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ABSTRACT. Because of past land use changes and changing climate, forests are moving outside of their historical range of variation.
As fires become more severe, forest managers are searching for strategies that can restore forest health and reduce fire risk. However,
management activities are only one part of a suite of disturbance vectors that shape forest conditions. To account for the range of
disturbance intensities and disturbance types (wildfire, bark beetles, and management), we developed a disturbance return interval
(DRI) that represents the average return period for any disturbance, human or natural. We applied the DRI to examine forest change
in the Lake Tahoe Basin of California and Nevada. We specifically investigated the consequences of DRI on the proportion of high-
severity fire and the net sequestration of carbon. In order to test the management component of the DRI, we developed management
scenarios with forest managers and stakeholders in the region; these scenarios were integrated into a mechanistic forest landscape model
that also accounted for climate change, as well as natural disturbances of wildfire and insect outbreaks. Our results suggest increasing
the frequency of disturbances (a lower DRI) would reduce the percentage of high-severity fire on landscape but not the total amount
of wildfire in general. However, a higher DRI reduced carbon storage and sequestration, particularly in management strategies that
emphasized prescribed fire over hand or mechanical fuel treatments.
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INTRODUCTION
Land managers recognize the limitations of current forest and
fire policy in maintaining forests under climate change; because
of past land use patterns, forests in the western United States are
becoming denser and experiencing larger disturbances (Hessburg
and Agee 2003, Beaty and Taylor 2007). In addition, climate
change is creating larger, more severe fires (Westerling and Bryant
2008). Looking forward, forest restoration should accommodate
the changing disturbance regime rather than remain fixed on
historical regimes. One challenge is that current vegetation reflects
the historical land use and disturbance regime. In the Lake Tahoe
Basin (LTB) of California and Nevada, for example, wildfires
were substantially more frequent before Euro-American
colonization, with some watersheds burned annually until
widespread fire exclusion (Taylor and Beaty 2005). The swing
toward fire suppression resulted in shade-tolerant white fir (Abies
concolor) encroachment into fire-tolerant and fire-maintained
pine dominated stands. Although there is interest in increasing
the amount of fire on the landscape, fire management in the Basin
is constrained by residential development on account of the risk
to structures and the importance of recreation to the local
economy. The Angora fire, in 2007, was one of America’s most
expensive fires up to that time because of the number of structures
lost in the fire (Safford et al. 2009). Contemporary forest
management activities focus on fuel reduction: reducing the
probability of fire spread and high fire intensity, while also
suppressing active fires (Safford et al. 2009, Safford et al. 2012).
However, the long-term effectiveness of such a strategy may be
limited; fires are expected to increase in size under climate change
(Westerling and Bryant 2008) and the backlog of areas needing
treatment further threatens forest resilience.  

Fire is only one part of a larger suite of disturbances affecting
forested landscapes. Insects cause significant forest mortality
worldwide and are often triggered by the same climatic conditions
that magnify fire effects (Kurz et al. 2008, Hicke et al. 2016, Kolb

et al. 2016). Moreover, insect outbreaks can cause mortality over
large areas and on par with wildfire (Hicke et al. 2016), and for
this landscape, bark beetles have caused significant mortality
across large portions of the Sierra Nevada (Scheller et al. 2018).
Often as important as natural disturbances, management
activities—timber harvesting, fuel reduction treatments,
prescribed fires—also shape the composition and density of
forests through selective mortality through targeting specific
combinations of species and ages. The forest’s demography and
composition was radically changed with the institution of fire
suppression resulting from Euro-American colonization and the
harvesting of old-growth wood during the Comstock era
(Barbour et al. 2002).  

The challenge for management is understanding how to restore
historical disturbance processes under a non-stationary climate,
given that higher temperatures and increasing aridity can increase
the frequency of widespread mortality events (Goulden and Bales
2019). On the other hand, because multiple, interacting
disturbances can have a negative feedback on future disturbances
(Lucash et al. 2018), we hypothesize that decreasing the
disturbance return interval (DRI—the frequency at which an area
is impacted by a disturbance), which would lead to more
disturbance, would reduce the severity of future disturbances in
the long term, which would in turn move the landscape back
toward a lower severity fire regime. A potential liability of a high-
frequency disturbance regime, however, is that it may reduce
carbon sequestration potential, possibly resulting in the forest
becoming a carbon source. Our goals were to understand the
following: (1) Will shortening the disturbance return interval
(DRI) restore a lower severity fire regime to the landscape? (2)
Will shortening the DRI reduce landscape-scale carbon
sequestration? We used a simulation modeling framework to
forecast future forest conditions under natural disturbances and
a range of plausible management forcings to address these two
questions.
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METHODS

Study area
The Lake Tahoe basin is a mostly forested montane landscape
approximately 70,000 ha in size, primarily (~70%) under the
management of the USDA Forest Service, in the middle of the
Sierra Nevada Mountain range straddling the border of
California and Nevada, USA. The climate is seasonally dry—
most precipitation falls as snow in the winter—with cold winters
and warm to hot summers. Forests are mostly mixed conifer, a
mix of white fir (Abies concolor) and Jeffrey pine (Pinus jeffreyi)
among others at lower elevations, trending to red fir (Abies
magnifica) and western white pine (Pinus monticola) at higher
elevations. Disturbance return intervals range from infrequent in
the subalpine areas to frequent for aspen (Populus tremuloides)
components. Prior to colonization, wildfires were frequent in
pine-dominated areas, with return intervals ranging from two to
20 years (Taylor and Beatty 2005). Fire suppression has resulted
in an increase of shade tolerant white fir at the expense of Jeffrey
pine, as well as a widespread decline of aspen, which is dependent
on disturbance. Insect outbreaks, and subsequent forest
mortality, are natural occurrences in the pine forests of the Sierras;
however, their frequency and severity have increased compared
to historic conditions (Raffa et al. 2008).

Forest and disturbance modeling
We simulated forest change using the LANDIS-II framework
because it represents forest succession, integrates climate change,
and captures a wide variety of disturbances across wide spatial
extents (Scheller et al. 2007). Trees and shrubs are modeled as
species-age cohorts, with each species having its own life history
attributes (e.g., shade tolerance, dispersal ability, fire tolerance,
susceptibility to beetles). Multiple cohorts can occupy the same
space and compete intra- and inter-specifically, which allows
emergent behavior in response to external drivers (Scheller et al.
2007). There were ten tree species and four shrub groups modeled
and their respective parameters are located in Appendix 1 (Table
A1.2). The succession extension (NECN v. 6.1) handles growth
and non-disturbance mortality, and tracks carbon across these
cohorts and aboveground and belowground pools. Additionally,
within the framework, the net losses of carbon from the
disturbance extensions (below) are tracked, allowing for the
calculation of the forest’s net ecosystem exchange (NEEC), which
is whether the system as a whole is absorbing or releasing carbon.

Wild and prescribed fires were modeled using the Social-Climate
Related Pyrogenic Processes (SCRPPLE v. 2.1) extension
(Scheller et al. 2019). This extension models the spread and
intensity of those kinds of fire, while being sensitive to climate
conditions and fuel loads. Fire intensity for a given cell is based
on conditions within the cell and in neighboring cells, where high
intensity fire is possible when two of the following three
conditions are met: (1) crossing the fuel loading threshold for fine
fuels within the cell, (2) crossing a fuel loading threshold for ladder
fuels within the cell, or (3) presence of high intensity fire in a
neighboring cell. Five fire experts working the LTB provided a
translation from intensity to severity by providing a breakdown
of intensity versus mortality for all the modeled species and age
classes. Prescribed fire severity was constrained to low severity:
the model selected the burn days based on weather constraints to
minimize severity (Appendix 1: Table A1.2) because it was
assumed that fire managers would limit fire effects anyway.  

Three beetle species (Jeffrey pine beetle [Dendroctonus jeffreyi
Hopkins], mountain pine beetle [Dendroctonus ponderosae], and
fir engraver beetle [Scolytus ventralis]) were modeled using a
modified version of the Biological Disturbance Agent (BDA
v.2.0.1) extension (Sturtevant et al. 2004), where an outbreak is
triggered by the exceedance of climatic water deficit and minimum
winter temperature thresholds. The parameters for insect spread
and mortality follow Kretchun et al. (2016) and are based on field
studies and expert opinion (Egan et al. 2010, 2016).  

Initial aboveground biomass estimates were derived from Forest
Inventory and Analysis data and validated against Wilson et al.
(2013). Recent wildfires (2000–2016) from California FRAP were
used to parameterize fire spread and size. Mean annual fire area
for observed data was 117 ha/yr (sd = 309), and for modeled data
the mean value was 182 ha/yr (sd = 210). Insect and Disease
Detection Surveys (1993–2017) were used to validate insect
outbreaks under historical climate conditions. Observed mean
area impacted annually by fir engraver beetles was ~1120 ha,
Jeffrey pine beetle ~295 ha, and mountain pine beetle ~147 ha.
Modeled impacts were ~857 ha, ~711 ha, and ~82 ha respectively.

Forest management
We used management scenarios to capture a range of plausible
management activities, each representing a combination of
activities, locations, and area treated per year. Five management
scenarios were co-developed with managers representing multiple
agencies within LTB along with input from stakeholder groups
operating in the region (see Table 1). Scenario 1 represented a
minimalist scenario that features no fuels management but high-
effort fire suppression. Scenario 2 focused on fuel treatments
within the wildland–urban interface (WUI) area with treatment
type (hand versus mechanical) dependent on accessibility. Like
Scenario 1, there was high-effort fire suppression and no
prescribed burning. Scenario 3 built off  of Scenario 2, increasing
both the intensity and extent of fuel treatments, while expanding
treatments into the general forest and wilderness areas. Scenario
4 combined the hand and mechanical thinning from Scenario 2
with prescribed fires and managed natural ignitions. Scenario 5
was similar to Scenario 4, but with even higher levels of prescribed
burning. Stand re-treatment frequency was set at 20 years for
Scenario 2. The re-treatment frequency for Scenarios 3, 4, and 5
was 11 years. Fire suppression effort levels were explicitly set, and
for Scenarios 1–3, suppression was at maximum effort. For
Scenarios 4 and 5, suppression was at maximum effort for
accidental ignitions in all areas and lightning ignitions in the WUI,
but minimum effort for lightning ignitions in wildernesses and
general forest.

Climate modeling
Following the precedence set by the 4th California Climate
Assessment, four global change models (GCM; CanESM2,
CNRM5, HADGEM2, and MIROC5) under two different
relative concentration pathways (RCP) were chosen because they
represented a range of possible future conditions (e.g., warmer
and wetter, hotter and drier). The RCPs chosen (4.5 and 8.5)
represent an optimistic scenario where future emissions are
controlled and an uncontrolled emissions scenario, respectively.
Climate downscaling used the localized constructed analogs
method developed by Pierce et al. (2014), as available on the USGS
GeoData Portal (https://cida.usgs.gov/gdp/). We averaged the
climate projections across EPA level II climate regions for
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Table 1. Management scenario broken down by intent and treatment type, by hectares, annually (approximate, rounded)
 
Scenario Management

specifications
Mechan

ical
Hand Prescribed

fire
Total Percent of

landscape
treated

annually

Stand
minimum

re-
treatment

time

Natural
ignitions as

managed fires

1 The only management activity was to suppress fires. 0 0 0 0 0% 0 No
2 Management activities were focused on forest thinning in

the wildland–urban interface (WUI). This management
strategy was designed to provide a buffer of defensible
space around human-built structures and property. It
treated ~2% of the vegetated area each year, all in the
WUI. This scenario most closely resembled current
management activities in the Lake Tahoe basin. Fire
suppression efforts remain the same as Scenario 1.

350 950 0 1300 2% 20 No

3 This scenario builds upon Scenario 2 by expanding
management activities into the remaining forested
landscape beyond the WUI and used predominantly
mechanical and some manual methods to thin the forest
and reduce biomass. It treats approximately 6.7% of the
vegetated area each year. Fire suppression efforts remain
the same as Scenario 1.

1200 3800 0 5000 7% 11 No

4 This scenario builds upon Scenario 2 by expanding
management activities into the remaining forested
landscape. Scenario 4 uses primarily prescribed fire and
managed wildfire. This scenario treats approximately 4%
of the vegetated area each year. Fire suppression efforts
were the same as Scenario 1 in WUI areas but natural
ignitions were allowed to burn for resource objectives in
the wilderness areas.

250 1000 1800 3050 4% 20 Yes, in
wilderness

5 This scenario builds upon Scenario 4 by greatly
expanding the use of prescribed fire. This scenario treats
approximately 7.2% of the vegetated area each year,
slightly more than Scenario 3, but with the majority of
treatments (75%) being prescribed fire. Fire suppression
efforts were the same as Scenario 1 in WUI areas but
natural ignitions were allowed to burn for resource
objectives in the wilderness areas.

250 1000 6600 7850 11% 20 Yes, in
wilderness

integration within the model. The climate futures for this region
ranged substantially, and although temperatures increased under
all projections, precipitation increased, decreased, or changed
seasonality.

Analysis methods
We calculated DRI by management area, a zone identified to
receive a similar suite of treatments, for each year. This calculation
was done by dividing the total management area by the sum of
the area affected by management activities, insects, and low and
moderate severity fire for one year. The DRI is the amount of
time it takes a disturbance to affect an area an equivalent size to
the relevant management area for that particular annual timestep
averaged across multiple replicates. This was done in order to
track changes in DRI through time in order to separate the climate
signal and track the cumulative effect of disturbance on the
landscape. Multiple regression was used to evaluate the
relationships that DRI had with fire severity and net ecosystem
exchange. All analyses were performed with R (v 3.5.3).

RESULTS

Disturbance return interval
When considering the suite of all forest disturbances, these
management strategies have vastly different footprints on the
ground. Management actions were the main driver of DRI on the

landscape, which is reflected by the large differences in DRI
between Scenario 1 (the no action scenario) and the other
scenarios that utilized management activity, as well as the DRI
in wilderness areas outside of Scenario 3 (Fig. 1). The actions that
each scenario implemented had different results on the ground:
the scenario that utilized the most prescribed fire (Scenario 5)
resulted in the highest amount of low severity fire (Fig. 2). The
scenario that had the most fuel treatments (Scenario 3) had the
most moderate severity fire of the scenarios. The no-management
scenario resulted in the highest percent of high-severity fire (Fig.
2). Increasing the DRI did not result in a reduction in the amount
of total area burned but it did reduce the proportion of the
landscape that burned at high severity (Fig. 2B; Table 2).

Management and carbon sequestration
Climate change is moving the landscape toward becoming a
carbon source (Fig. 3, left). This can be moderated or accelerated
by the type of management actions taken on the landscape, which
is reflected in the different management areas present (see Table
3). Higher removals of biomass (whether from combustion of
litter/downed woody material or from higher mortality than other
forms of treatment) by prescribed fires in Scenarios 4 and 5 on
the landscape affected the carbon balance (Fig. 3, right), where
both live and dead C pools decreased through time. A more direct
comparison of Scenario 2 and 4, in spite of similar areas treated,
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indicated higher mortality from prescribed fires resulting in lower
levels of live C but a higher ratio of low severity fire. Scenario 3,
the intensive harvest scenario, maintained the highest levels of
sequestration despite the highest levels of removals.

Fig. 1. Mean disturbance return interval by management zone
for the entire Lake Tahoe Basin. Averaged across all climate
projections and replicates. Ribbons represent +/- 1 standard
deviation. WUI, wildland–urban interface.

DISCUSSION
Our analysis suggests that, with the management approaches
tested, there was a trade-off  between C storage and fire severity.
Although a lower DRI reduced high-severity fire, the net effect
was reduced C storage. Managers must therefore decide whether
reduced fire risk (and subsequent avoidance of attendant human
health risks, from emissions, and hydrologic risks, from erosion,
represented as reduced high-severity fire) justify the costs (both
C storage and the additional resources expended to implement
these strategies), which are issues addressed in other articles in
this special issue. Prescribed fire can have longer lasting reductions
in future fire severity over thinning actions because of the greater
reduction of plant material and down dead materials, though
duration can be limited on highly productive sites (Casals et al.
2016). Nevertheless, prescribed fire can have additional
widespread restorative outcomes for wildlife and fire-dependent
plant species (Alcasena et al. 2018) that are not in the realm of
this study.

Table 2. Results of generalized linear model of percentage of low
and moderate severity fire burned each year.
 

Dependent variable:

Percentage of Low and Moderate Severity Fire per Year

logDRI -0.066***
(0.004)

Period Late -0.190***
(0.007)

Constant 1.122***
(0.013)

Observations 500
Log Likelihood 556.268
Akaike Inf.
Crit.

-1,106.536

* = p < 0.1, ** = p < 0.05, *** = p < 0.01

Table 3. Results of generalized linear model of net ecosystem
exchange and disturbance return interval (DRI) by year and
management zone. NEEC, net ecosystem exchange; WUI,
wildland–urban interface.
 

Dependent variable:

NEEC

logDRI -2.170***
(0.052)

Period Late 17.127***
(0.128)

General Forest -31.264***
(0.214)

Mt. Rose Wilderness 5.868***
(0.206)

WUI Defense -37.833***
(0.230)

WUI Threat -25.453***
(0.223)

Constant -6.493***
(0.319)

Observations 59,880
Log Likelihood -249,136.500
Akaike Inf. Crit. 498,287.100

* = p < 0.1, ** = p < 0.05, *** = p < 0.01

An alternative approach to landscape C management could be
through the promotion or protection of C hotspots. In our
simulations, C dense hotspots on the landscape persisted through
time regardless of management scenario but increasing the DRI
reduced C heterogeneity across the landscape—reducing the
hotspots while increasing the mean elsewhere through the release
of the remaining trees (Fig. 4). Large trees store and sequester
higher levels of C than smaller trees, and reducing the risk of
high-severity fire in the C-dense stands could maintain landscape
C in the medium (< 30 years) term (Harris et al. 2019).  

To the degree that managers can control DRI, a DRI that is too
high may result in the decline of the resilience of landscape C
sequestration. Because of climate change, doing nothing also
incurs a cost, and so management decisions need to consider the
whole suite of inputs and potential outcomes of implementing
any given strategy, the goal of this special issue and the
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Fig. 2. (A) Cumulative area burned, in hectares, by severity and total. Averaged across all replicates and climate projections. Ribbon
represents +/- 1 standard deviation. (B) Disturbance return interval (DRI) against the percentage of area burned at low and
moderate severity each year by scenario. Early period indicates years before 2060, late indicates after 2060.

 
 Fig. 3. (A) Net ecosystem exchange in g C m-2 yr-1, averaged across all climate projections and replicates. Line of best fit calculated
as GAM. (B) Carbon by dead and live pools in g C m-2 yr-1, averaged across all climate projections and replicates with ribbon
representing +/- 1 standard deviation.

implementation of the Environmental Management Decision
Support (EMDS) tool (Reynolds et al. 2014). Within the LTB,
recent management is largely focused on the WUI (Loudermilk
et al. 2014) and has the potential to increase C sequestration over
many decades (Loudermilk et al. 2017). These studies assumed,
however, that management would be restricted to the WUI. Our
scenarios were designed to elucidate trade-offs for management
actions occurring across the entire landscape. Scenario 1, the no-
management scenario, had the highest levels of live carbon but
also the highest rate of high-severity fire. Although Scenario 3
had the lowest DRI, enforcing a lower DRI (high disturbance
rate) in the high-elevation forests and wilderness areas—areas that
experience limited disturbance otherwise—did not confer any
substantial C benefits and would presumably also have the highest
cost. Harvesting can enhance growth in remaining trees while also
reducing unpredictable high-severity fire. Thus, Scenario 3 might
have additional C benefits based on how the harvested forest
products are used.  

Estimating the DRI provided necessary information for
estimating the carbon carrying capacity (Liang et al. 2017) for the
Lake Tahoe basin. We found that for a given DRI there was an
upper limit for landscape carbon storage. Liang et al. (2017) found
that forests in the Sierra Nevada could take hundreds of years to
equilibrate to a new carbon carrying capacity under climate
change and that climate mediated wildfire. Similarly, our results
suggest that by the end of this century, this landscape will likely
be above its carry capacity for C given the downward trend in live
C and decreasing net ecosystem exchange and will not be
approaching any sort of equilibrium within this time frame. This
latter point is exemplified by the upturn in simulated high-severity
fire occurring in the latter half  of the century (Fig. 2).  

Although maintaining a forest in its “safe operating space,” where
the underlying disturbance regime aligns with the biological traits
of the forest species, promotes ecological resilience (Johnstone et
al. 2016), the complicating factor is climate change. While the
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Fig. 4. Mean total C by scenario at model year 90 (2100),
averaged across all model replicates and climate projections.

long-term stability of the forests prior to Euro-American
colonization and climate change is viewed as that safe-operating
space, climate change alters disturbance regimes and forest
conditions directly (Johnstone et al. 2016), and such climate
mediated disturbances such as fire and insects will substantially
limit growth in landscape C and alter patterns of species
dominance as we observed in the LTB (Scheller et al. 2018).  

There are uncertainties with any modeling study, particularly
when trying to account for novel climatic conditions. Although
temperatures are unequivocally projected to increase, there is
substantial variation in expected precipitation and extreme events
that may not be captured by these GCMs. The drought conditions
in California in 2021 are part of a larger megadrought made worse
by climate change (Williams et al. 2020) that are unprecedented
in modern history. Although mechanistic models like LANDIS
are generally more robust to novel conditions, they can be limited
by an incomplete understanding of mechanism in question (e.g.,
direct drought mortality) or a resultant new process not previously
documented (mass fire due to unprecedented fuel build-up from
insect and drought mortality).

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/12954
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Supplemental Methods: 

Climate projections 

A combination of 8 projections were used from 4 different global change models (GCMs) at two 

relative concentration pathways (RCPs).  The RCPs chosen were 4.5 and 8.5, the former 

representing an emissions-controlled future, while the latter represents an uncontrolled emissions 

future.  The particular combination is based on recommendations from Pierce et al. 2016.  The 

LANDIS model utilizes the following climatological variables: daily precipitation (Figure A1.1 

and A1.2), daily maximum temperature (Figure A1.3), daily minimum temperature, daily 

average windspeed, and daily average wind direction that are averaged across the Level II EPA 

ecoregions in the study area. 

Forest succession 

NECN (v6.5) simulates both above and belowground processes, tracking C and N through 

multiple live and dead pools, as well as tree growth (as net primary productivity--a function of 

age, competition, climate, and available water and N).  Soil moisture, as well as movement 

across the dead pools: wood and litter deposition and decomposition, soil accretion and 

decomposition are based on the CENTURY soil model (Parton et al. 1983, Scheller et al. 2011).  

Carbon estimates by pool were validated against Wilson et al. (2013) at the ecoregion level, 

where the model overestimated total C for only one region but was within one standard deviation 

for all others (see supplemental Figure A1.4).  Forest growth estimates using the climate data for 

year 2010-2015 for the region were calibrated against the MODIS 17a3 product annual mean for 

2000 – 2015 (Figure A1.5).  Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), 

while for LANDIS the mean value was 320 g C/m^2 (sd 312).  Reproductive success is 

dependent on temperature and water. 

Fire modeling 

The SCRPPLE extension (v2.1) models ignitions by drawing the number of ignitions from a 

zero-inflated Poisson distribution and allocates them across the landscape with a weighted 

ignition surface for each type of fire modeled (Scheller et al. 2019).  The weather influence on 

fire is based on the Fire Weather Index (FWI) measures created by the Canadian Fire Prediction 

System (1992).  There are three categories of fires that can be modeled: lightning, accidental 

(i.e., human started), and prescribed fire.  The extension also includes the ability to explicitly set 

fire suppression effort levels across the landscape as well as by ignition type, where the 

suppression parameter reduces the probability of fire spread from one cell to another.  Effort 

levels can range from 0 to 3, where 0 is no suppression attempted, to 3 which represents high 

effort and was designed to mimic current suppression efforts in the Basin (Figure A1.6).  

However, suppression effectiveness can be limited by weather as well, a maximum wind speed 

parameter can limit suppression to days only when resources can be deployed safely.  That 

parameter was set at wind speeds of 11 meters per second (~25 miles per hour) in consultation 

with regional fire personnel.  Prescribed fires follow a set of weather prescriptions for when fires 

can occur (Table A1.2). 

Contemporary wildfires (2000-2016, from CalFIRE FRAP) were used to parameterize fire 

spread and size from the Central Sierra Nevada in order to increase the sample size of fires.  

Mean annual fire area (in ha) for observed data was 117 hectares per year (SD = 309), for 47 



modeled data, the mean value was 122 hectares per year (SD = 210).  In order to move from fire 48 

intensity to fire severity (to encompass the mortality associated with fire), five fire experts 49 

working in the LTB provided their estimates of mortality for varying species, age, and intensity 50 

combinations.  More details about the parameterization of the fire extension are found in Scheller 51 

et al. (2019).  Suppression effort and fire spread are calibrated at the same time in order to try to 52 

account for both forces in recreating the contemporary fire regime.     53 

The model calculates three levels of fire intensity, roughly corresponding to flame lengths of: 1) 54 

less than 4 ft, 2) between 4 ft. and 8ft., and 3) greater than 8ft.  While ignitions are based off of 55 

climate, fire intensity is based off of fuel loading within each cell.  LANDIS calculates fuel 56 

loadings based on the current year’s litter, duff, and downed and dead woody debris.  When a 57 

threshold of fine fuels is exceeded in a cell, the fire intensity increases.  This threshold is based 58 

off a value of ~1100g/m2 or about 5 tons per acre of fine fuels.  The other threshold is based on 59 

ladder fuels: a combination of specific species, under a certain age, and over a certain amount of 60 

biomass per area, contribute to intensity.  Those species contributing to ladder fuels are: Jeffrey 61 

Pine, white fir, and incense-cedar, and the cohorts in the cell have to be younger than 40 with a 62 

biomass greater than 2000g/m2 (9 tons per acre).  When one threshold is exceeded, fire intensity 63 

increases.  When both thresholds are exceeded, fire intensity is at its highest.  High intensity fire 64 

spreads as high intensity fire.  In order to try to validate fire intensity for the Basin, the targeted 65 

fire intensity value for any of the larger multi-day fires was 40% high, 40% mid, and a 20% low 66 

intensity, with high intensity less than 60% of the total fire area.  These percentage targets were 67 

based on the thematic burn severity values present within the Basin from Monitoring Trends in 68 

Burn Severity website. 69 

Insect modeling 70 

A modified version of the Biological Disturbance Agent extension (Biomass BDA v.2.0) 71 

(Sturtevant et al. 2009) was used to simulate insect outbreaks for three species of insects: Jeffrey 72 

pine beetle (Dendroctonus jeffrey), mountain pine beetle (Dendroctonus ponderosae), and fir 73 

engraver beetle (Scolytus ventralis).  The extension requires insect-specific resource 74 

requirements and assigns a species-specific vulnerability that varies by age. Cells are 75 

probabilistically selected for disturbance based upon the species host density at a given site and 76 

the presence of non-hosts reduce disturbance probability.  The parameters for spread and 77 

mortality are outlined in Kretchun et al. (2016), see Table A1.5 and Table A1.6 below.  Mortality at 78 

an outbreak site is subsequently determined by species' age and host susceptibility probabilities 79 

based from empirical field studies (Egan et al. 2010, 2016) and expert opinion, see Table A1.2 80 

below. The insects had differing rates of spread per year from previous outbreaks.  Mountain 81 

Pine Beetle had positive neighbor effects, where pheromones promoted more rapid spread when 82 

there were neighboring populations.  All insects were able to exploit recently burned stands up to 83 

10 years after a fire.  Following mortality, dead biomass remains on site and moves to the 84 

downed woody debris C pool and the fine woody debris C pool. 85 

However, unlike Kretchun et al. (2016), the trigger for an outbreak was changed to be responsive 86 

to climate signals.  This is because for many beetle species climate influences outbreaks in three 87 

ways: low winter temperatures cause beetle mortality; year-round temperatures influence 88 

development and mass attack; and drought stress reduces host resistance. Here, we modeled 89 

climate influences as a function of drought and mean minimum winter temperature, recognizing 90 

that the full suite of climatic influences is necessary for a fully mechanistic model.  So long as 91 



92 

93 

94 

95 

96 

annual climatic water deficit exceeded a set threshold, in conjunction with mean winter 

minimum temperatures exceeded a certain threshold, outbreaks could occur.  A comparison 

between the modeled and observed outbreak dataset (USFS Aerial Detection Survey: 

https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/index.shtml) found an 

overestimation of frequency of occurrence but an underestimation of area impacted by 

insects (Figure A1.7). 97 

98 



99 Supplemental Tables: 

Table A1.1. Suppression effort levels and effectiveness on fire spread 

probability. 

100 

Fire Weather Index 

Thresholds Effort Level 

Fire Type 
Low-

mod 

Mod-

high 
Low Moderate High 

Accidental 40 60 0 5 10 

Lightning 40 60 0 5 10 

Rx 40 60 0 0 0 

101 



Table A1.2.  Prescribed fire parameters used for Scenario 5102 

Prescribed Fire Parameters 

MaximumRxWindSpeed 6.6 (m/s) 

MaximumRxFireWeatherIndex 55 (unitless) 

MinimumRxFireWeatherIndex 10 (unitless) 

MaximumRxFireIntensity 1 (low) 

NumberRxAnnualFires 364 (days of year allowable, subject to climate constraints) 

FirstDayRxFires 1 (first julian day for allowable fire, subject to climate constraints) 

TargetRxSize 72 (hectares) 
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Table A1.3.  Species parameters used in modeling. 104 

Name Longevity 

Sexual 

maturity 

age 

Shade 

tolerance 

Fire 

tolerance 

Seed effective 

dispersal 

distance 

(meters) 

Maximum 

dispersal 

distance 

(meters) 

Vegetative 

Reproduction 

Probability 

Minimum 

age veg 

reproduction 

Maximum 

age veg 

reproduction 

Post-fire 

regeneration 

Pinus jeffreyi 500 25 2 5 50 300 0 0 0 none 

Pinus 

lambertiana 550 20 3 5 30 400 0 0 0 none 

Calocedrus 

decurrens 500 30 3 5 30 1000 0 0 0 none 

Abies concolor 450 35 4 3 30 500 0 0 0 none 

Abies magnifica 500 40 3 4 30 500 0 0 0 none 

Pinus contorta 250 7 1 2 30 300 0 0 0 none 

Pinus monticola 550 18 3 4 30 800 0 0 0 none 

Tsuga 

mertensiana 800 20 5 1 30 800 0.0005 100 800 none 

Pinus albicaulis 900 30 3 2 30 2500 0.0001 100 900 none 

Populus 

tremuloides 175 15 1 2 30 1000 0.9 1 175 resprout 

Non-N fixing, 

Resprouting 80 5 2 1 30 550 0.85 5 70 resprout 

Non-N fixing, 

Seeding 80 5 2 1 30 1000 0 0 0 none 

N fixing, 

Resprouting 80 5 1 1 30 500 0.75 5 70 resprout 

N fixing, 

Seeding 80 5 1 1 30 800 0 0 0 none 

105 
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Table A1.4.  Harvest removals prescription tables 107 

Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp NonnSeed FixnResp FixnSeed 

Hand Thinning Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Scenario 1 - 5 Percent removed -66% -66% -66% -66% -66% -66% -5% -5% -5% -5%

Trees up to 11” 

dbh 

Age range 61-70 65-78 53-68 61-75 74-88 53-64 

Percent removed -39% -39% -39% -39% -39% -39%

Mechanical Thinning Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp NonnSeed FixnResp FixnSeed 

Scenario 1, 2, 4, 5 Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Trees up to 24” 

dbh 

Percent removed -93% -93% -93% -93% -93% -93% -30% -30% -30% -30%

Age range 61-65 65-71 53-60 61-68 74-80 53-58 

Percent removed -70% -70% -70% -70% -70% -70%

Age range 66-70 72-78 61-68 69-75 81-88 59-64 

Percent removed -65% -65% -65% -65% -65% -65%

Age range 71-75 79-84 69-76 76-82 89-96 65-70 

Percent removed -57% -57% -57% -57% -57% -57%

Age range 76-80 85-91 77-85 83-90 97-105 71-77 

Percent removed -45% -45% -45% -45% -45% -45%

Age range 81-84 92-99 86-95 91-97 106-115 78-83 

Percent removed -32% -32% -32% -32% -32% -32%

Age range 85-89 100-107 96-105 98-104 116-125 84-90 

Percent removed -23% -23% -23% -23% -23% -23%

Age range 90-93 108-115 106-115 105-112 126-136 91-97 

Percent removed -17% -17% -17% -17% -17% -17%

Age range 94-98 116-125 116-126 113-120 137-148 98-104 

Percent removed -13% -13% -13% -13% -13% -13%

Age range 99-103 126-135 127-138 121-127 149-161 105-112

Percent removed -8% -8% -8% -8% -8% -8%

Age range 104-108 136-145 139-151 128-135 162-176 113-120



Percent removed -4% -4% -4% -4% -4% -4%

Mechanical Thinning Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp NonnSeed FixnResp FixnSeed 

Scenario 3 Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Trees up to 38” 

dbh 

Percent removed -95% -95% -95% -95% -95% -95% -30% -30% -30% -30%

Age range 61-65 65-71 53-60 61-68 74-80 53-58 

Percent removed -95% -95% -95% -95% -95% -95%

Age range 66-70 72-78 61-68 69-75 81-88 59-64 

Percent removed -85% -85% -85% -85% -85% -85%

Age range 71-75 79-84 69-76 76-82 89-96 65-70 

Percent removed -85% -85% -85% -85% -85% -85%

Age range 76-80 85-91 77-85 83-90 97-105 71-77 

Percent removed -85% -85% -85% -85% -85% -85%

Age range 81-84 92-99 86-95 91-97 106-115 78-83 

Percent removed -75% -75% -75% -75% -75% -75%

Age range 85-89 100-107 96-105 98-104 116-125 84-90 

Percent removed -70% -70% -70% -70% -70% -70%

Age range 90-93 108-115 106-115 105-112 126-136 91-97 

Percent removed -60% -60% -60% -60% -60% -60%

Age range 94-98 116-125 116-126 113-120 137-148 98-104 

Percent removed -35% -35% -35% -35% -35% -35%

Age range 99-103 126-135 127-138 121-127 149-161 105-112

Percent removed -20% -20% -20% -20% -20% -20%

Age range 104-108 136-145 139-151 128-135 162-176 113-120

Percent removed -10% -10% -10% -10% -10% -10%

Age range 109-120 146-180 152-240 136-180 177-230 121-160

Percent removed -10% -10% -10% -10% -10% -10%

Age range 121-125 181-200 241-252 181-190 231-250 161-180

Percent removed -5% -5% -5% -5% -5% -5%
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Table A1.5.  Insect disturbance inputs by insect 109 

Fir 

Engraver 

Jeffrey 

Pine Beetle 

Mountain 

Pine 

Beetle 

Parameter Source Parameter Source Parameter Source 

Dispersal 

Rate 

1000 m/year Jactel 

(1991) 

600 m/year Egan 

(personal 

comm.) 

400 m/ 

year 

Safranik 

(2006) 

Neighborhood 

Effect 

N/A USFS Fir 

Engraver 

Facts 

(2017) 

N/A N/A Yes, 2x Safranik 

(2006) 

Disturbance 

Modifier 

Fire: 100%, 

10 years 

Schwilk 

2006 

Fire: 100%, 

10 years 

Schwilk 

2006 

Fire: 100%, 

10 years 

Schwilk 

2006 

110 
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Table A1.6: Insect disturbance parameters by insect by host species 112 

Susceptibility Mortality 

Target 

Species 

Age 

Class 1 

Age 

Class 2 

Age 

Class 3 

Age 

Class 1 

Age 

Class 2 

Age 

Class 3 

Source 

Fir 

Engraver 

Abies 

concolor 

0-10,

0%

10-60,

65%

60+, 

75% 

0-10,

0%

10-60,

8%

60+, 

12% 

Ferrell 

1994, 

Schwilk 

2006, 

Egan 

(personal 

comm) 

Abies 

magnifica 

0-10,

0%

10-60,

45%

60+, 

55% 

0-10,

0%

10-60,

8%

60+, 

12% 

Jeffrey 

Pine 

Beetle 

Pinus 

jeffreyi 

0-20,

10%

20-30,

80%

30+, 

80% 

0-40,

5%

40-

120, 

18% 

120+, 

8% 

Egan et 

al. 2016 

Mountain 

Pine 

Beetle 

Pinus 

albicaulis 

0-20,

33%

20-60,

66%

80+, 

80% 

0-20,

5%

20-60,

15%

80+, 

20% 

Safranik 

(2006), 

Cole and 

Amman 

(1980) 

Pinus 

lambertiana 

0-20,

33%

20-60,

66%

80+, 

80% 

0-20,

5%

20-60,

25%

80+, 

30% 

Pinus 

contorta 

0-20,

33%

20-60,

66%

80+, 

80% 

0-20,

5%

20-60,

15%

80+, 

20% 

Pinus 

monticola 

0-20,

33%

20-60,

66%

80+, 

80% 

0-20,

5%

20-60,

25%

80+, 

30% 

113 



 Supplemental Figures: 114 

115 

116 Figure A1.1.  Projected precipitation in mm yr-1, lines of best fit are GAM estimated, and 

boxplots represent distribution of annual precipitation for the years 2090-2100. 117 



118 

Figure A1.2.  Projected number of consecutive days with no precipitation, lines of best fit are GAM 119 

estimated, and boxplots represent distribution of consecutive days per year for the years 2090-120 

2100. 121 

122 



123 

124 

125 

Figure A1.3.  Projected daily maximum temperature in degrees C, lines of best fit are GAM 

estimated, and boxplots represent distribution of daily temperatures for the years 2090-2100 for 

the future climate projections. 126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 



138 

egagrams C per hectare, by ecoregion, error 139 Figure A1.4.  Observed versus modeled total C, in 

m bars represent +/- 1 standard deviation. 140 

141 



142 

143 

Figure A1.5.  Comparison of MODIS (left) and LANDIS (right) estimates of Net Primary 

Productivity in g C/m ^2.  Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), while 

for LANDIS the mean value was 320 g C/m^2 (sd 312). 144 

145 



146 

(left), management zone (middle), and the overlay of the 147 Figure A1.6.  Map of suppression 

effort two (right). 148 



149 

150 

151 

152 

Figure A1.7. Observed versus modeled number of hectares affected by insect/mortality agent.  

Time 0 is equal to 1990, with Time 22-25 corresponding to the 2012-2015 California drought.  

FE is fir engraver beetle (Scolytus ventralis), JPB is Jeffrey pine beetle (Dendroctonus jeffrey), 

and MPB is mountain pine beetle (Dendroctonus ponderosae).   153 

154 

155 



156 

157 

158 

Figure A1.8.  Harvest return frequency by management scenario.  Treatments were 

expanded beyond the WUI area in Scenario 3.  Scenarios 3 through 5 had a higher 

intended treatment frequency. 159 



160 

everity fire area (right) by scenario and by 161 Figure A1.9.  Histogram of fire sizes (left) and 

high s climate 162 
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