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Abstract: Fire location and burning area are essential parameters for estimating fire emissions.
However, ground-based fire data (such as fire perimeters from incident reports) are often not available
with the timeliness required for real-time forecasting. Fire detection products derived from satellite
instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are
available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a
series of linear models that use multiple satellite fire detection products (HMS aggregate fire product,
GOES-16, MODIS, and VIIRS) to assess the ability of satellite data to detect and estimate total
burned area. It was found that on average models fit with fire detections from GOES-16 products
performed better than those developed from other satellites in the study (modelled R2 = 0.84 and
predictive R2 = 0.88). However, no single satellite product was found to best estimate incident burned
area, highlighting the need for an ensemble approach. With our proposed modelling ensemble, we
demonstrate its ability to estimate burned area and suggest its further use in daily fire tracking and
emissions-modeling frameworks.

Keywords: wildfire; satellite data; burned area; estimation model; fire detection hot spots

1. Introduction

Wildland fires release large amounts of aerosols and trace gases into the atmosphere,
which has short- and long-term impacts on air quality [1], public health [2] and the global
carbon cycle [3,4]. The location and amount of area burning are primary inputs to algo-
rithms that quantify the aerosols and trace gases emitted, and accurately determining these
inputs is critical. Ground tracking of actively burning area or even fire location is not
uniform across land ownerships and regions. Where available, access is often not quick
enough for near real-time air quality forecasting. Alternatively, satellites provide consistent
fire detection products that cover large areas and are readily available in near real-time.
Because of this, many studies that focus on estimating biomass burning emissions on
regional and global scales use satellite fire detection data [5–15]. Use of satellite data for
this purpose requires care as differing spatial resolutions, sensor type, and measurement
timings result in detection capabilities that vary by satellite and fire detection package.

The Visible Infrared Imaging Radiometer Suite (VIIRS) packages aboard the Suomi
NPP and NOAA-20 satellites can generally detect smaller, cooler fires than can the Geosta-
tionary Operational Environmental Satellite (GOES) due to their higher spatial resolution
(375 m when overhead) [16,17]. On the other hand, because VIIRS platforms are polar
orbiting, at mid-latitudes they will provide only 3–4 looks per day and are not likely to be
directly over a given fire during its maximum activity. The GOES-16 and -17 geostationary
satellites can provide continual images or fire pixels at 5-min intervals, 1-min in some
cases, and can capture fires that burned quickly or are obstructed by clouds or heavy
smoke, provided there are breaks at some point during the day. However, GOES’s nominal
2 km resolution stretches away from nadir and at mid-latitudes is relatively coarse. The
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MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard two polar
orbiting satellites, Aqua and Terra, provide 2 looks per day at a moderate 1 km resolution.

The ability of satellites to detect fire is also heavily influenced by the type of vegetation
that is burning [18,19]. For example, quick burning fuels, such as grasslands, can cause even
large fires to burnout quickly, and thus be potentially missed by polar orbiting satellites.
Polar systems work best when breaks in cloud and heavy smoke and rapid fire growth
occur during their specific overflights times. Fires in vegetation like conifer forest, on the
other hand, often have longer durations with correspondingly longer detection windows.
Vegetation also puts constraints on the amount of biomass that can burn, which directly
effects the amount of energy released from a fire (i.e., fire intensity) and how visible
that energy is to satellites. Conversely, vegetation with large canopy cover can obscure
lower intensity burns when the flames are below canopy level. The result is regionalized
differences in fire detection capabilities based largely on the typical local vegetation cover
and fuel moistures that determine typical fire behavior in that region [20].

Determining area burning from fire detections requires the further step of assigning
each hotspot or collection of hotspots an area estimate. Assigning areas based on the overall
satellite sensor’s pixel spatial coverage overestimates the actual burning area, as satellite
sensors often detect subpixel fires, so statistical relationships are needed that create best
fit estimates of burning area [21–24]. These need to account for regional and vegetation
detection differences as well as the differences between the various sensors and systems.

In this study, we describe a novel statistical method using fire detection hotspot counts
to improve estimates of burning area across the contiguous United States. This method
takes advantage of multiple satellite fire detection products to compensate for limitations
that can arise from using a single satellite product. The model is specifically designed
with near real-time daily estimation as well as ease of utility in mind to meet the needs of
decision support systems, such as fire emissions models and smoke forecasts that require
rapidly updated information [7]. The goals are to both do retrospective assessments of
overall cumulative burned area and to best quantify and track daily active burning.

2. Materials and Methods

This work follows three parts. First, satellite fire detection data from specific satellites,
as well as an aggregate system, are analyzed against ground reported data to find statistical
fits specific to ecosystem type that can estimate a fire’s cumulative burned area. These are
assessed to determine which satellite products appear to allow for the best estimates. Next,
we examine the ability of the derived statistical models to track individual fire growth.
Finally, we examine whether the use of multiple satellite models, through an ensemble
approach, can perform better at these tasks.

2.1. Data

In this study we utilize satellite fire hotspot products and a ground-based fire perimeter
dataset across CONUS and Alaska for the period 2017–2020. Data from 2017–2019 were
used as training data, and data from 2020 were used as a model validation set.

2.1.1. Satellite Fire Detection Data

Satellite fire detection products were obtained directly from their sources: GOES-16
Advanced Baseline Imager (ABI) Level 2 Fire Detection/Hot Spot Characterization (FDC),
MODIS thermal anomalies from both Aqua and Terra satellites, and two VIIRS packages at
varying resolutions (Table 1). Data from the MODIS instrument were further separated by
satellite, Aqua or Terra, for model fitting due to different overpass timings which could
affect detection or model fit. Additionally, data for several of these satellites were also
obtained through the U.S. National Oceanic and Atmospheric Administration (NOAA)
Hazard Mapping System (HMS) data feed.

Fire detections included in HMS are quality controlled by expert image analysts
to remove false detections and locations associated with persistent sources and urban
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environment, and to add detections after referring to satellite imagery. For this reason, this
data can differ from the originally sourced data. We choose to include both the originally
sourced data and the HMS version, where available, as separate sources for analysis
(Note: NOAA 20 VIIRS data were only available from the HMS source for this study).
To distinguish, we prefix HMS sourced data with “HMS” as in HMS GOES-16, whereas
GOES-16 alone refer to the originally sourced GOES-16 data product. The HMS obtained
data closely matched the results of the originally sourced data, however, we elected to
keep both as they proved to function differently for individual fire tracking and modelling
results.

Table 1. Satellite fire detection data used in this study.

Satellite Instrument Product Study Name Spatial Resolution
(at Nadir)

Temporal
Resolution

GOES-16 ABI FDC * [25,26] GOES-16 2 km 5-min

Terra MODIS MCD14ML * [27] MODIS Terra 1 km Daily

Aqua MODIS MCD14ML [27] MODIS Aqua 1 km Daily

Suomi VIIRS VNP14v001 [28] SNPP VIIRS 750 m 750 m Daily

Suomi VIIRS VNP14IMG * [29] SNPP VIIRS 375 m 375 m Daily

GOES-16 ABI HMS [30] HMS GOES-16 2 km 5-min

Terra MODIS HMS [30] HMS MODIS Terra 1 km Daily

Suomi VIIRS HMS [30] HMS SNPP VIIRS 375 m Daily

NOAA 20 VIIRS HMS [30] HMS NOAA 20
VIIRS 375 m Daily

* Source also available through the NOAA Hazard Mapping System (HMS).

2.1.2. Ground-Based Fire Incident Data

Ground-based fire data are obtained from the Geospatial Multi-Agency Coordination
(GeoMAC; https://data-nifc.opendata.arcgis.com; accessed on 3 May 2020) dataset (2017–
2019) and National Interagency Fire Center (NIFC; https://data-nifc.opendata.arcgis.com;
accessed on 26 March 2021) dataset (2020). Initial data for 2021 was also obtained from
NIFC, but we focus on results for 2020 here. GeoMAC/NIFC provides both fire size and fire
perimeter polygons at various time intervals throughout the course of the fires contained
within it. Data are collected by fire incident using crew observations, and, helicopter and
aircraft infrared overflights, combined with expert analysis from incident personnel. Not
all fires have perimeters, however, so only fires with both perimeter and fire size data were
included. This biases this work towards larger fires that are more likely to have perimeter
polygons.

Perimeters vary in frequency. They are sometimes generated daily, but more frequently
are created every few days. In some cases, only the final fire perimeter (after containment or
extinction) is recorded. The recorded fire area will not necessarily match the area of the final
fire polygon due to unburned, or unburnable, areas within the polygon. Fire perimeters are
used for assigning satellite fire detections to the fire (see Section 2.2.1), while the recorded
fire size is considered the ‘true’ fire size for modelling; while doing so ignores limitations
with the GeoMAC/NIFC data feed, this data is the best available for this purpose.

2.1.3. Vegetation Data

Fires burn differently in different vegetation types due to variations in total fuel
loading, energy content, size distribution, and moisture dynamics, therefore we segregate
our analysis based on vegetation type. Specifically, we use the LandFire Existing Vegetation
Type layer [31]. LandFire vegetation subclasses were grouped together by considering
the underlying species of each subclass (Table 2), resulting in nine possible vegetation
categories.

https://data-nifc.opendata.arcgis.com
https://data-nifc.opendata.arcgis.com
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Table 2. Vegetation categories derived from the LandFire existing vegetation type data layer.

Assigned Vegetation ID LandFire Existing Vegetation Sub Class Abbreviation

0 Sparsely vegetated/developed Spar. Veg.
1 Annual graminoid/forb Ann. Gram.
2 Perennial graminoid/steppe/grasslands Per. Gram.
3 Deciduous shrubland/dwarf-shrubland Decid. Shrub
4 Evergreen shrubland/dwarf-shrubland Ever. Shrub
5 Mixed evergreen-deciduous shrubland/dwarf-shrubland Mix. Shrub
6 Deciduous tree canopy (open/closed/sparse) Decid. Tree
7 Evergreen tree (open/closed/sparse) Ever. Tree
8 Mixed evergreen-deciduous tree (open/closed/sparse) Mix. Tree

2.2. Development of Model Training and Validation Datasets
2.2.1. Assignment of Satellite Fire Detections to Known Fires

To compare satellite data to our ground-based fire perimeters we had to assign indi-
vidual satellite fire detections to specific known fires. Satellite fire detections were assumed
to be associated with a fire if they were within 1 km of the final fire perimeter and within a
temporal window (45 days before, and 15 days after) surrounding the start and end dates
of that fire’s perimeter data. We used a temporal window with relatively wide margins to
avoid excluding fire detections due to delays in fire incident reporting or lingering hotspots
due to smoldering combustion after an incident is closed (see Appendix A for details on
window selection). Figure 1 shows an example of the fire detections within our temporal
window which were assigned to the 2018 Carr fire in California.
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real-time nature of the HMS fire detection dataset. 

Figure 1. Satellite fire detections associated with the 2018 Carr fire, CA by satellite detection product.
Fire detections were associated with the fire if they occurred within a temporal window surrounding
the reported start and end dates of the fire and if they occurred within 1 km of the final fire perimeter.
The final fire perimeter is shown in dark grey. (A) all detections within the temporal and spatial
window; (B) detections on 24 July 2018 from GOES-16, MODIS and SNPP VIIRS 375 m fire detection
products.
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2.2.2. Summarizing Assigned Satellite Fire Detections

Satellite fire detection products differ in spatial (Figure 1B) and temporal resolution
(Figure 2). To account for these differences, assigned satellite fire detections were summa-
rized into counts for model fitting using two methods. The first was a cumulative sum of all
associated fire detections by satellite source, while the second was a daily cumulative sum
of spatially unique points. In the latter method, the cumulative sum of all fire detections
was reduced to daily spatially unique locations only, i.e., in calculating a cumulative sum
of fire detections, each unique lat/lon pair is counted only once per day. For single-pass
polar-orbiting satellite data (e.g., MODIS Aqua), these two methods are identical; however,
the two methods differ substantially for geostationary platforms. Figure 2 shows an exam-
ple of the daily fire detection counts from these two methods for the Carr fire. The use of
daily spatially unique counts serves as an attempt to help rectify differences in the number
of detections occurring on different days due to non-fire influences such as intermittent
obscuring clouds. We note in Figures 1A and 2 the lack of HMS MODIS Terra fire detections.
While we can only speculate as to why, this could be due to the operational real-time nature
of the HMS fire detection dataset.
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Figure 2. The daily counts of fire detections associated with the 2018 Carr fire, CA by satellite
detection product. The solid line shows the cumulative sum of all associated fire detections each
day, while the dashed line shows the cumulative sum of all daily spatially unique associated fire
detections.

2.2.3. Final Training and Validation Datasets

Fire incident data, now with summarized fire detection information, were segregated
into training (2017–2019) and validation (2020) datasets based on year. The training dataset
contained 2699 fire incidents with assigned satellite fire detections, amounting to 61% of
all of the fires in the GeoMAC dataset for this time period. Fires which were not detected
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by the satellites tended to be smaller than those that were detected (average acres of 104
vs. 7038). The validation dataset contained 401 fire incidents with assigned satellite fire
detections. Overall, our datasets contained an average of 775 fires per year (401–1022) with
an average of 6.7 million acres burned per year (4.0–8.1 million). Individual fires ranged
from as small as 0.004 acres to over 650,000 acres.

Finally, each fire incident in the training and validation datasets were assigned a
vegetation group from Table 2. Vegetation groups were assigned based on the vegetation
type that covered the majority of the fire perimeter area.

2.3. Fitting Burned Area Estimation Models

With the fire incident training dataset outlined above, we developed a series of statisti-
cal relationships for each satellite product (Table 1) for each vegetation type (Table 2) relating
total burned area to the two different methodologies for aggregating fire detections—(a) the
cumulative number of detections; and (b) the cumulative number of daily spatially unique
detections (see Appendix B for details on intermediate models). Each model was a single
variable linear regression model of the following form:

Burned Areaveg,source = β * Detectionsveg,source (1)

For fires in vegetation group veg = (0, . . . , 8) a model was fit using fire detections
from each satellite source = (HMS GOES-16, HMS SNPP VIIRS, HMS NOAA 20 VIIRS,
HMS MODIS Terra, GOES-16, MODIS Terra, MODIS Aqua, SNPP VIIRS 375 m, SNPP
VIIRS 750 m). Since each model is a zero-intercept linear regression model relating burned
area (Burned Area) and fire detections (Detections), β represents acres per fire detection.
Ultimately this produced 99 linear models ((9 cumulative detection counts + 2 spatially
unique detection counts) × 9 vegetation ids). The HMS GOES-16/Decid. Shrub model,
however, had data from only two fires, so was not further considered.

We compared and validated models via the modelled R2, root mean square error
(RMSE) of the observed and predicted values, and a cross-validation predictive R2. We
performed a cross-validation procedure which iteratively withheld ten percent of the fires
in the dataset, fit the regression models using the remaining fires, and then predicted
the burned areas of the withheld fires. This procedure was repeated 5000 times and the
correlation between burned area and the model-predicted burned area was recorded with
each iteration. The statistical significance of modelled R2 between groups of satellite
fire detection products (i.e., polar satellites vs. geostationary satellites) was tested via
permutation tests with 100,000 random splits of modelled R2 values. Observed differences
in R2 values from the permutation tests were compared via a 95% confidence interval.

2.4. Ensemble (ENS) Method for Estimating Burned Area

The models outlined above produce a maximum of 11 burned area predictions for a
single fire incident (9 cumulative fire detection models and 2 daily spatially unique fire
detection models). To use all of the satellite detection information collectively, but still
arrive at one estimate, we evaluated several simple methods for summarizing the ensemble
of burned area estimates: mean (ENS mean), maximum (ENS max), and median (ENS
median). We evaluated each estimate via the same cross-validation procedure as before, but
this time we calculated the mean, maximum, and median of all the burned area predictions
for a withheld fire. With each iteration, in addition to correlation, we also calculated the
mean absolute error (MAE) and mean absolute percentage error (MAPE) between burned
area and the ENS mean, maximum or median burned area.

2.5. Tracking of Daily Burning Area

Using our models, we explored the utility of daily fire tracking. To do this we first
selected known fires from the training dataset with at least five unique fire perimeters. This
was done to ensure we selected fires which show growth progression over time. For each
selected fire, we generated daily ensembles of burning area predictions by multiplying the
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model coefficients developed in Section 2.3 and the corresponding daily cumulative and
spatially unique satellite fire detections from each satellite product for each day. We also
calculated the daily ENS median to arrive at one burning area prediction per fire per day.
We then compared the daily, where available, reported fire size to the cumulative predicted
burned areas (cumulative sum of each daily predicted burning area). This was done for
each satellite product separately as well as the ENS median.

3. Results & Discussion

We utilized collected fire size observations from GeoMAC and NIFC over the period
2017–2020 to examine how well a variety of satellite systems (Table 1) can estimate burned
area, as well as the potential for using a combination of satellites to improve estimates.

Satellite fire detection products provide timely national coverage for estimating the
amount of fire on the landscape, yet there are limitations to the use of satellites in burned
area prediction. For instance, cloud cover or heavy smoke can obscure fires, preventing
detection. Additionally, the satellite’s pixel footprint, which can vary from as small as
375 m (VIIRS) to over 2 km (GOES-16), and timing, from once-a-day overflights to continual
geospatial observations, affect the minimum size and intensity of the fire needed for
detection as well as contribute to uncertainty over the true spatial location of the fire.

As the satellite systems used here look at individual pixels at particular times, Geo-
MAC/NIFC fires are reflected in a number of distinct satellite fire detections (e.g., of adja-
cent or nearby points, or of the same points over multiple observation periods). By aggre-
gating the satellite detections based on spatio-temporal overlap with the GeoMAC/NIFC
fire perimeters, we can fit satellite specific models and test them against the incident re-
ported fire sizes. Figure 3 shows an example of how well three of these models perform
for a particular vegetation type (Ever. Tree), and show the wide variability in the number
of fire detections from differing satellite products. The three models are able to explain
81% (MODIS Aqua model) to 92% (GOES-16 cumulative sum model) of the variance in
burned area. These three models are generally a good representation of the other 99 models.
All model coefficients and model fit results, including modelled R2 and RMSE, from the
99 models are reported in Table A3 or visually shown in Figure 4.

3.1. Modelling Total Burned Area: Overall Performance

While the various satellite fire detection products each detect the bulk of the overall
fires that occurred in any given year, and while the overall patterns of regional variabil-
ity and interannual variability can be found in each, there are substantial differences in
how well each satellite performed. Overall, the geostationary products performed better
(R2 = 0.80 on average) versus polar orbiting products (R2 = 0.71 on average), highlighting
that their ability to catch the apex of a fire’s intensity throughout the day can offset their gen-
erally coarser sensor pixel resolutions. This difference was further found to be statistically
significant following a permutation test. Looking across vegetation groups, the products
from GOES-16 (HMS and original source) had the best model performance (R2 = 0.84)
(Figure 4). Additionally, GOES-16 daily spatially unique cumulative sum models have the
highest predictive R2 (R2 = 0.88) of all models (Table A3).

In most cases, there are only small differences between model fits using the two fire
detection counting methods (Table A3). The daily spatially unique cumulative sum models,
however, perform better on average than their cumulative sum models counterparts in
cases where the two models result in different model fits (e.g., GOES-16) (average R2 = 0.84
vs. average R2 = 0.76).

Performance varied substantially across vegetation types. Grouping broadly, fires
located in sparse or limited vegetation are the worst modelled (R2 = 0.45 on average); this
vegetation group also has the least number of fires available for model fitting (on average
of 13 fires per model), making its performance more suspect. The next best modelled are
fires found in grasslands (R2 = 0.65), followed by shrublands (R2 = 0.80). Fires in treed
areas performed the best (R2 = 0.85), with the deciduous tree vegetation type topping the
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list (R2 = 0.94). This result matches with previous studies, as lighter fuels and faster fires
found in grasslands have been shown to be harder to capture by satellites [18].
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Figure 3. Scatter plots of the cumulative sums of fire detections from the GOES-16 and MODIS Aqua
satellites and total burned area for known fires in the evergreen tree vegetation group. The lines are
the regression model fits relating total burned area to the cumulative sum of GOES-16 (middle) and
MODIS Aqua (bottom) fire detections, and relating total burned area to the cumulative sum of daily
spatially unique GOES-16 fire detections (top). Model R2 is reported in upper left corner of each plot.

Our results were confirmed in examination of model performance on additional data
obtained for calendar year 2020. A separate validation dataset provides an opportunity to
assess model performance on unknown fires and provide an unbiased estimate of model
skill. Overall, correlations between burned area predictions and reported burned area
for fires in 2020 are quite good. The average correlation across all models is 0.83, and
predictions generated from the GOES-16 daily spatially unique model have the highest
correlation (r = 0.90). Initial analysis of fires in 2021 (the first year this system was put
into real time use) showed largely similar results, but this will be analyzed further in
future work.
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Figure 4. Model fit results for models relating cumulative sums of satellite fire detections and
cumulative sums of daily spatially unique (SU) fire detections to total burned area of fires from
GeoMAC. Each row is an individual model and each column is a vegetation group (0, . . . , 8). Circles
are sized proportional to the model R2 (larger circle = larger model R2). Circles are colored by log of
the model coefficient (acres per fire detect) (darker blue = smaller acres per detect coefficient, lighter
blue = larger acres per detect coefficient). Squared circles are models where that model had the best
R2 for that vegetation group (column).

3.2. Tracking of Daily Burned Area

In addition to the overall number of fires and overall burned area, applications such
as incident management and smoke forecasting use satellite systems for their ability to
track the growth of an individual fire. To understand how these systems may benefit
from our models, we emulated the fire information needed by these systems to estimate
daily fire emissions by “tracking” daily burning area estimates. Smoke forecasting models
require daily measurements of active burning, which, is not readily available. Using our
models trained on total burned area, we examine how well they predict active burning by
generating daily predictions of burning area for a subset of fire incidents from our training
dataset. We selected fires with at least five unique fire perimeters, which resulted in 678 fire
incidents. Over the lifetime of the selected fires, we used the model coefficients (Table A3)
and the daily cumulative and spatially unique fire detections from each satellite product to
produce daily burning predictions. We present the following results as indicative and not
conclusive as we tested with a subset of fires from our dataset.

The geostationary products, again, performed better (predictive R2 = 0.93 on average)
versus polar orbiting products (predictive R2 = 0.79 on average). Predictions generated
from GOES-16 (the cumulative fire detection model) once again have the highest correlation
of any satellite product (r = 0.95; predictive R2 = 0.90). Overall, the average correlation
between daily incident reported burned area and model predicted burned area across
satellite products is 0.84 (predictive R2 = 0.73).

Fires located in sparse or limited vegetation are again the worst modelled (predictive
R2 = 0.04), however, this result was based on only three fires. The next best vegetation
types are treed (predictive R2 = 0.84), and then grasslands (predictive R2 = 0.86). Shrubland
areas performed the best (predictive R2 = 0.92).
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3.3. Modelling Total Burned Area: Ensemble (ENS) Approach

There are several reasons for using fire detection information from multiple satellite
products, such as taking advantage of different spatial and temporal resolutions and
leveraging the strengths of both geostationary and polar platforms. In addition, other issues
with satellite detections, such as false detections, may be mitigatable by looking across
different satellite systems. The satellite instruments themselves also differ in sensitivity,
and must compensate for changes in pixel size and shape and on the scan angle of detection.
For these reasons and others, having an ensemble of burned area estimates from multiple
satellite products is preferable.

To use all of the satellite detection information available, we developed several simple
statistical approaches to summarize the results across the different satellite products and
models. It should be noted that we used all of our information, including HMS, though
an ensemble could easily be done with just the original source datasets. We performed
a cross-validation procedure with fires from the training dataset taking the ENS mean,
median, and maximum of burned area estimates, and the results for each were very similar.
The average predictive R2 is 0.74 for the ENS median, 0.75 for the ENS mean, and 0.75 for
the ENS maximum. We choose to continue to use the ENS median as the representative
burned area estimate going forward because it is less likely to be unduly influenced by
extreme model predictions (like mean and max), and the ENS median represents an actual
total burned area prediction produced by a model. The average mean absolute error (MAE)
from the cross-validation is 3641 for the ENS median, while the average mean absolute
percentage error (MAPE) is 51.4. The median MAPE, however, across all cross-validation
iterations is 35.7. This difference is likely due to the biased nature of MAE and MAPE to
large outliers.

We also applied the ENS median to total burned area predictions of fires during 2020.
The correlation between total burned area and the ENS median of model predictions is 0.90,
which is higher than the average correlation across satellite products. The MAPE between
total burned area and the ENS median is 12.2. For 2020 fires with reported burned areas at
least 1000 acres, the correlation with the ENS median is 0.89 and the MAPE is 0.65, while
fires with burned areas less than that is 0.27 and 22.6, respectively. In fact, we found that
the MAPE between burned area and the ENS median tends to decrease as fire sizes get
bigger. This all suggests that the ensemble performs significantly better for fires of at least
moderate size. This makes sense given the interpretation of the linear regression models
(model coefficient = acres per fire detection) where even if a small fire is detected by a
satellite, the total burned area is predicted, at minimum, to be 3.8–298.3 acres depending
on which satellite detected it. The 50th quantile of reported burned area of fires in 2020 is
only 60 acres, making it much more likely for the ensemble to over-predict these smaller
fires, as reflected in its poorer correlation and MAPE.

3.4. Using the Ensemble (ENS) for Daily Tracking of Burned Area

We calculated the ENS median of up to 11 possible daily burning area estimates for
a subset of 678 fire incidents from the training dataset (see Section 3.2). The correlation
between daily reported burned acres and the ENS median was 0.90 (predictive R2 = 0.82).
Which again, like was the case when testing the ENS median on 2020 fires, is higher than the
average correlation across satellite products. This further suggests that using information
from all the model predictions to arrive at a single burned area estimate is of great value,
particularly for multi day fire growth events. This strong correlation suggests that using
our model ENS to estimate burning area in a near real-time framework, similar to the needs
of smoke forecasting models, would be encouraged and successful.

We further chose to highlight daily burning area tracking for the Carr and Taylor
Creek fires (2018), as well as the Walker and Woodbury fires (2019). We chose these fires for
their moderate to large sizes and breadth of satellite source options in the ENS. The daily
burned area tracking results for these fires are shown in Figure 5.
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Figure 5. Cumulative predictions of burning area for four fires: 2018 Carr fire, CA, 2018 Taylor Creek
fire, OR, 2019 Walker fire, CA, and 2019 Woodbury fire, AZ. Each color shows predictions from
models fit for different satellite fire detection products. Solid lines show predictions from models
fit using cumulative sums of fire detections. Dashed lines show predictions from models fit using
cumulative sums of daily spatially unique (SU) fire detections. The black dot-line shows the daily
ENS median of model predictions. Additionally, the gray squares show the GeoMAC reported
cumulative burned area for a given day. Models are ordered on the right from most over predicted to
under predicted for a given fire, along with the percent off from the reported cumulative burned area
the prediction was.
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Interestingly, the satellite product that best represents the progression of area burned is
different for all four fires (Figure 5). The Carr fire is best represented by the HMS GOES-16
models (under predicted by 3 and 9%); the Taylor Creek fire is extremely well represented
by the ENS median and HM GOES-16 spatially unique model (under predicted 9%, over
predicted 6%, respectively); the Walker fire is best represented by the SNPP VIIRS 750 m
and MODIS Aqua models (over predicted by 6 and 10%, respectively); while the Woodbury
fire is best represented by the HMS NOAA 20 VIIRS and GOES-16 spatially unique models
(under predicted by 1 and 5%, respectively) (Figure 5). Some models over-predict total
burned area, while others under-predict, but these are not consistent across the four fires.
For example, the HMS MODIS Terra fire detection model significantly over-predicts the
size of the Walker fire, but significantly under-predicts the size of the Carr and Taylor Creek
fires. The ENS median is in general a good predictor of total burned area for all four fires
(within 9 to 13% of the reported burned area) (Figure 5), which is a reassuring result as
there is no single satellite fire detection product that consistently provides the best results
for all four fires. This further highlights the benefit of using information from the full ENS
to produce more informed estimates.

4. Conclusions

This study examined the ability of satellite fire detection products to estimate the
burned area of known fires and track their growth over time. Using fire detection data
from multiple satellites, we developed burned area estimation coefficients for each of nine
differing vegetation types over the U.S. for the period of 2017–2019. These coefficients were
then tested with fires from 2020. The clear differential nature of the vegetation types and
satellite products that we observed in our model fits and estimates led to the construction
of an ensemble which samples information across all of the satellites to improve overall
burned area estimates. This is particularly key as no single satellite product was found to
best estimate burned area.

The modelling ensemble (ENS) we developed has shown enhanced accuracy with
less data issues than individual satellites, and performs better in terms of model fit and
predictive accuracy, as well as daily tracking of fire. Analysis of the robustness of this
approach will benefit from additional data from future fire seasons as well as testing within
real world applications.

Further work is underway to compare these results with FRP/FRE based estimates
and to examine how well this methodology works in an operational capacity. For 2022, the
ENS burned area estimates detailed here are being tested, with daily area tracking being
used in a smoke forecasting system by the U.S. Forest Service led U.S. Interagency Wildland
Fire Air Quality Response Program. While initial results show promise, examination of
these estimates against other methodologies within this testbed system will provide a
further validation of this approach.
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Appendix A. Data Pre-Processing

To fit models relating satellite fire detections to reported fire size from known fire
incidents, we had to first assign and summarize satellite fire detections to each fire in our
training dataset. Fire detections were assumed to be associated with known fires if they
were within 1 km of the final fire perimeter and within a temporal window (45 days before,
and 15 days after) surrounding the start and end dates of the fire.

Our specific temporal window was chosen by considering the proportion of fires in
the training dataset which would gain additional associated satellite fire detections as the
size of the temporal window around the reported fire start and end dates was increased
(Figure A1). Over half of the fires have associated fire detections 1–5 days before the
GeoMAC reported fire start date. Additionally, in general, there tends to be more fires
which have associated fire detections leading up to (before) their start dates than after their
end dates (Figure A1). This supports our decision to choose a temporal window which
was longer at the start of a fire than the end, as we were more concerned about delayed
reporting of fires incidents. The proportion of fire incidents with associated satellite fire
detections decreases as the window is expanded. The rate at which the proportion decreases
is much greater within about 15 or 20 days of the fire start and end dates, after which the
proportion seems to level off and hold steady. This could indicate that unrelated data is
starting to be included. Once the temporal window reaches 15 days in size (on either side),
the proportion of fires with additional associated satellite fire detections is less than 10%
(Figure A1). With all this information we ultimately decided to use a temporal window
which was 45 days before the reported fire start, and 15 days after the reported fire end.
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Figure A1. Barchart showing the proportion of fires in the training data set which had satellite fire
detections before or after the GeoMAC reported start and end dates. Each bar shows a 5 day range,
i.e., 1–5 reports the proportion of fires which had satellite fire detections one to five days before or
after their start and end dates. Days before the reported fire start are to the left, and days after the
reported fire end are to the right.
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Appendix B. Intermediate Area Estimation Models

We began by first taking all the satellite fire detections from HMS, pooled together,
and relating them to reported burned area with a single variable linear regression model:

Burned Areai = β × HMSi (A1)

For a fire i we fit a linear model with a zero intercept and cumulative sum of fire
detections or daily spatially unique cumulative sum of fire detections from HMS only.

Our second modelling attempt grouped fires into nine possible groups based on
dominant vegetation type. Fires in each vegetation group were modelled with the same
single variable linear regression model:

Burned Areaveg = β × HMSveg (A2)

For fires in vegetation group veg = (0, . . . , 8) we fit linear models with a zero intercept
and cumulative sum of fire detections or daily spatially unique cumulative sum of fire
detections from HMS only.

In our first attempt to estimate total burned area from HMS satellite fire detections
(Equation (A1)), the cumulative sum linear regression model estimated 12.3 acres per
detection (modelled R2 = 0.51), and the daily spatially unique cumulative sum model
estimated 13.7 acres per unique spatial detection (modelled R2 = 0.29) (Table A1). The
cumulative sum of fire detections was a better indicator of total burned area than the daily
spatially unique cumulative sum according to both R2 and cross-validated predictive R2

(Table A1).

Table A1. Model results for exploratory univariate models relating all HMS fire detections to reported
burned area from GeoMAC.

Number of
Fires

Cumulative Count Model Spatially Unique Count Model

Coefficient Modelled R2 Coefficient Modelled R2

2397 12.3 0.51 13.7 0.29

– Average cross-validation R2: 0.57 Average cross-validation R2: 0.42

One would expect fires energetics to differ in varying vegetation types, affecting
the ability of satellites to detect fires. Therefore, in our second attempt we fit models
separately for different vegetation groups (Equation (A2)). Using the existing vegetation
type (EVT) data layer from LandFire we constructed nine vegetation groups (Table 2).
Two linear regression models were fit using fires in each vegetation group and either the
total cumulative or the daily spatially unique satellite fire detection counting methods. The
number of fire incidents within each vegetation group varied (Table A2), with the evergreen
tree group having the most and the sparsely vegetated/developed group having the least.

In most cases, the daily spatially unique cumulative sum was a better indicator of
total burned area than the cumulative sum of fire detections (Table A2). Most of the
models grouped by vegetation were better at explaining total burned area, according
to modelled R2, than the previous models which did not consider vegetation separately.
Five of the cumulative sum/vegetation models and all nine of the daily spatially unique
cumulative sum/vegetation models had improved fits. There was a slight improvement in
predictive R2 for the cumulative sum models (from 0.57 to 0.60), while the predictive R2

for the spatially unique cumulative sum models increased much more (from 0.42 to 0.55)
(Table A2).
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Table A2. Model performance results for exploratory models relating all HMS satellite fire detections
to reported burned area from GeoMAC fire incidents grouped by vegetation type.

Veg. Type Number of
Fires

Cumulative Count Model Spatially Unique Count Model

Coefficient Modelled R2 Coefficient Modelled R2

0 29 21.5 0.07 163.5 0.30

1 213 42.7 0.35 230.7 0.75

2 433 24.4 0.45 120.1 0.82

3 128 7.3 0.58 7.6 0.59

4 311 28.2 0.75 36.6 0.32

5 83 15.3 0.85 95.4 0.87

6 84 5.7 0.95 7.3 0.64

7 1044 10.9 0.74 12.2 0.47

8 72 14.1 0.48 53.3 0.84

– – Average cross-validation R2:
0.60

Average cross-validation R2:
0.55

Appendix C. Final Area Estimation Model and Validation

Ultimately, we combined the tactics of the previous modelling attempts to develop
a series of statistical models for each satellite product, now including original sources,
and vegetation type pair individually. For each vegetation type and satellite fire detection
product pair, we fit a model relating reported burned area to the two different methodolo-
gies for aggregating fire detections—(a) the cumulative number of detections; and (b) the
cumulative number of daily spatially unique detections. This resulted in 99 different linear
models. Model coefficients and model performance results are reported in Table A3.

The net results of these models when compared with a validation set of fires from 2020
are shown below in Figure A2.

Table A3. Final model fits and performance results for models relating satellite fire detection products
to reported burned area from GeoMAC fire incidents grouped by vegetation type.

Veg. Type Number of
Fires

Cumulative Count Model Spatially Unique Count Model

Coefficient Modelled R2 RMSE Coefficient Modelled R2 RMSE

(a) HMS GOES-16

0 5 13.3 0.41 1574 457.8 0.61 1277

1 53 35.8 0.40 26,575 1629.5 0.66 20,079

2 124 20.4 0.81 16,299 573.6 0.78 17,720

3 2 NA NA NA NA NA NA

4 88 38.4 0.80 22,410 1185.1 0.92 14,747

5 27 17.3 0.91 4665 438.4 0.93 4323

6 17 7.2 0.95 5605 298.4 0.99 2973

7 226 17.4 0.89 13,524 571.1 0.86 14,876

8 18 10.4 0.96 3034 340.1 0.97 2347

– – Avg. cross-validation R2 = 0.65 Avg. cross-validation R2 = 0.75
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Table A3. Cont.

Veg. Type Number of
Fires

Cumulative Count Model Spatially Unique Count Model

Coefficient Modelled R2 RMSE Coefficient Modelled R2 RMSE

(b) HMS SNPP VIIRS

0 6 12.3 0.69 59

1 28 353.8 0.44 19,952

2 61 62.5 0.66 2270

3 69 14.9 0.85 4077

4 49 44.4 0.96 4542

5 20 139.1 0.65 3855

6 27 12.0 0.96 3989

7 280 18.3 0.81 13,392

8 26 27.6 0.52 1617

– – Avg. cross-validation R2 = 0.76

(c) HMS NOAA 20 VIIRS

0 5 15.5 0.64 69

1 30 250.6 0.31 21,424

2 61 58.5 0.69 2178

3 67 14.6 0.85 4050

4 52 46.9 0.93 5504

5 17 121.9 0.57 4628

6 21 12.5 0.96 4335

7 285 17.9 0.78 14,292

8 25 32.2 0.62 1466

– – Avg. cross-validation R2 = 0.75

(d) HMS MODIS TERRA

0 5 1591.6 0.86 3805

1 62 2520.1 0.84 18,924

2 175 666.8 0.51 45,054

3 72 389.9 0.81 5481

4 118 585.5 0.22 42,024

5 24 802.4 0.96 3196

6 26 255.6 0.94 7070

7 677 352.7 0.57 23,948

8 32 452.6 0.75 16,152

– – Avg. cross-validation R2 = 0.56

(e) GOES-16

0 16 9.8 0.30 1075 142.1 0.34 1038

1 123 18.0 0.50 16,235 528.2 0.85 8830

2 200 15.7 0.91 5861 424.1 0.94 4724

3 5 20.6 0.91 141 161.9 0.95 102

4 195 14.2 0.78 16,191 380.6 0.96 7051

5 39 11.7 0.47 3811 299.6 0.69 2916
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Table A3. Cont.

Veg. Type Number of
Fires

Cumulative Count Model Spatially Unique Count Model

Coefficient Modelled R2 RMSE Coefficient Modelled R2 RMSE

6 27 3.8 0.93 5545 163.8 0.99 2294

7 361 7.5 0.92 8808 241.7 0.88 11,131

8 20 4.3 0.99 1627 167.9 0.98 2097

– – Avg. cross-validation R2 = 0.75 Avg. cross-validation R2 = 0.88

(f) MODIS AQUA

0 20 274.3 0.06 5020

1 105 785.3 0.68 21,533

2 233 699.1 0.61 35,306

3 98 165.0 0.74 5437

4 164 522.2 0.74 20,656

5 45 621.6 0.84 5241

6 48 106.0 0.93 5642

7 798 143.7 0.81 14,426

8 45 246.2 0.78 12,915

– – Avg. cross-validation R2 = 0.71

(g) MODIS TERRA

0 14 601.9 0.45 4598

1 94 696.8 0.73 20,323

2 235 469.3 0.48 40,442

3 108 123.9 0.78 4785

4 167 519.7 0.79 18,695

5 36 566.8 0.86 5435

6 40 83.5 0.85 9008

7 807 129.1 0.84 13,449

8 41 250.8 0.65 16,641

– Avg. cross-validation R2 = 0.71

(h) SNPP VIIRS 375 m

0 28 61.6 0.38 3470

1 167 80.7 0.62 18,703

2 391 83.5 0.62 26,809

3 139 15.7 0.69 5037

4 265 67.9 0.74 16,496

5 82 82.2 0.85 3707

6 87 13.6 0.89 5163

7 1080 16.3 0.80 12,990

8 65 28.5 0.68 12,674

– – Avg. cross-validation R2 = 0.70
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Table A3. Cont.

Veg. Type Number of
Fires

Cumulative Count Model Spatially Unique Count Model

Coefficient Modelled R2 RMSE Coefficient Modelled R2 RMSE

(i) SNPP VIIRS 750 m

0 20 311.2 0.19 4673

1 102 677.4 0.72 20,316

2 280 451.5 0.52 35,537

3 98 129.4 0.77 5198

4 180 457.4 0.84 15,755

5 55 415.0 0.88 4070

6 58 95.4 0.92 5522

7 858 135.4 0.81 14,111

8 48 191.1 0.78 12,335

– Avg. cross-validation R2 = 0.71
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Figure A2. Scatterplots of estimated burned area and reported burned areas for fires in 2020. Esti-
mates are generated using our developed model coefficients (Table A3) and ensemble estimates are
generated by taking the median of all possible estimates for a single fire incident. The top left corner
of each panel reports the percentage of fires in the 2020 validation dataset detected by each source.
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