the majority of wildfires
has not fundamentally changed over time, resulting in
fairly consistent proportions of refugia and non-rugia
within fire perimeters. A second possibility is that
advances in fire suppression and backburning acted as
a counterbalance to rising temperatures and extreme

weather, resulting in a net no change in % refu-
gia. While there are data on whether fires since 1992
received a suppression response (Short 2022), those
do not include the spatial and temporal characterist-
ics of how a fire was treated. A third possibility is that
there is a decline in the smallest of refugia (i.e. indi-
vidual trees), which we cannot observe using Landsat
data, or inwoodlands and savannaswhich donot have
a majority of forest cover within a pixel. Small, isol-
ated patches of surviving trees are disproportionately
important for tree regeneration (Coop et al 2019) so
missing such refugia could potentially be important.
Regardless of the reason, the assumption that refugia
are becoming rarer is not borne out by this analysis.
Fires continue to create heterogeneous landscapes
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that include refugia that can act as seed sources. State
changes (e.g. forest to grassland) may be more likely
caused by climate-driven recruitment failure (Davis
et al 2023) than seed availability from lack of refugia.
An notable exception is that there was an increase in
the maximum distance to refugia, driven by extreme
values (i.e. significant with OLS slope, not Theil–Sen
slope). This suggests that very large fires may pose a
risk for recovery.

While our results show no evidence of widespread
changes in % refugia across the West, AZ/NM was an
exception. That AZ/NM had a high % refugia is not
surprising, as the ecoregion’s fire regime is historic-
ally characterized by frequent low severity fires that
produce little mortality in the structurally dominant
forest vegetation (Covington and Moore 1994). Fires
in AZ/NM experienced a greater increase in reburn-
ing than elsewhere, and did not experience a change
in non-fire forest loss (i.e. caused by thinning, har-
vesting, windthrow, or other non-fire disturbances).
This raises the possibility that the increase in fire refu-
gia could be related to increased reburning and con-
sequent reduction in fire severity. Unlike the other 15
ecoregions, fires in AZ/NM did not experience a shift
to higher elevations or a decrease in pre-fire NDVI. A
shift to higher or greener forests, had it occurred in
AZ/NM, might have muted the increase in % refugia.
Additional research would be needed to determine
whether there is a causal link between these factors.

One limitation to the exploration of the AZ/NM
ecoregion investigation is that we do not have spa-
tially explicit data on forest treatments during the
1980s–1990s, so we cannot distinguish natural dis-
turbances from those that were part of a manage-
ment plan. Another limitation to the exploration of
AZ/NM is that we did not investigate changes within
the forest land cover type. For example, Gambel oak
(Quercus gambelii) resprouting and replacing con-
ifer forest (Coop et al 2016) could look like refu-
gia on imagery. Finally, in both the main analysis
and AZ/NM exploration, we did not control for the
increase in familywise error rate in statistical tests.
Due to the relatively large sample size and modest
number of tests, we believe this to be a reasonable
decision but would encourage replication by other
studies.

The study shows that dense forest (pixels >50%
cover) show a consistent survivorship in wildfires,
with the exception of very large fires where ‘max-
imum distance to refugia’ has increased. Overall, the
results of this study imply that there are substan-
tial refugia areas that could be used in planning for
recovery or restoration efforts. Because post-fire cli-
mate conditionsmay restrict regeneration (Davis et al
2019), it is important to place remaining refugia in
areas with better microclimates and lower fire sever-
ity, facilitating enhanced regeneration (Davis et al
2023). Future efforts should explore the persistence
of refugia, whether finer-scale resolution data (e.g.,

at the tree level) reveal different trends in refugia,
and whether changes within the forest land cover
class can explain some of the patterns. For example,
Gambel oak resprouting and replacing conifer forest
could be associatedwith the observed changes in refu-
gia in AZ/NM, but this hypothesis remains to be
tested at the resolution of species. As the trends in
area burned have been concerning, the prevalence of
refugia offers some hope that ecosystems continue to
have some of the raw material to begin the process of
recovery.

5. Conclusion

We did not find evidence that supports the propos-
ition that refugia are becoming rarer in Western US
forests. The total area of refugia and number of refu-
gia have increased proportionally to the total fire
boundary area. While % refugia has not changed sig-
nificantly overall, it has changed in specific ecore-
gions most notably a significant increase in AZ/NM.
Future studies, over a longer time period, may reveal
stronger trends. There is also a need to compare fire
severity and % refugia in ‘newly expanded burns’
(e.g. shoulder seasons, or at night) with ‘traditional
burns’, which may display diverging trends in refu-
gia. This study provides compelling evidence that
refugia continue to make a considerable contribution
to post-fire landscapes, even in the face of an over-
all increase in burned area across the Western US.
In other words, refugia are not disappearing despite
the growing extent of wildfires. Refugia studies like
this, which characterize broad event-level trends, are
important for identifying wide trends, understand-
ing the ecological contexts and landscape mosaics in
which refugia exist.
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