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Abstract. In steep wildfire-burned terrains, intense rainfall
can produce large runoff that can trigger highly destructive
debris flows. However, the ability to accurately characterize
and forecast debris flow susceptibility in burned terrains us-
ing physics-based tools remains limited. Here, we augment
the Weather Research and Forecasting Hydrological mod-
eling system (WRF-Hydro) to simulate both overland and
channelized flows and assess postfire debris flow suscepti-
bility over a regional domain. We perform hindcast simu-
lations using high-resolution weather-radar-derived precipi-
tation and reanalysis data to drive non-burned baseline and
burn scar sensitivity experiments. Our simulations focus on
January 2021 when an atmospheric river triggered numerous
debris flows within a wildfire burn scar in Big Sur – one of
which destroyed California’s famous Highway 1. Compared
to the baseline, our burn scar simulation yields dramatic in-
creases in total and peak discharge and shorter lags between
rainfall onset and peak discharge, consistent with stream-
flow observations at nearby US Geological Survey (USGS)
streamflow gage sites. For the 404 catchments located in the
simulated burn scar area, median catchment-area-normalized
peak discharge increases by ∼ 450 % compared to the base-

line. Catchments with anomalously high catchment-area-
normalized peak discharge correspond well with post-event
field-based and remotely sensed debris flow observations.
We suggest that our regional postfire debris flow suscep-
tibility analysis demonstrates WRF-Hydro as a compelling
new physics-based tool whose utility could be further ex-
tended via coupling to sediment erosion and transport models
and/or ensemble-based operational weather forecasts. Given
the high-fidelity performance of our augmented version of
WRF-Hydro, as well as its potential usage in probabilistic
hazard forecasts, we argue for its continued development and
application in postfire hydrologic and natural hazard assess-
ments.

1 Introduction

Following intense rainfall, areas with wildfire burn scars
are more prone to flash flooding and runoff-generated de-
bris flows than unburned areas (Shakesby and Doerr, 2006;
Moody et al., 2013). After wildfire, reduced tree canopy in-
terception, decreased soil infiltration due to soil-sealing ef-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2318 C. Li et al.: Augmentation of WRF-Hydro to simulate postfire debris flow susceptibility

fects (Larsen et al., 2009), and increased soil water repel-
lency – especially in hyper-arid environments (MacDonald
and Huffman, 2004) – increases excess surface water and on
sloped terrains leads to overland flow (Stoof et al., 2012).
As water moves down hillslopes, and erosion adds sediment
to water-dominated flows, clear water floods can transition
to turbulent and potentially destructive debris flows (Cannon
et al., 2003; Santi et al., 2008). In contrast to debris flows ini-
tiated by shallow landslides, this rainfall-runoff process has
been identified as the major cause for postfire debris flows in
the western US (Cannon et al., 2003, 2008; Kean et al., 2011)
and in other regions that are particularly susceptible to wild-
fires and subsequent heavy precipitation (Rosso et al., 2007;
Parise and Cannon, 2008, 2009).

On the US west coast, atmospheric rivers (ARs) are the
dominant synoptic weather systems responsible for produc-
ing postfire debris flows (Oakley et al., 2017, 2018; Young
et al., 2017). ARs are long filament-like bands of elevated
water vapor within the lower troposphere that often form over
ocean basins. They are responsible for over 90 % of pole-
ward water vapor transport (Zhu and Newell, 1998) and often
result in heavy precipitation upon landfall, particularly with
orographic uplift (Ralph et al., 2004; Neiman et al., 2008). It
is reported that 30 %–50 % of annual precipitation and 60 %–
100 % of extreme precipitation along the US west coast is
the result of ARs (Hecht and Cordeira, 2017; Eldardiry et al.,
2019; Collow et al., 2020). In California, anthropogenic cli-
mate change is projected to increase AR intensity (Huang
et al., 2020a, b), increase the intensity and frequency of wet-
season precipitation (Polade et al., 2017; Swain et al., 2018),
increase wildfire potential (Brown et al., 2020; Swain 2021),
and extend the wildfire season (Goss et al., 2020). As such,
the occurrence and intensity of postfire debris flows are likely
to increase as the effects of anthropogenic climate change
persist (Kean and Staley, 2021; Oakley 2021).

Due to this increasing threat, the development of tools to
assess postfire debris flow susceptibility and hazards is criti-
cal. However, due to long-standing terminology ambiguity in
the natural hazard community (Reichenbach et al., 2018), we
first begin with a definition of terms. In this study we demon-
strate the use of a new physics-based tool to map postfire
debris flow susceptibility at regional scales. We follow the
guidance of Reichenbach et al. (2018, and references therein)
and define susceptibility as the likelihood of debris flow oc-
currence in an area and hazard as the probability of debris
flow occurrence of a given magnitude within a specified area
and period of time. In other words, debris flow susceptibil-
ity neither simulates debris flow dynamics such as initiation
nor estimates debris flow size or considers the timing or fre-
quency of the debris flow occurrence. Rather, it focuses on
locating areas prone to debris flows considering local envi-
ronmental factors (Brabb, 1984; Guzzetti et al., 2005).

Heuristic, deterministic, statistical approaches and cou-
pled deterministic and statistical models have previously
been employed to assess landslide susceptibility (Regmi

et al., 2010; Reichenbach et al., 2018). For postfire debris
flow susceptibility or hazard assessment, however, the use
of deterministic models is limited. In contrast, statistical ap-
proaches are commonly used in both research and opera-
tional settings. For example, rainfall intensity–duration (ID)
thresholds are one of the simplest-to-implement and most
widely used statistical methods for mapping rainfall-induced
landslide susceptibility including postfire debris flows (Can-
non et al., 2011; Staley et al., 2017). In addition, the US Ge-
ological Survey (USGS) currently employs a statistical ap-
proach in their Emergency Assessment of Post-Fire Debris-
Flow Hazards that consists of a logistic regression model
to predict the likelihood of post-wildfire debris flows (e.g.,
Cannon et al., 2010; Staley et al., 2016) and a multiple-
linear-regression model to predict debris flow volumes (Gart-
ner et al., 2014). Machine-learning techniques such as self-
organizing maps, genetic programming, and a random forest
algorithm have also been used to predict postfire debris flows
in the western US (Friedel 2011a, b; Nikolopoulos et al.,
2018). In general, statistical approaches are useful for identi-
fying and characterizing relationships amongst contributing
environmental factors and are widely used due to their low
computational costs and the potential for rapid assessment.
Despite the utility and advantages of data-driven hazard pre-
diction approaches over regional domains, these techniques
(1) do not simulate the underlying physics, (2) often require
a large number of historical observation data that may not
be readily available, and (3) result in models that are often
only applicable to specific locales. These limitations inhibit
their utility in postfire debris flow susceptibility assessment
from a physics-based perspective, limit their applicability in
climatological and geographic settings differently than their
training sites, and limit their use in non-stationary conditions
(e.g., under changing climatic conditions).

In contrast, physics-based models that simulate spatially
explicit hydrologic and mass wastage processes are well
suited for sensitivity analyses in diverse settings. How-
ever, studies employing deterministic process-based mod-
els have tended to focus on rainfall-induced shallow land-
slides (Claessens et al., 2007) or landslide-induced debris
flows (e.g., George and Iverson, 2014) rather than on runoff-
generated debris flows which are more common in post-
fire areas (Cannon et al., 2003; Santi et al., 2008). Studies
that have investigated postfire hydrologic responses using
physics-based models have largely focused on mechanistic
studies such as short-term responses at high spatiotemporal
resolutions (Rengers et al., 2016; McGuire et al., 2016, 2017)
or long-term runoff responses at coarse temporal resolutions
(McMichael and Hope, 2007; Rulli and Rosso, 2007) in indi-
vidual catchments. For example, process-based models have
employed shallow water equations to better understand the
triggering (McGuire et al., 2017; Tang et al., 2019a, b) and
sediment transport mechanisms (McGuire et al., 2016) of
postfire debris flows as well as the timing of postfire debris
flows (Rengers et al., 2016). The numerical models employed
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by these studies are used to simulate debris flow dynam-
ics rather than assess susceptibility over regional domains;
as such they focus on individual catchments (with drainage
areas of ∼ 1 km2) with very high spatiotemporal resolutions
(Rengers et al., 2016; McGuire et al., 2016, 2017; Tang et al.,
2019a, b). In addition to individual catchment applications,
process-based models often adopt simplifications that can
limit effective prediction and hypothesis testing to overcome
computational limits. For example, the kinematic runoff and
erosion model (KINEROS2) simplifies drainage basins into
one-dimensional channels and hillslope patches (Goodrich
et al., 2012), and the Hydrologic Modeling System (HEC-
HMS) uses an empirically based curve number method to
estimate saturation excess water (Cydzik and Hogue, 2009),
which cannot resolve infiltration excess overland flow, a crit-
ical process in burn scars (Chen et al., 2013).

Given the current state of debris flow susceptibility as-
sessment and prediction in previously burned terrains, in
addition to the growing influence of anthropogenic climate
change on wildfire and extreme precipitation, development
of physics-based susceptibility mapping tools that can be
used in both hindcast investigations and forecasting appli-
cations is needed. Furthermore, due to the diverse morphol-
ogy and often large spatial scales of precipitation events
and their interactions with geographically distributed wildfire
burn scars, development of tools that can assess susceptibility
over regional domains, particularly in operational forecast-
ing applications, is critical. Here, to advance the field of burn
scar debris flow susceptibility assessment, we explore the use
of the physics-based and fully distributed Weather Research
and Forecasting Hydrological modeling system version 5.1.1
(WRF-Hydro). WRF-Hydro is an open-source community
model developed by the National Center for Atmospheric
Research (NCAR). It is the core of the National Oceanic
and Atmospheric Administration’s (NOAA) National Water
Model forecasting system and has been used extensively to
study channelized flows over regional domains (e.g., Wang
et al., 2019). Here, we modify WRF-Hydro to output high-
temporal-resolution, fine-scale (100 m), debris-flow-relevant
overland flow, a process computed using a fully unsteady,
explicit, finite-difference diffusive-wave formulation. Previ-
ous efforts, employing shallow water equations and diffu-
sive, kinematic, and diffusive–kinematic wave models, have
demonstrated that water-only models can provide critical in-
sights on runoff-driven debris flows (Arattano and Franzi,
2010; Di Cristo et al., 2021), even in burned watersheds
(Rengers et al., 2016; McGuire and Youberg, 2020).

To test and demonstrate the utility of WRF-Hydro in de-
bris flow studies, we investigate the January 2021 debris flow
events within the Dolan burn scar on the Big Sur coast of
central California (Fig. 1a and b). We first identify multi-
ple debris flow sites using optical and radar remote sensing
data and field investigations. We then calibrate WRF-Hydro
against ground-based soil moisture and streamflow observa-
tions and use it to study the effects of burn scars on debris

flow hydrology and susceptibility. The paper is organized as
follows. Section 2 describes the identification approach and
geologic setting of debris flows. Section 3 presents a descrip-
tion of WRF-Hydro. Section 4 describes the simulation, cali-
bration, and validation of WRF-Hydro. Section 5 presents the
results. Section 6 discusses the results, and Sect. 7 provides
a conclusion.

2 Study domain and debris flow identification
methodology

The Dolan wildfire burned from 18 August till 31 December
2020. A total of 55 % of areas within the fire perimeter were
burned at moderate to high severity (Burned Area Emer-
gency Response, 2020). After the fire, the USGS produced
its Emergency Assessment of Post-Fire Debris-Flow Hazards
using a design-storm-based statistical model (USGS, 2021).
On 27–29 January 2021, an AR made landfall on the Big Sur
coast, bringing more than 300 mm of rainfall to California’s
Coast Ranges (Fig. 2), with a peak rainfall rate of 24 mmh−1

(calculated with Multi-Radar/Multi-Sensor System, MRMS,
precipitation; Zhang et al., 2011, 2014, 2016). During the AR
event, a section of California State Highway 1 (CA1) at Rat
Creek was destroyed by a debris flow. CA1 was subsequently
closed for 3 months and rebuilt at a cost of ∼USD 11.5 mil-
lion (Reynolds, 2021).

2.1 Debris flow identification from remote sensing and
field work

In addition to the Rat Creek debris flow, which made national
news (Pietsch, 2021), we identified three other debris flows
using a combination of field investigation and open-access
satellite optical and synthetic aperture radar (SAR) images
(Figs. 3 and B1).

We examined relative differences in normalized difference
vegetation index (rdNDVI) defined by Scheip and Wegmann
(2021):

rdNDVI=
NDVIpost−NDVIpre√
NDVIpre+NDVIpost

× 100, (1)

where NDVIpre and NDVIpost are the pre- and post-event-
normalized difference vegetation index (NDVI) images com-
puted following

NDVI=
NIR−Red
NIR+Red

, (2)

where NIR is the near-infrared response, and Red is the
visible red response; rdNDVI was calculated from 10 m
Sentinel-2 satellite data using the HazMapper v1.0 Google
Earth Engine application (Scheip and Wegmann, 2021).
HazMapper requires selection of an event date, pre-event
window (months), post-event window (months), max cloud
cover (%), and slope threshold (◦). These input requirements
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Figure 1. WRF-Hydro model domain and Dolan burn scar. (a) WRF-Hydro model domain depicting topography, 2020 wildfire season burn
scars, and PSL soil moisture and USGS stream gage observing sites. The black rectangle outlines (b) the Dolan burn scar inset, in which
debris flow locations and major streams are marked and labeled. The location of the study area is shown on the embedded US map with the
state of California shaded in gray.

Figure 2. The topography (m; shading) and MRMS accumulated
precipitation (mm; contour lines) during the AR event from 27 Jan-
uary 00:00 to 29 January 23:00 (all times in this paper are UTC) in
the Dolan burn scar. Contour line interval for accumulated precipi-
tation is 20 mm, and lines of 100, 140, 180, 220, 260, and 300 mm
are labeled. The red polygon outlines the perimeter of the Dolan
burn scar.

filter the number of images used to calculate the rdNDVI. We
set the event date to 27 January 2021 and used a 3-month pre-
and post-event window with 0 % max cloud cover and a 0◦

slope threshold to identify vegetation loss associated with
the debris flows. We then created a binary map to highlight
debris flow (and other vegetation loss) pixels above an rd-
NDVI vegetation loss threshold. We removed all pixels with
rdNDVI>−10.

Lastly, we searched for debris flows (and other ground
surface deformation) by examining SAR backscatter change
with data acquired by the 10 m Copernicus Sentinel-1 (S1)
satellites (see full description in Handwerger et al., 2022).
We measured the change in SAR backscatter by using the
log ratio approach, defined as

Iratio = 10× log10

(
σ 0

pre

σ 0
post

)
, (3)

where σ 0
pre is a pre-event image stack (defined as the tem-

poral median) of SAR backscatter, and σ 0
post is a post-event

image stack. Similar to the HazMapper method, our ap-
proach requires selection of an event date, pre-event win-
dow (months), post-event window (months) and slope thresh-
old (◦). No cloud-cover threshold is needed since SAR pene-
trates clouds. We used a 3-month pre- and post-event window
and 0◦ slope threshold to identify ground surface changes
associated with the debris flows. We then created a binary
map to highlight debris flows by removing all pixels with
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Figure 3. Identified debris flow sites using rdNDVI vegetation change within the Dolan burn scar. We convert the rdNDVI data into a binary
map by setting a threshold value, which yields only the likely debris flow locations. We then drape these maps over a topographic hillshade.
(a)–(d) Sentinel-2 rdNDVI vegetation change at (a) Rat Creek, (b) Mill Creek, (c) Big Creek, and (d) the Nacimiento River.

Iratio< 99th percentile value (i.e., threshold suggested by
Handwerger et al., 2022).

Identified debris flow source areas and deposition sites
were confirmed by field investigation (Noah J. Finnegan) and
named after the locations where they were deposited.

2.2 Debris flow geologic setting

According to the USGS National Elevation Dataset 30 m dig-
ital elevation model (DEM), the Rat Creek debris flow sits
at the base of a first-order catchment with a drainage area
of 2.23 km2. Mill Creek, Big Creek, and Nacimiento debris
flows were initiated within extremely steep, intensely burned,
first-order catchments but were deposited in second-, third-
, and third-Strahler-stream-order channels, respectively. All
four debris flows were channelized. Rat Creek, Mill Creek,
and Big Creek debris flow deposition sites have elevations
ranging from 20–60 m, while Nacimiento debris flow was
deposited at an elevation of∼ 440 m above sea level. We cal-
culate catchment slopes using the DEM and the slope calcu-
lation function in ArcMap. The average slope of the catch-
ments containing Rat Creek and Mill Creek debris flow de-
position sites is ∼ 25◦. The average catchment slope of the
Big Creek deposition site is ∼ 28◦, and for Nacimiento it is
∼ 21◦. For debris flow source areas, the average and maxi-

mum slopes are 23 and 39◦ for Mill Creek, 21 and 43◦ for Big
Creek, and 24 and 41◦ for Nacimiento. According to the Soil
Survey Geographic Database and California geologic map
data, surface soils at the three coastal debris flow sites (i.e.,
Rat Creek, Mill Creek, and Big Creek) are texturally classi-
fied as loam with underlying Franciscan Complex sedimen-
tary rocks of Jurassic to Cretaceous age. Soil at Nacimiento
is classified as sandy loam with underlying Upper Cretaceous
and Paleocene marine sedimentary rocks from the Dip Creek
Formation, Asuncion Group, Shut-In Formation, Italian Flat
Formation, Steve Creek Formation, and El Piojo Formation.
Mill Creek, Big Creek, and Nacimiento were relatively large
debris flows with runout lengths between ∼ 2–5 km, while
Rat Creek occurred in a smaller catchment and had a runout
length of ∼ 300 m. The difference in runout length and de-
bris flow size is primarily controlled by upstream catchment
size; however for the three coastal debris flow events at Rat
Creek, Big Creek, and Mill Creek, it is also constrained by
the downslope ocean. We note that there were likely more
debris flows triggered during the AR event. The four de-
bris flow events highlighted here were identified during brief
post-event field excursions due to their intersection with ma-
jor roadways. Given that our primary goal here is to demon-
strate the utility of WRF-Hydro, a comprehensive catalogue
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of debris flows is beyond the scope of this study, although one
is underway by other researchers (Cavagnaro et al., 2021).

3 WRF-Hydro

3.1 Model description

WRF-Hydro is an open-source physics-based community
model that simulates land surface hydrologic processes. It in-
cludes the Noah-Multiparameterization (Noah-MP) land sur-
face model (LSM; Niu et al., 2011), a terrain-routing module,
a channel-routing module, and a conceptual baseflow bucket
model. The Noah-MP LSM is a one-dimensional column
model that calculates vertical energy fluxes (e.g., sensible
and latent heat), moisture fluxes (e.g., canopy interception
and infiltration excess), and soil thermal and moisture states
on the LSM grid (1 km in our application). The infiltration
excess, ponded water depth, and soil moisture are then dis-
aggregated using a time-step-weighted method (Gochis and
Chen, 2003) and sent to the terrain-routing module, which
simulates subsurface and overland flows on a finer terrain-
routing grid (100 m in our application). According to the
mass balance, local infiltration excess, overland flow, and ex-
filtration from baseflow contribute to the surface head, which
flows into river channels if defined retention depth is ex-
ceeded. The channel-routing module then calculates channel-
ized flows assuming a trapezoidal channel shape (Fig. B2).
Parameters related to the trapezoidal channel, such as chan-
nel bottom width (Bw), Manning’s roughness coefficient (n),
and channel side slope (z), are functions of channel stream
order (Fig. B3 and Table B1). Channelized streamflow is
computed at spatial resolutions ranging from 1.5 to 100 m de-
pending on the channel stream order (Table B1). Computed
streamflow is then output on the 100 m grid. Equations used
to compute infiltration excess, overland flow, and channel-
ized flow are provided in Sect. 3.3 and 3.4.

By default, WRF-Hydro uses the Moderate Resolution
Imaging Spectroradiometer (MODIS) Modified International
Geosphere–Biosphere Program (IGBP) 20-category land
cover product as land cover (Fig. B4a) and 1 km Natu-
ral Resources Conservation Service State Soil Geographic
(STATSGO) database for soil type classification (Fig. B4b;
Miller and White, 1998). Land surface properties includ-
ing canopy height (HVT), maximum carboxylation rate
(VCMX25), and overland flow roughness (OV_ROUGH2D)
are functions of land cover type (Table B2 and Fig. B4a).
Default soil hydraulic parameters in WRF-Hydro (i.e., soil
porosity, grain size distribution index, and saturated hy-
draulic conductivity) are based on the soil analysis of Cosby
et al. (1984) (Table B3) and are used to map onto the 16
STATSGO soil texture types (Fig. B4b).

3.2 Meteorological forcing files

WRF-Hydro is used in a standalone mode (i.e., it is not
coupled with the atmospheric model WRF) and is forced
with a combination of Phase 2 North American Land Data
Assimilation System (NLDAS-2) meteorological data and
MRMS radar-only quantitative precipitation (Zhang et al.,
2011, 2014, 2016). A description of the MRMS dataset and
uncertainties therein can be found in Appendix A. NLDAS-2
provides hourly forcing data including incoming shortwave
and longwave radiation, 2 m specific humidity and air tem-
perature, surface pressure, and 10 m wind speed at 1/8◦ spa-
tial resolution. MRMS provides hourly precipitation rates at
1 km resolution.

3.3 Overland flow routing and output

The Noah-MP LSM calculates the rate of infiltration excess
following Chen and Dudhia (2001):

∂h

∂t
=
∂Pd

∂t

×

1−

[∑4
i=11Di(θs− θi)

][
1− exp

(
−k Ks

Kref
δt

)]
Pd+

[∑4
i=11Di(θs− θi)

][
1− exp

(
−k Ks

Kref
δt

)]
, (4)

where h (m) is the surface water depth, and t is the time.
Pd (m) is the precipitation not intercepted by the canopy;
1Di (m) is the depth of soil layer i; θi is the soil moisture
in soil layer i; θs is the soil porosity; Ks (ms−1) is the sat-
urated hydraulic conductivity; Kref is 2× 10−6 ms−1, which
represents the saturated hydraulic conductivity of the silty–
clay–loam soil texture chosen as a reference; δt (s) is the
model time step; and k, which is equal to 3.0, is the runoff–
infiltration partitioning parameter (the same as kdtref in Chen
and Dudhia, 2001).

Noah-MP passes excess water to the terrain-routing mod-
ule, which simulates overland flow using a two-dimensional,
fully unsteady, explicit, finite-difference diffusive-wave
equation adapted from Julien et al. (1995) and Ogden (1997).
In this application, overland flow is computed at each 6 s time
step and is archived hourly at 100 m spatial resolution. The
diffusive-wave equation is considered improved compared to
the traditionally used kinematic wave formulation in that it
accounts for backwater effects and flow over adverse slopes.
The diffusive-wave formulation is the simplified form of the
Saint Venant equations, i.e., continuity and momentum equa-
tions for a shallow water wave. The two-dimensional conti-
nuity equation for a flood wave is

∂h

∂t
+
∂qx

∂x
+
∂qy

∂y
= ie, (5)

where h is the surface flow depth; qx and qy are the unit
discharges in the x and y directions, respectively; and ie is
the infiltration excess. Manning’s equation, which considers
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momentum loss, is used to calculate q. In the x direction,

qx = αxh
β , (6)

where β is a unit-dependent coefficient equal to 5
3 , and

αx =
S

1/2
fx
nov

, (7)

where nov is the tunable overland flow roughness coefficient.
The momentum equation in the x direction is given by

Sfx = Sox−
∂h

∂x
, (8)

where Sfx is the friction slope, Sox is the terrain slope, and ∂h
∂x

is the change in surface flow depth in the x direction.
Off the shelf, WRF-Hydro does not output overland flow at

terrain-routing grids (100 m); however it is computed in the
background to determine channelized streamflow. One key
advance made in this work is that we modified WRF-Hydro
source code to output overland flow (see the “Code avail-
ability” statement for a link to the modified source code).
Overland flow depth (m) was converted to overland dis-
charge (m3 s−1) by multiplying flow depth by grid cell area
(10 000 m2) and dividing by the LSM time step (1 h).

3.4 Channel routing

If overland flow intersects grid cells identified as chan-
nel grids (second Strahler stream order and above, pre-
defined by the hydrologically conditioned USGS 30 m
DEM), the channel-routing module routes the water as chan-
nelized streamflow using a one-dimensional, explicit, vari-
able time-stepping diffusive-wave formulation. In this work,
the channel-routing module calculates streamflow at 6 s tem-
poral resolution and spatial resolutions ranging from 1.5 to
100 m depending on the channel stream order (Fig. B3 and
Table B1). Similarly, the continuity equation for channel
routing is given as

∂A

∂t
+
∂Q

∂s
= ql, (9)

and the momentum equation is given as

∂Q

∂t
+

∂
(
γQ2

A

)
∂s

+ gA
∂H

∂s
=−gASf, (10)

where s is the streamwise coordinate; H is water surface
elevation; A is the flow cross-sectional area calculated as
(Bw+H z)H (Fig. B2); ql is the lateral inflow rate into the
channel grid;Q is the flow rate; γ is a momentum correction
factor; g is acceleration due to gravity; and Sf is the friction
slope computed as

Sf =

(
Q

K

)2

, (11)

where K is the conveyance computed from Manning’s equa-
tion:

K =
Cm

n
AR2/3, (12)

where n is Manning’s roughness coefficient, A is the channel
cross-sectional area,R is the hydraulic radius (A/P ), P is the
wetted perimeter, and Cm is a dimensional constant (1.486
for English units or 1.0 for SI units).

4 Model simulation, calibration, and validation

4.1 Model domain

Our WRF-Hydro model simulation domain spans regions in
California including the Coast Ranges, Monterey Bay, and
the Central Valley and covers several burn scars from the
2020 wildfire season (Fig. 1a). Here we focus our analysis
on the Dolan burn scar where the hazardous debris flows oc-
curred (Fig. 1b).

To calibrate and validate WRF-Hydro output, we use soil
moisture and stream gage observations. Soil moisture obser-
vations within our domain are available from two Physical
Sciences Laboratory (PSL) monitoring stations (i.e., Lock-
wood, lwd, and Gilroy, gry) (Fig. 1a). Due to the Mediter-
ranean climate of California, many USGS stream gages ex-
perience low or no flow during the dry season. In addition,
many gages are under manual regulation to mitigate wet-
season flood risks and better distribute water resources. As
such, it can be challenging to obtain natural streamflow ob-
servations for model calibration. Here, three USGS stream
gages (i.e., Arroyo Seco NR Greenfield, CA, ID 11151870;
Arroyo Seco NR Soledad, CA, ID 11152000; and Arroyo
Seco BL Reliz C NR Soledad, CA, ID 11152050) (Fig. 1a)
on streams that have measurable flows during our study pe-
riod and are free of human regulation are used. These gages
are located downstream of the Dolan burn scar and hence are
useful in calibrating the parameters associated with burn scar
effects. The PSL soil moisture observations were recorded
at 2 min intervals, and USGS streamflow gage data were
recorded at 15 min intervals, but we perform all observation–
model comparisons at hourly mean resolution.

4.2 Baseline simulation and soil moisture calibration

WRF-Hydro was initialized with National Centers for En-
vironmental Prediction (NCEP) FNL (Final) Operational
Global Analysis data and was run from 1–31 January 2021.
We performed the baseline simulation by modifying WRF-
Hydro default parameters (Table B3) based on a calibra-
tion using soil moisture observations from stations lwd and
gry. Neither PSL station is located in a burn scar. Since
the baseline simulation includes no postfire characteristics,
it can also be regarded as the “pre-fire” scenario. Soil mois-
ture at 10 cm below ground in the baseline simulation was
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calibrated by performing a domain-wide adjustment of soil
porosity and grain size distribution index at the simulation
start (Table B3). We then allowed the model to spin up from
1–10 January before using 11–31 January for validation. Us-
ing a relatively short spin-up period is justified because prior
to the AR event, little rain fell on the Dolan burn scar (i.e.,
∼ 400 mm of rainfall fell from June to December 2020). As
such, in the months preceding the debris flow events, soil
moisture observations indicate dry conditions prior to our
10 d spin up.

After calibration, the simulated soil moisture closely mim-
ics ground-based PSL observations (Fig. 4). Both the ob-
served magnitude and variability are well captured, with
the simulated ± 1 standard deviation envelope largely en-
compassing PSL observations during the AR. Model per-
formance was evaluated using four quantitative metrics, i.e.,
correlation coefficient (r), root mean square error (RMSE),
mean absolute error (MAE), and Kling–Gupta efficiency
(KGE; Gupta et al., 2009; Kling et al., 2012). KGE has pre-
viously been used in soil moisture calibration applications
(e.g., Lahmers et al., 2019) and is computed as follows:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (13)

where r is the correlation coefficient between the observation
and simulation, α is the ratio of the standard deviation of sim-
ulation to the standard deviation of observation, and β is the
ratio of the mean of simulation to the mean of observation.
KGEs close to 1 indicate a high-level consistency between
the simulation and observation, while negative KGEs indi-
cate poor model performance (Andersson et al., 2017).

The model’s ability to simulate soil moisture substantially
improves after calibration (Fig. 4; Table 1). KGE values ap-
proach 1 (0.72 at lwd and 0.88 at gry), indicating that WRF-
Hydro adequately simulates the hydrologic environment and
its response to meteorological changes.

4.3 Burn scar simulation and streamflow calibration

To simulate effects of wildfire burn scars on hydrologic pro-
cesses and debris flow susceptibility, we made two modi-
fications to the baseline simulation soil-moisture-calibrated
model configuration. First, we changed the land cover type
within the burn scar perimeter to its nearest LSM ana-
logue, i.e., “barren and sparsely vegetated”. The switch to
barren land causes (1) height of the canopy (HVT) to de-
crease to 0.5 m, (2) maximum rate of carboxylation at 25 ◦C
(VCMX25) to decrease to 0 µmolCO2 m−2 s−1, and (3) over-
land flow roughness coefficient (OV_ROUGH2D) to de-
crease to 0.035 (Fig. 5a–c) from default values (Fig. B4 and
Table B2).

The second adjustment was to decrease soil infiltration
rates within the burn scar perimeter, achieved by reducing
soil saturated hydraulic conductivity (DKSAT; Fig. 5d; Ro-
bichaud, 2000; Martin and Moody, 2001) from default val-
ues (Table B3). Consistent with the hydrophobicity of burned

Table 1. Quantitative evaluation metrics for the simulated soil mois-
ture and streamflow when compared against observations. The met-
rics include the Pearson correlation coefficient (r), root mean square
error (RMSE), and mean absolute error (MAE). In addition, the
comprehensive metrics Kling–Gupta efficiency (KGE) and Nash–
Sutcliffe efficiency (NSE) are used to evaluate model-simulated soil
moisture and streamflow, respectively. For soil moisture, the num-
bers in front of “/” are calculated between the default run (i.e., un-
calibrated run) and the observations, whereas the numbers follow-
ing “/” are the corresponding values in the baseline simulation (the
dashed purple line in Fig. 4). For streamflow, the numbers in front
of “/” are computed between the baseline run (dashed purple line in
Fig. 6) and the observations, while the numbers behind “/” are for
burn scar simulation (red line in Fig. 6). If the model performance
regarding a certain metric is enhanced in the burn scar simulation,
the number after “/” is bolded.

Soil moisture (default/baseline)

Station r RMSE MAE KGE

lwd 0.97/0.98 7.06/4.32 5.21/4.16 0.10/0.72
gry 0.94/0.94 5.19/2.53 11.12/2.31 0.80/0.88

Streamflow (baseline/burn scar)

Station r RMSE MAE NSE

1870 0.28/0.93 39.29/14.69 16.05/6.14 −0.17/0.84
2000 0.26/0.86 51.22/24.92 20.11/10.00 −0.15/0.73
2050 0.25/0.81 49.96/27.43 19.64/11.65 −0.38/0.53

soils, we calibrate the burn scar simulation by systematically
exploring a range of burn scar area saturated hydraulic con-
ductivities (0 to 3× 10−7 ms−1 with a 5× 10−8 ms−1 in-
crement), with the goal of reproducing streamflow behav-
ior similar to USGS gage observations. We found that a
value of 1.5× 10−7 ms−1 gives the highest Nash–Sutcliffe
efficiency (NSE; Nash and Sutcliffe, 1970) across all three
USGS stream gages (Table 1). The NSE has been widely
used in streamflow calibration applications (e.g., Xia et al.,
2012), and it is calculated as follows:

NSE= 1−
∑t=T
t=1 (Qsim(t)−Qobs(t))

2∑t=T
t=1

(
Qobs(t)−Qobs

)2 , (14)

where T is the length of the time series; Qsim(t) and
Qobs(t) are the simulated and observed discharge at time t ,
respectively; and Qobs is the mean observed discharge. By
definition, NSEs of 1 indicate perfect correspondence be-
tween the simulated and observed streamflow. Positive NSEs
indicate that the model streamflow has a greater explana-
tory power than the mean of the observations, whereas neg-
ative NSEs represent poor model performance (Schaefli and
Gupta, 2007). When burn scar characteristics are included,
evaluation metrics including r , RMSE, and MAE all im-
prove, while NSEs increase from negative values in the base-
line to 0.84, 0.73, and 0.53 at gages 1870, 2000, and 2050,
respectively. Higher correlation and NSE scores and lower
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Figure 4. Precipitation and observed and simulated soil moisture at two PSL soil moisture stations. MRMS precipitation from 11–31 Jan-
uary 2021 (mmh−1; green bars) and observed (%; black line) and simulated volumetric soil moisture 10 cm below ground in the baseline
simulation (%; purple dashed line) at PSL sites (a) Lockwood (lwd) and (b) Gilroy (gry). Envelope of purple shading depicts ± 1 standard
deviation of model-simulated soil moisture. KGE scores are provided at the top left for each station.

errors indicate that the abovementioned burn scar parameter
changes improve the model’s ability to simulate streamflow
observations downstream of the burn scar (Table 1).

5 Results

5.1 Hydrologic response due to burn scar
incorporation

The pre-fire baseline simulation fails to capture the hydro-
logic behavior observed at the USGS gages located within
the burn scar (Fig. 6). Incorporation of burn scar charac-
teristics substantially alters the hydrologic response of the
model and provides much higher-fidelity streamflow sim-
ulations (Fig. 6). Observed hydrographs are characterized
by two early streamflow peaks related to two precipitation
bursts on 27 and 28 January. Our burn scar simulation cap-
tures this behavior, while the baseline simulation streamflow
peaks just once, with a lower magnitude and a∼ 3 d lag after
peak precipitation (Fig. 6). The steeply rising limbs and high-
magnitude discharge peaks of the burn scar hydrograph are
indicative of flash flooding. Compared with the pre-fire base-
line scenario, the burn scar’s barren land and low infiltration
rate substantially accelerate drainage rates and increase the
peak flow and discharge volume into stream channels.

5.2 Hydrologic response at four debris flow sites

Mill Creek, Big Creek, and Nacimiento deposits are located
in channels of second Strahler stream order or above so
they are simulated as channelized streamflow in our WRF-
Hydro simulations. Due to its low stream order (first Strahler
stream order), Rat Creek is modeled entirely as overland
flow in our WRF-Hydro simulations. At the four debris flow
sites, we use three metrics to characterize hydrologic anoma-

lies: (1) accumulated runoff volume, (2) peak discharge, and
(3) time to peak discharge. Figure 7 depicts accumulated
channelized discharge volume (blue shading) and accumu-
lated overland discharge volume (yellow–red shading) from
27 January 00:00 to 28 January 12:00 near the four debris
flow sites in the burn scar simulation. Accumulation time pe-
riod is chosen such that it covers the first two runoff surges in
the simulated hydrographs, which are likely associated with
debris flows (Fig. 8) given that nearly concurrent peak rain-
fall intensity and peak discharge is a signature characteristic
of debris flows (Kean et al., 2011). Runoff volume is on the
order of 104 m3 at Rat Creek and 106 m3 at the other three
sites.

Dramatic hydrographic changes after inclusion of burn
scar characteristics are simulated at debris flow source ar-
eas (Fig. B5 and Table B4) and deposition sites (Fig. 8 and
Table 2). Here, to emphasize the high susceptibility down-
stream, our analysis is focused on debris flow deposits. At
Rat Creek, where a section of CA1 collapsed, the magni-
tude of discharge substantially increases, and overland flow
surges are concurrent with rainfall bursts (Fig. 8a). Total dis-
charge accumulated during the AR event increases approxi-
mately 8-fold (791 %), and peak discharge more than triples
compared to the baseline simulation (Fig. 8a and Table 2).
At Mill Creek, Big Creek, and Nacimiento, baseline hydro-
graphs are characterized by less variability, muted responses
to two early precipitation bursts, and a delayed third dis-
charge peak that does not occur until ∼ 3 d after AR pas-
sage (Fig. 8b–d). Maximum discharge peaks in the baseline
hydrographs lag those in the burn scar simulation by ∼ 2 d
(Fig. 8b–d, Table 2). In the burn scar simulation, total vol-
ume substantially increases at the three channelized sites; to-
tal volume increases ∼ 650 % at Mill Creek, ∼ 891 % at Big
Creek, and ∼ 829 % at Nacimiento (Fig. 8b–d and Table 2),
and the absolute increase in volume is on the order of 106 m3
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Figure 5. Parameter setting in the WRF-Hydro burn scar simulation. (a) The height of the canopy (HVT; m; shading), (b) maximum rate
of carboxylation at 25 ◦C (VCMX25; µmolCO2 m−2 s−1; shading), (c) overland flow roughness coefficient (OV_ROUGH2D; shading), and
(d) saturated hydraulic conductivity (DKSAT; ms−1; shading) in the burn scar simulation. Burn scar perimeters are outlined in red.

(Table 2). Peak discharge more than triples at Mill Creek and
Big Creek and more than quadruples at Nacimiento. Addi-
tionally, response times of the peak in discharge to the peak
in precipitation decrease to less than an hour, highlighting the
simulated flashiness of the burned catchments.

5.3 Debris flow susceptibility assessment for the Dolan
burn scar

Since high-magnitude runoff is often the cause and precur-
sor of runoff-generated debris flows in burned areas (Can-
non et al., 2003, 2008; Rengers et al., 2016), we use peak
discharge of overland flow and streamflow to assess runoff-
generated debris flow susceptibility under pre-fire (i.e., base-
line; Fig. 9a and d) and postfire (i.e., burn scar simulation;
Fig. 9b and e) conditions (we conduct similar analyses us-
ing accumulated discharge volume in Figs. B6 and B7 and
Table B5 in Appendix B). We assess changes at both stream

and catchment levels and use the difference between burn
scar and baseline simulations to assess the added debris flow
susceptibility (Fig. 9c and f). Consistent with the increas-
ing erosive and entrainment power associated with increas-
ing discharge, our debris flow susceptibility increases as peak
discharge increases. To reduce the effects of catchment size
on the peak-discharge-based susceptibility levels, we nor-
malize a catchment’s discharge by the area of the catchment
(Leopold et al., 1964; McCormick et al., 2009; Fig. 9d–f).
Non-normalized catchment susceptibility maps are also pro-
vided (Fig. B8).

In the pre-fire baseline simulation, the AR-induced precip-
itation produces lower debris flow susceptibility over most of
the domain, but elevated susceptibility along stream channels
(Fig. 9a). We note no substantial differences between areas
in or out of the burn scar. In the burn scar simulation, de-
bris flow susceptibility levels increase across the Dolan burn
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Table 2. The total runoff volume, peak discharge, and peak timing in the baseline and burn scar simulations from 27 January 00:00 to
31 January 23:00 at deposition sites of Rat Creek, Mill Creek, Big Creek, and Nacimiento debris flows (black triangles in Fig. 7a–d). The
peak timing shown in the baseline simulation is for the highest peak. The percent changes in the total volume and peak discharge in the burn
scar simulation relative to the baseline simulation are shown in parentheses.

Site name Baseline simulation Burn scar simulation

Total volume Peak discharge Highest peak
timing

Total volume Peak discharge First peak
timing

Second peak
timing(m3) (m3 s−1) (m3) (m3 s−1)

Rat Creek 6897 0.54 28 Jan 05:00 61 425 1.73 27 Jan 09:00 28 Jan 05:00
(+791 %) (+220 %)

Mill Creek 312 925 13.10 29 Jan 08:00 2 347 457 45.21 27 Jan 13:00 27 Jan 23:00
(+650 %) (+245 %)

Big Creek 842 808 46.10 29 Jan 16:00 8 354 095 154.10 27 Jan 10:00 28 Jan 05:00
(+891 %) (+234 %)

Nacimiento 743 531 33.15 29 Jan 16:00 6 904 706 135.41 27 Jan 14:00 28 Jan 00:00
(+829 %) (+308 %)

Table 3. Statistics, including the mean, standard deviation (SD), 5P, 25P, 50P, 75P, and 95P, of the catchment-area-normalized peak discharge
for all the 404 basins within the Dolan burn scar in the baseline and burn scar simulation and their relative percent changes. We conduct
similar analyses using accumulated discharge volume in Table B5 in Appendix B.

Mean SD 5P 25P 50P 75P 95P

Baseline simulation (m3 s−1 km−2) 25.88 ± 95.71 0.04 0.14 0.76 8.21 129.54

Burn scar simulation (m3 s−1 km−2) 110.80 ± 423.82 0.19 0.84 4.16 36.21 603.15

Relative percent change (%) 328 343 375 500 447 341 366

scar and along channels outside but downstream of the burn
scar (Fig. 9b and c). The peak discharge near Rat Creek, Big
Creek, Mill Creek, and Nacimiento more than triples (Table 2
and Fig. 9a–c). Within the burn scar, susceptibility along ma-
jor stream channels, such as the Nacimiento River and San
Antonio River, increases. Outside the burn scar, susceptibil-
ity levels along river channels downstream of the burn scar,
such as the Arroyo Seco River, also increase (Fig. 9c).

At the catchment level, debris flow susceptibility is
assessed using peak discharge normalized by catch-
ment areas at the outlet of each catchment between
27 January 00:00 and 28 January 12:00 (Fig. 9d–
f). The catchment-area-normalized peak discharge is
classified into five categories based on equal inter-
vals on log10 scale. The susceptibility categorization
is as follows: “very low” (∼ 10−2 m3 s−1 km−2), “low”
(∼ 10−1 m3 s−1 km−2), “medium” (∼ 100 m3 s−1 km−2),
“high” (∼ 101 m3 s−1 km−2), and “very high”
(∼ 102 m3 s−1 km−2). In the baseline simulation, a ma-
jority of catchments are subject to low or very low debris
flow susceptibility, with normalized peak discharge less
than 1 m3 s−1 km−2 (Fig. 9d). In the burn scar simulation,
about half of the catchments within the Dolan burn scar have
medium susceptibility or above, and about 1/4 of basins

are subject to high to very high debris flow susceptibility
(Fig. 9e and Table 3). The additional debris flow suscepti-
bility brought about by the inclusion of wildfire burn scar
characteristics is substantial (Fig. 9f).

To summarize changes in debris flow susceptibility as a
result of including burn scar characteristics in WRF-Hydro
simulations, we create distributions of pre-fire baseline and
burn scar catchment-area-normalized peak discharge from
the 404 catchments located within the Dolan burn scar
perimeter (Fig. 10). After incorporating burn scar character-
istics, the full distribution shifts to the right, indicating in-
creased susceptibility levels – a shift considered robust by
a Student t test (p value: 5.3× 10−23). A quantitative as-
sessment of this shift indicates that both the mean and stan-
dard deviation of the catchment-area-normalized peak dis-
charge increase by more than 300 % (Table 3). We also as-
sess shifts at a range of distribution percentiles – 5P: 375 %;
25P: 500 %; 50P: 447 %; 75P: 341 %; and 95P: 366 % (Ta-
ble 3). In the burn scar simulation, more than half of catch-
ments have normalized peak discharge > 100 m3 s−1 km−2

(i.e., medium susceptibility), and about 1/4 of catchments
have normalized peak discharge > 101 m3 s−1 km−2 (i.e.,
high susceptibility) – values that correspond to the 70P and
90P of the baseline simulation, respectively. Disproportion-
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Figure 6. Precipitation and observed and simulated streamflow at
three USGS stream gages. MRMS precipitation from 26–31 Jan-
uary 2021 (mmh−1; green bars) and observed (m3 s−1; dash-
dotted black line) and simulated streamflow in baseline simulation
(m3 s−1; dashed purple line) and burn scar simulation (m3 s−1; red
line) at (a) Arroyo Seco NR Greenfield, CA (ID 11151870), (b) Ar-
royo Seco NR Soledad, CA (ID 11152000), and (c) Arroyo Seco BL
Reliz C NR Soledad, CA (ID 11152050). NSE scores for baseline
(purple) and burn scar simulations (red) are shown at the top left.

ate shifting of the distribution suggests that debris flow sus-
ceptibility increases non-linearly under simulated burn scar
conditions.

Our catchment-area-normalized peak-discharge-based
susceptibility assessment also indicates that the catchments
containing Mill Creek, Big Creek, and Nacimiento have
high or very high susceptibility (Fig. 9d–f), consistent with
our (limited) debris flow observations. Other areas with
elevated susceptibility include catchments containing the
Arroyo Seco and San Antonio rivers. Beyond the burn scar
perimeter, effects of fire expand to adjacent and downstream
catchments, and some drainage basins along the Arroyo

Seco and Nacimiento rivers are simulated to have very
high susceptibility; i.e., normalized peak discharge exceeds
102 m3 s−1 km−2 (Fig. 9e and f).

6 Discussion

Given the historic and growing frequency of wildfires in the
western US (Williams et al., 2019; Swain 2021) and glob-
ally (Jolly et al., 2015), developing tools to investigate, bet-
ter understand, and potentially predict changes in burn scar
hydrology and natural hazards at regional scales is criti-
cal. Here, we demonstrate the first use of WRF-Hydro to
simulate the susceptibility of a burn scar to postfire debris
flows during a landfalling AR. We augmented the default ver-
sion of WRF-Hydro to output overland flow and to replicate
burn scar behavior by adjusting vegetation type and infiltra-
tion rate parameters. WRF-Hydro simulations were validated
against PSL soil moisture and USGS streamflow observa-
tions before we used simulated peak discharge of stream-
flow and overland flow to characterize debris flow suscep-
tibility. A comparison between baseline and burn scar sim-
ulations demonstrated that changes in hydraulic properties
of burned areas cause drastic changes in surface flows, in-
cluding faster discharge response times and greater peak dis-
charge and total volumes, consistent with findings from pre-
vious postfire hydrology studies (Kean et al., 2011; Brunkal
and Santi, 2016). At the catchment level, for the 404 catch-
ments located within the Dolan burn scar, median catchment-
area-normalized peak discharge increases by ∼ 450 % rela-
tive to the baseline. In addition, Mill Creek, Big Creek, and
Nacimiento basins were simulated to have high to very high
debris flow susceptibility, corresponding well with identified
debris flow occurrences.

Despite methodological differences, our debris flow sus-
ceptibility map for this AR event is generally consistent with
the USGS’ postfire, pre-AR, design-storm-based prelimi-
nary hazard assessment (USGS, 2021). As described above,
USGS preliminary hazard assessments use logistic regres-
sion models to estimate the likelihood of debris flow oc-
currence and multivariate linear regression models to esti-
mate debris flow volumes. The USGS empirical approach
is trained on historical western US debris flow occurrence
and magnitude data and incorporates burn scar soil erodi-
bility and burn severity data (Cannon et al., 2010; Gartner
et al., 2014; Staley et al., 2016). For precipitation, the USGS
assessment utilizes a design storm approach that assumes
1–5-year return interval magnitude precipitation falls uni-
formly over a region or burn scar (USGS, 2021). For the
Dolan burn scar, both the USGS assessment and ours find
that large stream channels had relatively higher susceptibil-
ity than small streams or overland areas. However, a close
comparison of the two maps reveals differences in spatial
distribution of hazardous catchments. In the USGS assess-
ment, higher likelihood is predicted north and southeast of
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Figure 7. WRF-Hydro-simulated overland flow and streamflow in the burn scar simulation. (a–d) Total volume of accumulated overland
flow (m3; yellow–red shading) and streamflow (m3; blue shading) between 27 January 00:00 and 28 January 12:00 at four debris flow sites
draped over a hillshade of topography. Black rectangles correspond to domains in Fig. 3a–d. Black circles and triangles indicate debris flow
source areas and deposits, respectively.

the burn scar, whereas in our assessment the highest suscep-
tibility occurs along major stream channels. We hypothesize
that USGS-assessed areas of higher hazard potential are re-
lated to their use of spatially uniform design-storm precipi-
tation (see Fig. 2 for MRMS precipitation footprint) and in-
clusion of burn severity data (Burned Area Emergency Re-
sponse, 2020).

Comparison with the USGS hazard assessment framework
suggests room for improvement in WRF-Hydro-based as-
sessments (i.e., inclusion of burn severity and soil erodibility
data) but also highlights the potential utility of working with
spatially distributed and time-varying precipitation. How-
ever, this also means the accuracy of WRF-Hydro predic-
tions depends on the accuracy of precipitation forcing and, in
our hindcast application, the MRMS precipitation data (Ap-
pendix A). Accordingly, our WRF-Hydro-based assessment
could benefit from precipitation products mosaicked from
various sources to constrain precipitation-based uncertain-

ties (e.g., gage-corrected and/or Mountain Mapper MRMS),
although the long processing time of these datasets inhibits
timely post-event assessments.

In addition to the above results focused primarily on the
Dolan burn scar, a key feature of WRF-Hydro is its abil-
ity to simulate the land surface hydrology of expansive geo-
graphic domains; e.g., NOAA runs the National Water Model
over the entire continental US. Development of tools capa-
ble of regional susceptibility assessments is crucial, partic-
ularly in a wildfire-prone region like California, due to the
large spatial scale, diverse morphology, and often tight spa-
tial gradients of precipitation events and their interactions
with geographically widespread wildfire burn scars. For ex-
ample, landfalling ARs are often long (thousands of kilome-
ters) filament-like systems with heterogeneous intensity gra-
dients along their length. As a demonstration of wide geo-
graphic applicability, we assess susceptibility over our full
model domain, which includes more than 10 000 catchments
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Figure 8. WRF-Hydro-simulated discharge time series at four debris flow deposition locations. (a–d) MRMS precipitation (mmh−1; green
bars) and simulated discharge time series for 26 January 00:00 to 31 January 23:00 at (a) Rat Creek, (b) Mill Creek, (c) Big Creek, and
(d) Nacimiento deposition locations (black triangles in Fig. 7a–d) in the baseline (m3 s−1; dashed purple line) and burn scar simulations
(m3 s−1; red line).

and a number of 2020 wildfire burn scars in addition to the
Dolan burn scar (Fig. 11). The domain-wide analysis reveals
elevated peak discharge, i.e., elevated susceptibility, in areas
of high precipitation and in burned terrains (Fig. 11a–c). We
highlight channelized and catchment-area-normalized debris
flow susceptibility in non-Dolan burn scar sites in Fig. 11d–
g. In an operational forecast context, the ability to simu-
late landslide and debris flow susceptibilities and hazards
over numerous catchments at meteorologically appropriate
scales represents a step change in the field. We argue that
our demonstration of WRF-Hydro’s debris flow susceptibil-
ity hindcast capabilities should motivate further exploration
and development for potential use in operational hazard fore-
casting.

In addition to investigating the operationalization of WRF-
Hydro’s natural hazard prediction capabilities, we note that
with additional work our susceptibility-focused methodology
could be advanced to the level of hazard assessment, in line
with current USGS debris flow products. The USGS Emer-
gency Assessment of Post-Fire Debris-Flow Hazard predicts
debris flow volume and likelihood. To advance from suscep-
tibility to hazard assessment, our methodology would need
to incorporate both debris flow volume estimates and occur-
rence likelihoods. In the following, we highlight research di-

rections that could help advance our susceptibility-focused
methodological framework. The first capability to develop
would be a runoff-generated debris flow model that cou-
ples hydrologic and sediment erosion and transport processes
to help characterize postfire debris flow volumes. Indeed,
previous efforts have demonstrated the capacity to couple
WRF-Hydro with sediment flux models (Yin et al., 2020;
Shen et al., 2021). In addition to sediments, burn scar ash
can comprise a substantial fraction of the total debris flow
volume (e.g., Reneau et al., 2007). As such, efforts to con-
strain ash availability and entrainment in hydrologic flows
could prove fortuitous in hazard assessment and prediction
efforts. A second capability in need of development is the
use of WRF-Hydro to identify debris flow triggering time
and location by employing a domain-specific rainfall ID
threshold trained with historic landslide inventory and trig-
gering rainfall events (Tognacca et al., 2000; Gregoretti and
Dalla Fontana, 2008) or a newly developed dimensionless
discharge and Shields stress threshold (Tang et al., 2019a;
McGuire and Youberg, 2020). While in this study we do not
attempt to simulate debris flow dynamics such as triggering,
we note that WRF-Hydro is capable of simulating overland
flow and streamflow at higher spatiotemporal resolutions (on
scales that are similar to other debris flow mechanistic stud-
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Figure 9. Peak-discharge-based postfire debris flow susceptibility. Peak discharge at individual stream level for the (a) baseline and (b) burn
scar simulations and (c) the difference between burn scar and baseline simulations from 27 January 00:00 to 28 January 12:00 (m3 s−1).
(d)–(f) Normalized peak discharge by catchment area at catchment level (m3 s−1 km−2; shading). For each catchment, the peak discharge is
the maximum discharge rate at the catchment outlet from 27 January 00:00 to 28 January 12:00 divided by catchment area. Triangles stand
for debris flow deposition locations and are annotated in (a) and (d). We conduct similar analyses using accumulated discharge volume in
Fig. B6 in Appendix B.

Figure 10. Distributions of peak discharge at the outlet of the
404 catchments normalized by upstream catchment areas within
Dolan burn scar in the baseline simulation (purple line) and in the
burn scar simulation (red line). Vertical dashed lines indicate me-
dian values. We conduct similar analyses using accumulated dis-
charge volume in Fig. B7 in Appendix B.

ies such as Rengers et al., 2016; McGuire et al., 2016, 2017;
Tang et al., 2019a, b). Therefore, WRF-Hydro’s capability to
simulate the triggering processes of runoff-generated debris
flows is potentially only limited by the spatiotemporal reso-
lution of precipitation forcing and computing resources.

In addition to constraining postfire debris flow volumes
and occurrence likelihoods, WRF-Hydro’s application in de-
bris flow studies could be advanced via concerted engage-
ment with uncertainties that are both external (meteorolog-
ical forcing data) and internal (physical parameters) to the
model. Previous studies have demonstrated that precipita-
tion is often the largest source of uncertainty in hydrologic
predictive models (Hapuarachchi et al., 2011; Alfieri et al.,
2012). Engagement with precipitation forcing uncertainties
in past, near-term, and future contexts could provide prob-
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Figure 11. MRMS accumulated precipitation and peak-discharge-informed regional debris flow susceptibility. (a) MRMS accumulated
precipitation from 27 January 00:00 to 29 January 23:00 over the model domain (mm; shading). Names of burn scars are labeled in black.
(b) Peak streamflow (m3 s−1; yellow-to-red shading) and (c) peak overland flow from 27 January 00:00 to 28 January 12:00 over the model
domain (m3 s−1; yellow-to-red shading). (d, e) Stream-level postfire debris flow susceptibility as Fig. 9b but for River and Camel burn scars.
(f, g) Catchment-area-normalized debris flow susceptibility as Fig. 9e but for River and Camel burn scars. Wildfire perimeters of 2020 wildfire
season are outlined. The coastline of California is depicted in gray.

abilistic nuance to natural hazard investigations. For exam-
ple, (a) debris flow hindcast studies could use a diversity of
precipitation datasets to isolate precipitation-derived debris
flow uncertainties in historic events; (b) operational forecast
efforts could utilize ensemble-based weather forecast data
to inform likelihood statements in debris flow hazard and
risk assessments; and (c) probabilistic projections of debris
flow likelihood in future climates could assess and partition
uncertainties derived from emission pathway, model struc-
ture, or internal variability effects on meteorological forcings
(Nikolopoulos et al., 2019; Deser et al., 2020). Uncertainties
internal to WRF-Hydro are also ripe for investigation. Prob-
abilistic predictions crafted from an ensemble of perturbed
model physics simulations have been used to predict rainfall-

triggered shallow landslides (Raia et al., 2014; Canli et al.,
2018; Zhang et al., 2018). Similar efforts using WRF-Hydro
could target post-wildfire debris flows.

Lastly, the above discussion of potential WRF-Hydro ap-
plications and advancements speaks to the adaptability and
customization of this open-source numerical model. An ad-
ditional layer of WRF-Hydro’s adaptability concerns its ge-
ographic focus. While we calibrate and use the model over
a central California domain, the choice of geographic foot-
print is only limited by the availability of requisite initial and
boundary conditions, environmental observations for calibra-
tion, and computational resources. For use in non-central
California domains, we recommend calibration beginning
with the default version of the model. Given the ecological
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and geological diversity of locations that experience wild-
fires and debris flows, it is likely that calibrations distinct
from those reported here will be needed in different regions.
For example, soil-sealing effects, infiltration, and runoff in
wetter and more vegetated locations, such as Oregon, USA,
behave differently than those in central California (Palmer,
2022). As such, calibration of relevant model parameters
(e.g., saturated hydraulic conductivities) should be based on
a physics-informed approach that accounts for local environ-
mental conditions and hydrologic behaviors. Indeed, given
the ability to simulate large heterogeneous geographic do-
mains, it is likely that different regions within a given domain
may require different calibration schemes. As WRF-Hydro
is fully distributed, spatially heterogeneous calibrations are
non-problematic. This spatial adaptability may prove partic-
ularly helpful in post-wildfire debris flow hazard assessments
when considering multiple generations of wildfires and vari-
able degrees of burn scar severity and recovery.

7 Conclusion

Here we augment WRF-Hydro to assess regional postfire de-
bris flow susceptibility. Our methodology involves output of
simulated overland flow data and alteration of the model’s
representation of burn scars. In this application we have bal-
anced the computational cost of a regional domain with our
choice of resolved spatial resolution for terrain routing and
overland flow calculations (100 m). However, WRF-Hydro
has previously been applied to smaller domains at higher
terrain-routing resolutions (∼ 30 m). Future work could as-
sess the use of the model to study burn scar hydrology at
finer spatial scales, should the application warrant it and
should underlying data at sufficient resolution exist. Other
potential applications of our augmented model framework
include alpine areas and steep hillslopes with sparse veg-
etation where runoff-generated debris flows dominate over
landslide-initiated ones (Coe et al., 2003, 2008). Further-
more, our burn scar parameter changes are performed for
Noah-MP, which is the core land surface component of the
NCEP Global Forecast System (GFS) and Climate Forecast
System (CFS); thus the findings presented herein are likely
to prove useful in the broader worlds of forecast meteorol-
ogy and climate science. In addition, here WRF-Hydro is
driven by historical precipitation and meteorological data,
i.e., in hindcast mode. However, this modeling framework
could also be employed to project hazards under future cli-
matic conditions (e.g., Huang et al., 2020a) or, given its rel-
atively low computational expense, in operational forecast
mode. Indeed, modern ensemble-based meteorological fore-
casting could provide high-spatiotemporal-resolution forcing
data with which disaster preparedness managers could prob-
abilistically assess debris flow hazard potential and issue ad-
vanced life- and property-saving warnings.

Appendix A: Multi-Radar/Multi-Sensor System
(MRMS) radar-only precipitation estimate and
uncertainty

MRMS is a precipitation product that covers the contigu-
ous United States (CONUS) on a 1 km grid. It combines
precipitation estimates from sensors and observational net-
works (Zhang et al., 2011, 2014, 2016) and is produced at
the National Centers for Environmental Prediction (NCEP)
and distributed to National Weather Service forecast of-
fices and other agencies. Input datasets used to produce
MRMS include the US Weather Surveillance Radar-1988
Doppler (WSR-88D) network and Canadian radar network,
the Parameter-elevation Regressions on Independent Slopes
Model (PRISM; Daly et al., 2017), Hydrometeorological Au-
tomated Data System (HADS) gage data with quality control
(Qi et al., 2016), and outputs from numerical weather pre-
diction models. There are four different MRMS quantitative
precipitation estimate (QPE) products incorporating differ-
ent input data or combinations: radar only, gage only, gage-
adjusted radar, and Mountain Mapper. One caveat of using
MRMS is that weather radars are problematic in accurately
capturing rainfall in high mountainous areas due to beam
blocking by the orography (Germann et al., 2007; Anagnos-
tou et al., 2010), and gage-corrected and Mountain Map-
per MRMSs are superior and preferred. However, for our
study period (i.e., 1–31 January 2021), the gage-corrected
and Mountain Mapper MRMSs are not available (as of May
2022).

We acknowledge that precipitation data have uncertainties.
Use of different precipitation products may produce differ-
ent results. A study comparing different gridded precipitation
datasets including satellite-based precipitation data, gage
data, and multi-sensor products revealed large uncertainties
in precipitation intensity (Bytheway et al., 2020). However,
comparing different precipitation datasets to characterize un-
certainties is beyond the scope of this study. MRMS provides
gridded precipitation at high temporal (hourly) and spatial
(1 km) resolutions, making it a useful tool to demonstrate the
utility of WRF-Hydro in post-wildfire debris flow suscepti-
bility assessments.
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Appendix B

Figure B1. Optical- and SAR-based remote sensing data of four debris flows. Optical data from Sentinel-2 show pre- and post-debris flow
imagery in real color; rdNDVI calculated from the Sentinel-2 data shows a decrease in vegetation corresponding to debris flow locations.
Sentinel-1 backscatter change shows the change in ground surface properties determined by calculating the log ratio of pre- and post-event
SAR images. The pre-event and post-event satellite images, Sentinel-1 backscatter, and Sentinel-2 rdNDVI change at (a) Rat Creek, (b) Mill
Creek, (c) Big Creek, and (d) Nacimiento.
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Figure B2. Schematic trapezoidal shape and related parameters of channels in WRF-Hydro. Bw is the channel bottom width (m), z is the
channel side slope (m), and H is water elevation (m). The cross-sectional area of flow is calculated as (Bw+H z)H .

Table B1. Parameters of trapezoidal channels in WRF-Hydro.

Stream
order

Channel bottom Channel side Manning’s roughness
width Bw (m) slope z (m) coefficient n

1 1.5 3 0.33
2 3 1 0.21
3 5 0.5 0.09
4 10 0.18 0.06
5 20 0.05 0.04
6 40 0.05 0.03
7 60 0.05 0.02
8 70 0.05 0.02
9 80 0.05 0.01
10 100 0.05 0.01

Figure B3. (a) Stream order defined by the USGS 30 m DEM in our WRF-Hydro model domain and (b) the channel bottom width Bw (m),
which is a function of stream order (Table B1).
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Table B2. MODIS IGBP 20-category land cover type and properties in Noah-MP LSM.

Land cover
code

Land cover type Canopy height Max carboxylation rate at Overland flow
(m) 25 ◦C (µmolCO2 m−2 s−1) roughness

1 Evergreen needleleaf forest 20 50 0.2
2 Evergreen broadleaf forest 20 60 0.2
3 Deciduous needleleaf forest 18 60 0.2
4 Deciduous broadleaf forest 16 60 0.2
5 Mixed forests 16 55 0.2
6 Closed shrublands 1.1 40 0.055
7 Open shrublands 1.1 40 0.055
8 Woody savannas 13 40 0.055
9 Savannas 10 40 0.055
10 Grasslands 1 40 0.055
11 Permanent wetlands 5 50 0.07
12 Croplands 2 80 0.035
13 Urban and built-up 15 0 0.025
14 Cropland–natural vegetation mosaic 1.5 60 0.035
15 Snow and ice 0 0 0.01
16 Barren or sparsely vegetated 0 0 0.035
17 Water 0 0 0.005
18 Wooded tundra 4 50 0.055
19 Mixed tundra 2 50 0.055
20 Barren tundra 0.5 50 0.055

Figure B4. (a) MODIS IGBP 20-category land cover type in the model domain, (b) 1 km STATSGO data with 16 soil texture types. The
2020 wildfire burn scar perimeters are outlined in red.
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Table B3. Soil parameters in default and calibrated WRF-Hydro. Default soil parameters in WRF-Hydro are adapted from the soil analysis by
Cosby et al. (1984). Grain size distribution index and soil porosity are altered from default values during the global soil moisture calibration.
Saturated hydraulic conductivity is altered from default values during the streamflow calibration.

Soil type Default After calibration

Grain size Porosity Saturated hydraulic Grain size Porosity Saturated
distribution conductivity distribution hydraulic

index (ms−1) index conductivity (ms−1)

Sand 2.79 0.339 4.66× 10−5 2.51 0.315 1.5× 10−7 ms−1 for all the burn scars
and original values elsewhere.Loamy sand 4.26 0.421 1.41× 10−5 3.83 0.392

Sandy loam 4.74 0.434 5.23× 10−6 4.27 0.404
Silt loam 5.33 0.476 2.81× 10−6 4.80 0.442
Silt 3.86 0.484 2.18× 10−6 3.47 0.450
Loam 5.25 0.439 3.38× 10−6 4.73 0.408
Sandy clay loam 6.77 0.404 4.45× 10−6 6.09 0.376
Silty clay loam 8.72 0.464 2.03× 10−6 7.85 0.432
Clay loam 8.17 0.465 2.45× 10−6 7.35 0.432
Sandy clay 10.73 0.406 7.22× 10−6 9.66 0.378
Silty clay 10.39 0.468 1.34× 10−6 9.35 0.435
Clay 11.55 0.468 9.74× 10−7 10.40 0.435
Organic material 5.25 0.439 3.38× 10−6 4.73 0.408
Water 0.00 1.00 0.00 0.00 1.00
Bedrock 2.79 0.200 1.41× 10−4 2.51 0.186
Other 4.26 0.421 1.41× 10−5 3.83 0.392
Playa 11.55 0.468 9.74× 10−7 10.40 0.435
Lava 2.79 0.200 1.41× 10−4 2.51 0.186
White sand 2.79 0.339 4.66× 10−5 2.51 0.315

Figure B5. WRF-Hydro-simulated discharge time series at four debris flow source areas. (a–c) MRMS precipitation (mmh−1; green bars)
and simulated discharge time series for 26 January 00:00 to 31 January 23:00 at Mill Creek, Big Creek, and Nacimiento debris flow source
areas (black circles in Fig. 7b–d) in baseline (m3 s−1; dashed purple line) and burn scar simulation (m3 s−1; red line).
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Table B4. The total runoff volume, peak discharge, and peak timing in the baseline and burn scar simulations from 27 January 00:00 to
31 January 23:00 at source areas of Rat Creek, Mill Creek, Big Creek, and Nacimiento debris flows (black circles in Fig. 7b–d). The percent
changes in the total volume and peak discharge in the burn scar simulation relative to the baseline simulation are shown in parentheses.

Site name Baseline simulation Burn scar simulation

Total volume Peak discharge Peak timing Total volume Peak discharge Peak timing
(m3) (m3 s−1) (m3) (m3 s−1)

Mill Creek 10 023 0.23 27 Jan 23:00 83 853 1.24 27 Jan 13:00
(+737 %) (+439 %)

Big Creek 11 611 0.71 28 Jan 05:00 128 879 2.81 28 Jan 05:00
(+1010 %) (+296 %)

Nacimiento 3031 0.05 27 Jan 13:00 49 792 0.76 27 Jan 13:00
(+1542 %) (+1420 %)

Figure B6. Accumulated discharge volume at individual stream level for the (a) baseline and (b) burn scar simulations and (c) the difference
between burn scar and baseline simulations (m3). Total discharge volume is accumulated from 27 January 00:00 to 28 January 12:00. (d–
f) Normalized discharge volume by catchment area at catchment level (m3 km−2; shading; Santi and Morandi, 2013). For each catchment,
the discharge volume is accumulated at the catchment outlet from 27 January 00:00 to 28 January 12:00 divided by catchment area. Triangles
stand for debris flow deposition locations and are annotated in (a) and (d).

Nat. Hazards Earth Syst. Sci., 22, 2317–2345, 2022 https://doi.org/10.5194/nhess-22-2317-2022



C. Li et al.: Augmentation of WRF-Hydro to simulate postfire debris flow susceptibility 2339

Table B5. Statistics, including the mean, standard deviation (SD), 5P, 25P, 50P, 75P, and 95P, of the catchment-area-normalized discharge
volume for all the 404 basins within the Dolan burn scar in the baseline and burn scar simulation and their relative percent changes.

Mean SD 5P 25P 50P 75P 95P

Baseline simulation (m3 km−2) 3.8× 105
± 1.6× 106 600 3.7× 103 1.3× 104 1.2× 105 2.1× 106

Burn scarsimulation (m3 km−2) 5.5× 106
± 2.3× 107 1.5× 103 3.1× 104 1.35× 105 1.3× 106 2.9× 107

Relative percent change (%) 1300 1400 148 725 924 980 1300

Figure B7. Distributions of accumulated discharge volumes at the outlet of the 404 catchments normalized by upstream catchment areas
within the Dolan burn scar in the baseline simulation (purple line) and in the burn scar simulation (red line). Dashed vertical lines indicate
median values.

Figure B8. Non-normalized peak discharge at catchment level in the (a) baseline simulation and (b) burn scar simulation and (c) the
difference between the burn scar and baseline simulations (m3 s−1; shading). For each catchment, the peak discharge is the maximum
discharge rate at the catchment outlet from 27 January 00:00 to 28 January 12:00. Triangles stand for debris flow deposition locations and
are annotated in (a).
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Code availability. The modified WRF-Hydro Fortran code and
instructions to output the overland flow at the terrain-routing
grid can be downloaded at https://github.com/NU-CCRG/
Modified-WRF-Hydro (last access: 17 September 2021;
https://doi.org/10.5281/zenodo.6766928, Li et al., 2022). HazMap-
per v1.0 is available at https://doi.org/10.5281/zenodo.4103348
(Scheip and Wegmann, 2020). The SAR backscatter change method
code is available at https://github.com/alhandwerger/GEE_scripts_
for_Handwerger_et_al_2022_NHESS (Huang and Handwerger,
2022).

Data availability. The NLDAS-2 reanalysis forcing
data are publicly available at NASA GES DISC:
https://doi.org/10.5067/6J5LHHOHZHN4 (Xia et al., 2009).
The MRMS radar-only precipitation estimate is publicly
available at https://doi.org/10.26023/4WM5-Y4PF-8D03
(NCEP, 2018). The PSL in situ soil moisture data are pub-
licly available at https://psl.noaa.gov/data/obs/datadisplay/
(NOAA PSL, 2022). The USGS streamflow is publicly
available at https://doi.org/10.5066/F7P55KJN (USGS,
2016). The wildfire perimeter shapefiles are download-
able at https://data-nifc.opendata.arcgis.com/datasets/nifc::
wfigs-wildland-fire-perimeters-full-history/explore?location=0.
000000,0.000000,1.81 (National Interagency Fire Center, 2021).
The remote sensing data used in this paper were provided by
the European Space Agency (ESA) Copernicus program and
accessed on Google Earth Engine (https://earthengine.google.com/,
NASA and ESA, 2021). All processed data required to re-
produce the results of this study are archived on Zenodo at
https://doi.org/10.5281/zenodo.5544083 (Li et al., 2021).
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