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Abstract: The increasing wildfire activity and rapid population growth in the wildland–urban
interface (WUI) have made more Americans exposed to wildfire risk. WUI mapping plays a significant
role in wildfire management. This study used the Microsoft building footprint (MBF) and the Montana
address/structure framework datasets to map the WUI in Montana. A systematic comparison
of the following three types of WUI was performed: the WUI maps derived from the Montana
address/structure framework dataset (WUI-P), the WUI maps derived from the MBF dataset (WUI-S),
and the Radeloff WUI map derived from census data (WUI-Z). The results show that WUI-S and
WUI-P are greater than WUI-Z in the WUI area. Moreover, WUI-S has more WUI area than WUI-P
due to the inclusion of all structures rather than just address points. Spatial analysis revealed clusters
of high percentage WUI area in western Montana and low percentage WUI area in eastern Montana,
which is likely related to a combination of factors including topography and population density. A
web GIS application was also developed to facilitate the dissemination of the resulting WUI maps
and allow visual comparison between the three WUI types. This study demonstrated that the MBF
can be a useful resource for mapping the WUI and could be used in place of a national address
point dataset.

Keywords: wildland–urban interface; structure point data; address point data; web GIS

1. Introduction

The past few years have witnessed the rapid increase of the total wildland–urban
interface (WUI) area [1,2] and the number of homes located within the WUI in the U.S. [1,3].
Additionally, there has been a rise in wildfire suppression and mitigation costs [3]. The
WUI grew from 7.2% of the total land area in 1990 to 9.5% in 2010, adding 189,000 km2 of
land classified as WUI and 12.7 million housing units in the WUI in the U.S. [1]. According
to a recent study, the number of residential homes within the WUI in the U.S. has reached
49 million [3]. Theobald and Romme [2] have also projected that the WUI in the U.S. will
grow by more than 10% by 2030 as more people move to rural and suburban communities.
The WUI is defined as the area where a built environment meets the wildland [4]. In
the Federal Register, Glickman and Babbitt [4] define the WUI as a populated area in
which structures are adjacent to or intermingle with wildland vegetation. There are three
main WUI categories: interface, intermix, and occluded WUI [4]. Interface WUI is where
structures and wildland vegetation touch, separated by a clearly defined boundary [4].
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An expanded version of this definition states that interface WUI is where housing units
are within 2.4 km of a 5 km2 or larger patch of vegetation with more than 75% wildland
cover [1,5]. The structures in an intermix WUI occur within unbroken wildland vegetation
but must have a minimum housing density of one house per 40 acres (6.17 houses per
km2) [4]. This definition has been refined to state that wildland vegetation must cover at
least 50% of the area where the structures occur in an intermix WUI area [1,5]. Occluded
WUI exists where there is an area of wildland fuels surrounded by urban structures (e.g., the
green spaces within an urban area) [4]. Of these three types of WUI, interface and intermix
WUI have been widely used in WUI mapping research [1,5–7]. The WUI definition in the
Federal Register focuses specifically on housing units as defined in the U.S. Census housing
density data when determining structure density [1,5]. While there is extensive use of the
Federal Register WUI definition in WUI mapping, some researchers use other factors to
define the WUI. For example, researchers in Canada expanded the WUI definition to include
two other WUI types: WUI-Ind (industrial) and WUI-Inf (infrastructural) [8]. The inclusion
of industrial buildings and other structures when defining the WUI may be necessary
due to the possible impacts of wildfire on these assets during and after incidents [8].
Similarly, the inclusion of infrastructure in the WUI definition may also be important as
these structures are related to evacuation and fire protection [8]. Infrastructure networks
(e.g., roads, railroads, and powerlines) could also be sources of wildfire ignition [8–10].
Using industrial and infrastructural assets to determine where the WUI is located expands
the area significantly, mainly where infrastructure-related structures are present [8].

Over the past several decades, there has been an increasing trend of significant wildfire
occurrence in the western U.S. [11,12] as well as an increase in the area burned by wildfire
annually [1,3,12]. As climate change has progressed in recent years, there has been a
decrease in precipitation during fire seasons [12] along with an increase in wildland fuel
dryness [13]. As fuel dryness increases, wildfire risk [14] and the total area burned will
likely increase as well [3,12]. Wildfire risk can be defined as the combination of three
factors: the probability of ignition, the intensity of the fire, and the impacts of the fire
on the landscape [15]. One aspect of wildfire risk is the loss of lives and casualties in
wildfires. Between 2014 and 2018, 57 wildfires resulted in casualties, the worst being the
Camp Fire in Paradise, California in 2018 with 85 fatalities [16]. Due to drier fuels [12,13],
high incidence of anthropogenic wildfire ignition [17], and the expanding WUI, the wildfire
risk in the WUI is likely to increase [1]. Another aspect of wildfire risk within WUI
communities is structure loss. Multiple recent studies examined the factors that determine
the likelihood of structure loss within WUI communities [18–20]. For example, in a study
conducted by Syphard et al. [21], the main focus is on how the spatial grouping of structures
and other factors such as slope, aspect, and elevation relate to structure loss in wildfires.
Other research considers different factors such as building materials and construction,
risk mitigation practices such as defensible space, and regional variation that may impact
structure loss [20]. As the WUI expands, significantly more structures are at risk of damage
or destruction by wildfire [1,22]. The increasing risk of structure loss related to wildfire
within the WUI tends to drive research as well [20,21,23–25]. Understanding where the
WUI exists is essential when combined with wildfire risk data to formulate decisions related
to the management and mitigation of wildfire [26]. A better understanding of wildfire
risk can facilitate decision-making in wildfire policy, fuel management, and community
planning in the WUI [27]. The analysis of wildfire risk is crucial in wildfire management
with more frequent, destructive wildfires occurring in the American west [11,19]. For
example, wildfire risk information can be used to establish defensible space regulations to
reduce structure loss in wildfires and distribute wildfire management resources.

Wildfire management (e.g., wildfire prevention, suppression, and mitigation) has be-
come more challenging as the WUI expands [1], anthropogenic wildfires in the U.S. become
predominant [9,17], and wildfires in the WUI are expected to increase [24]. As a result, WUI
mapping becomes crucial for decision-making in wildfire management. In the early 2000s,
WUI research received attention as wildfire and structure loss increased significantly [6].
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However, even with increased attention to the WUI problem, a national WUI map did
not exist [6]. This led to the development of a national WUI dataset based on census
block data and the United States Geological Survey (USGS) National Land Cover Database
(NLCD) [6]. Since then, many studies have been conducted to develop or refine different
methods to map the WUI within the U.S. [2,5,6,28,29] and internationally [8,30–33]. Note
that different types of data can be used in different WUI mapping methods. For example,
Radeloff et al. [6] produced their WUI map at a national scale using the structure density
in each census block derived from the US Census housing unit counts and vegetative cover
data from the USGS NLCD. One limitation of the census-block-based methods is related to
the distribution of structures within a census block. For example, many structures could be
concentrated in a small area within a large census block so that the structure density meets
the criteria for inclusion in the WUI classification. This allows for the entire census block to
be classified as WUI even though a large portion of the area does not meet the WUI criteria.
This could lead to less precise WUI and possible bias due to the uneven spatial distribution
of structures within a census block [28,34]. Another limitation is the decreased applicability
to local and regional scales when it is crucial to understand where structures are located
during and before a wildfire [28,34].

Another popular way to map the WUI is to use the fine-grained structure location data
instead of the housing unit count data from the U.S. Census [23,28,29]. Using exact structure
locations to map the WUI allows for a higher level of precision [8,28,29]. For example,
Johnston and Flannigan [8] utilized physical structure locations from an open structure
database named CanVec+ in Canada to map the WUI. Additionally, Bar-Massada et al. [28]
used the structure locations derived from government agency data and digitized from satel-
lite and aerial imagery to map the WUI. Moreover, we can also compile structure location
data from other sources such as parcel centroids [29] or address point data [35]. Address
point data only includes structures with known addresses, excluding some structures from
the mapping process [35]. In the U.S., the Department of Transportation is working with
local and state governments to aggregate state, local, and tribal datasets into one cohesive
national address point database [35]. However, a complete national address point dataset
is not currently available because some states have address point datasets that exist but
are not completely within the public domain [35]. Thus, it is difficult to use address point
data to produce a national WUI map. A relatively recently developed dataset that may be
useful as an alternative to address point data is the Microsoft Building Footprint (MBF)
dataset [36]. This polygon dataset includes all the structure footprints derived from a
machine learning algorithm in the U.S. [36]. The MBF dataset presents an opportunity to
derive more accurate WUI maps based on structure locations. The MBF dataset has been
used in population distribution mapping [37], wildfire-related structure loss [23], flood
exposure [38], and WUI mapping [39–41]. The release of the MBF dataset makes it possible
to produce a structure-based WUI map for the whole U.S. The type of structure location
dataset (address point or physical structure location) could also produce variations in the
WUI map. Although different types of structure location data exist and can be used for WUI
mapping, little research has been done to compare these datasets in WUI mapping. Since
address point data and the MBF dataset are two popular datasets used in WUI mapping,
we chose to examine the differences of these two types of structure location data in WUI
mapping in this study.

This study focused on using two different structure location datasets to improve WUI
mapping in Montana. The research objectives of this study were to: (1) derive WUI maps
using the MBF and the Montana structure point datasets; (2) compare the following three
types of WUI maps in Montana: the WUI maps derived from the Montana structure point
dataset (WUI-P), the WUI maps derived from the MBF dataset (WUI-S), and the Radeloff
WUI map derived from census data (WUI-Z); (3) analyze the spatial patterns of the derived
WUI-P and WUI-S at the county level; and (4) develop a web geographic information
system (GIS) application to map the three types of WUI. The novelty of this study is as
follows. First, two different structure location datasets were used to map the WUI in
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Montana. Second, a systematic comparison of the three types of WUI maps in Montana
is provided. The remainder of this article is organized as follows. Section 2 details the
study area and the data employed in the study. The proposed methods are included in
Section 3. The results are presented in Section 4. The discussion and conclusion are in
Sections 5 and 6, respectively.

2. Study Area

The study area is the state of Montana (Figure 1). Montana is in the northwest portion
of the U.S. The Continental Divide splits Montana into two distinct climate regions, with
a maritime-like climate where cooler summer months with mild winters are common to
the west of the divide and hotter summers and colder winters associated with a semi-arid
continental climate to the east of the divide [42]. Precipitation in these two regions also
differs significantly. The western part of the state experiences higher precipitation with
an average of 56–76 cm annually predominantly occurring in winter and spring [43]. In
the eastern plains, the semi-arid climate provides less precipitation with an average of
30–36 cm annually [43]. The total area of the state is 380,831 km2 [44], and it had an
estimated population of 1,068,778 as of 1 July 2019 [45]. Within Montana, the population in
2010 was more concentrated in the western portion of the state where counties with the
largest population included Flathead, Missoula, Cascade, Lewis and Clark, and Gallatin.
Montana was chosen as the study area due to the rapid WUI expansion in the state, the high
percentage of residents in the WUI, and the availability of a statewide structure/address
point dataset from the Montana State Library. In Montana, the total area classified as WUI
in 2010 was 5304 km2, which was only 1.4% of the total area (an increase of 67% between
1990 and 2010) of the state but contained 62.3% of the state’s population and 63.9% of the
housing units in Montana [44].

The two main types of data required for WUI mapping are vegetation cover data and
structure location data [28]. Table 1 presents the details on each of the datasets used in
this study. To ensure accurate analysis, all datasets were projected to the North American
Datum (NAD) 1983 2011 State Plane Montana coordinate system to match the address
point data obtained from the Montana State Library Geographic Information Services.

Table 1. The datasets used in this study.

Data Data Source Date Format

Microsoft building footprint data Microsoft 2018 Vector (polygon)
Montana structure/address

framework
Montana State Library Geographic

Information Services 2020 Vector (point)

Vegetation cover data (NLCD) U.S. Geological Survey 2016 Raster

Montana state boundary Montana State Library Geographic
Information Services 2020 Vector (polygon)
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Figure 1. The map of the study area.

3. Methods
3.1. Mapping the WUI

The flowchart in Figure 2 outlines the key steps for mapping WUI-P and WUI-S. We
used the WUI mapping method proposed by Bar-Massada et al. [28] to map the WUI in
Montana. This method requires two input datasets: structure location data and vegetation
cover data [28]. We used Python and the ArcPy library of ArcGIS Pro 2.9 to generate WUI-P
and WUI-S maps. The Python script was executed for two structure location datasets with
different buffer distances. Initially, we used a buffer polygon of the state boundary to
extract the vegetation cover data from NLCD to ensure there was no edge bias near the
Montana state border. We used the data management tools (feature to point function) in
ArcGIS Pro 2.9 to extract the centroids of the building footprint polygons from the MBF and
derived a point dataset. Then we employed the two structure location datasets to derive the
structure/housing density for the study area. The calculation was accomplished by using a
buffer for each pixel in the 30 m NLCD raster. Note that the area and shape of the WUI
will vary with buffer distance and the WUI generated with different buffer distances can be
used for different purposes [28]. Based on the parameters used by Bar-Massada et al. in a
previous study [28], we chose to use buffer distances ranging from 100 m to 1000 m with a
100 m interval so that we could compare the WUI generated with two different structure
location datasets at different buffer distances. This calculation produces the structure
density per km2 at each buffer distance. Then we reclassified the structure density raster
based on the following rule: ’1′ was assigned to the pixels where the structure density
was larger than 6.17 structures/km2, and ‘0′ was assigned to the pixels with a structure
density equal to or smaller than 6.17 structures/km2. This new raster was then compared
to the vegetation cover dataset to determine each pixel’s WUI classification. Specifically,
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any pixel with a structure density of larger than 6.17 structures/km2 and a vegetation
cover larger than 50% in the buffer was classified as intermix WUI; a pixel was classified
as interface WUI if the pixel had a structure density above 6.17 structures/km2 and a
vegetation cover equal to or smaller than 50% but was within 2.4 km of a 5 km2 or larger
patch of continuous vegetation. After the WUI maps were generated, we used the ArcGIS
Pro Calculate Geometry tool to calculate the area of the WUI and employed the ArcGIS Pro
Aggregate Points tool to derive the number of structures that fell within the WUI.

Figure 2. The flowchart of the WUI mapping procedure.

3.2. Map Comparison

We used GIS to compare WUI-P, WUI-S, and WUI-Z. Specifically, the WUI-Z is used as
the validation dataset to derive the confusion matrices [28]. This comparison method will
show how much area each WUI dataset shares and how much area each dataset identified
as WUI or non-WUI as compared to the other. The comparison results can provide insight
into which WUI dataset is more similar to the WUI-Z map. The comparison of the two
datasets will demonstrate how the inclusion of all structures influences the total area and
spatial patterns of the WUI. Figure 3 shows the detailed comparison procedure. We used
the intersect function in ArcGIS Pro to calculate the overlap between the WUI-P, WUI-S,
and WUI-Z layers to accomplish the spatial comparison. The results were aggregated into
a matrix detailing the total area of each WUI map shares with another, the total area that
was classified as WUI in one map but not the other, and the total area that both WUI maps
classified as non-WUI. To ensure that only the areas classified as WUI were considered, all
areas classified as non-WUI were ignored when calculating the percentage agreement. The
map comparison process determined the agreement between WUI-P, WUI-S, and WUI-Z.



Fire 2022, 5, 129 7 of 23

Figure 3. The flowchart of the WUI mapping procedure.

3.3. Estimating WUI Population

Another factor that could be compared between WUI-P and WUI-S is the percentage of
the population that resides within the WUI. It is straightforward to calculate the population
in WUI-Z due to the direct use of census blocks in the method [6]. However, it was more
complicated to determine the population within the WUI-P or WUI-S. The shapes of WUI-P
and WUI-S were irregular, which made it difficult to leverage census data to calculate WUI
population. As a result, we used dasymetric mapping to address this issue. Dasymetric
mapping involves the use of secondary data to refine primary data to be used in further
analysis, including estimation of population distribution [46,47]. We used the method
proposed by Tapp [46] to calculate the population per address point or structure location
within a census block group. While the use of census block level population could provide
a more precise population estimate, the use of block group population was adopted in this
case. This is because many census blocks that are populated do not contain any structure
points from either structure location dataset. With the population per point calculated, we
employed the “summarize within” function in ArcGIS Pro to derive the total population
falling within the WUI. We used Python and ArcPy to automate the calculation process to
generate the results for each WUI polygon to increase efficiency.

3.4. Spatial Analysis of WUI

We employed the global and local Moran’s I [48] to study the spatial patterns of
the derived WUI-P and WUI-S at the county level in Montana. Specifically, this analysis
focused on two variables: the percentage area of the county defined as WUI (pa) and the
percentage of structures or address points within the WUI for each county (ps). The null
hypothesis was that the WUI is randomly dispersed at the county level. The results were
compared to various geographical aspects of Montana to explain the spatial patterns. The
results of spatial analysis can be utilized by community planners and wildfire managers.
For example, the county-level spatial cluster information can provide insight into where
resources can be most effective in community planning or wildfire management. Moreover,
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the results could also be used by county governments to develop their community wildfire
protection plan (CWPP).

First, we used the global Moran’s I to determine if spatial autocorrelation existed at
the county level in Montana. This calculation produces a value, I, that falls between −1
and 1. A value of −1 represents an instance where no neighbors share the same value
(perfect negative autocorrelation), while a value of 0 is an instance where little to no spatial
autocorrelation has occurred (random occurrence of values), and a value of 1 indicates
perfect autocorrelation (similar values are clustered together) [48]. A z-score and a p-value
are also derived in global Moran’s I analysis. The p-value is used to determine whether the
null hypothesis can be rejected. Once the global Moran’s I is derived, the next step is to use
the local Moran’s I [48] to identify the locations of clusters. When applied to a dataset, each
observation is calculated separately to generate a local Moran’s I statistic. In the case of this
study, each county within Montana represented an observation of the two variables being
tested. Once the local Moran’s I for an observation was determined, a z-score was calculated.
The z-score was used to determine if an observation was surrounded by neighbors that
had similar values or not. If the z-score for an observation has a high positive value, it
is likely to be surrounded by neighbors with similar values; and if the observation has
a large negative z-score, it is likely to be surrounded by dissimilar neighbors [49]. The
values of an observation and its neighbors can be defined as having a high–high (HH),
low–low (LL), low–high (LH), or high–low (HL) relationships [50]. Both HH and LL will
have positive local Moran’s I values, while LH and HL will have negative local Moran’s
I values [50]. To determine if the generated values are statistically significant, a pseudo
p-value is calculated [48]. We used Python and ArcPy to perform the spatial analysis. The
outputs are individual feature classes for local Moran’s I and an HTML report for global
Moran’s I for each buffer distance, structure location dataset, and variable.

3.5. Web Mapping

A web GIS application (https://tinyurl.com/2p8rajju, accessed on 16 July 2022) was
developed to disseminate the results of this study. The web GIS application includes three
types of WUI maps: WUI-P, WUI-S, and WUI-Z. The users of the web GIS application
may include, but are not limited to researchers, stakeholders, and the public. Specifically,
researchers can use the web GIS application to compare the WUI maps derived from
different methods and data; stakeholders can employ the web GIS application to check
different WUI maps to facilitate their decision-making; and the public can access the WUI
maps via the web GIS application to evaluate possible wildfire risk in a specific area. The
web GIS application includes the search tool that allows the users to zoom in to a specific
location to check the WUI maps. The system architecture of the web GIS is shown in
Figure 4. Within this system most of the computation is handled on the server side (i.e., the
web server or the GIS server). The user can use a web browser (client) to access the web GIS.
To ensure the results are available to anyone who may need it, the web GIS application will
not require users to log into the system to access the data. By presenting the data in a web
GIS in this manner, the data will be accessible to anyone who could use it to supplement
any decisions that they may need to make related to wildfire.

https://tinyurl.com/2p8rajju
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Figure 4. The system architecture of the web GIS.

The design of the graphical user interface (GUI) of the web GIS application is shown
in Figure 5. This design was chosen to ensure that the data presented could be easily
interpreted and accessed. To allow users to perform direct comparisons, these WUI maps
are arranged as three separate map windows placed in a row. We used a dashboard style
web application in ArcGIS Online [51] to make sure that each of the three maps could be
presented to allow easy comparison. This style of web GIS also allows more data to be
easily accessed, through the inclusion of graphs, charts, or tables as well as descriptive text
which can also provide links to external sources. Our web GIS application also has a search
tool, which allows the user to locate points of interest and determine how the theme of the
web GIS applies at that location.

We used ArcGIS Online to implement the web GIS application. When setting up a
web GIS, it is important to consider how to optimize the system. Due to the large size of the
WUI maps, we used map tiling to improve system performance. Map tiling is a practice
where a series of tiles are generated to represent the feature that will be displayed and
then cached on the web server, which improves client-side performance as well as usability
and scalability [52]. The specific type of map tile used for this web GIS was vector tiles
as opposed to raster tiles. We used ArcGIS Pro to generate the tiles and upload them to
ArcGIS Online. While vector tiles can improve the performance of a web GIS, they also
have some limitations. For instance, unlike a non-tiled vector feature class layer, a vector
tile layer has limited interactability. Vector tiles in ArcGIS Online do not currently have the
option to enable pop-up boxes when clicked. This limitation is not of concern for this study
because the web GIS is only meant to be used as a visual comparison tool for different WUI
maps. Another limitation is that we cannot directly add a legend for a vector tile layer in
ArcGIS Online. In order to overcome this limitation, the WUI-Z layer was not converted
to a vector tile layer and the legend was based on this layer. Thus, the symbology of the
WUI-S and WUI-P layers was set to match that of the WUI-Z layer.
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Figure 5. The design of the graphical user interface (GUI) for the web GIS application.

4. Results
4.1. WUI Maps

The results include ten WUI-P layers and ten WUI-S layers. Each of the ten maps
represents one of the WUI maps generated with a buffer distance ranging from 100 m to
1000 m (with a 100 m interval). The total areas of interface and intermix WUI for WUI-P
and WUI-S are shown in Table 2. The results show that the area of intermix WUI is greater
than that of the interface WUI at all buffer distances in both WUI-P and WUI-S. For each
structure location dataset, the WUI area initially starts small, increases, and then decreases
as the buffer distance increases. At the 100 m buffer distance, the total WUI for both WUI-P
and WUI-S is below 10,000 km2, and the difference is within 2000 km2. However, as the
buffer distance increases, the gap in area widens with WUI-S consistently being more than
3000 km2 greater in area, peaking at nearly 10,000 km2 more than WUI-P at 500 m and
600 m buffer distances. The total WUI in WUI-P peaks at 12,073.90 km2 at 200 m buffer
distance. The largest area for WUI-S is 19,878.45 km2 at a buffer distance of 500 m. The
larger area defined as WUI in WUI-S is most likely due to the greater number of structures
included as opposed to single addresses, especially in rural areas.
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Table 2. The area of different types of WUI in WUI-P and WUI-S (unit: km2).

Buffer
Distance (m)

Intermix
WUI-P

Interface
WUI-P WUI-P Intermix

WUI-S
Interface
WUI-S WUI-S

100 3403.18 1552.80 4955.98 4201.29 1981.58 6182.88
200 8686.18 3387.73 12,073.90 10,590.12 4434.30 15,024.43
300 7777.51 3172.98 10,950.48 11,904.26 5448.97 17,353.23
400 6139.58 2508.00 8647.58 11,151.68 5584.64 16,736.32
500 7139.12 2768.52 9907.64 13,259.49 6618.96 19,878.45
600 7193.79 2750.59 9944.38 13,031.34 6603.06 19,634.40
700 6923.42 2655.90 9579.32 11,429.46 5842.45 17,271.91
800 7018.06 2658.73 9676.79 10,751.28 5365.80 16,117.08
900 7286.63 2728.69 10,015.32 10,526.75 5191.54 15,718.29
1000 7338.08 2745.20 10,083.28 10,090.48 4854.59 14,945.07

Another important aspect to examine is how many structures fall within the WUI. The
overall total number of structures within the WUI-S is the highest at the 100 m buffer and
decreases as the buffer distances increase (Table 3). The intermix WUI in WUI-S contains
more structures than that in WUI-P at each buffer distance. The number of structures within
intermix WUI-P at each buffer distance behaves somewhat differently than interface WUI-P
and both intermix and interface WUI-S. The main difference is while the total number of
structures starts off high (193,250 structures within intermix WUI-P at 100 m), the number
of WUI-P intermix structures decreases to a minimum of 164,343 structures at 400 m, which
then increases to 178,112 WUI-P intermix structures at 1000 m with some slight fluctuation
as the buffer distance increases.

Table 3. The number of structures within WUI-P and WUI-S.

Buffer
Distance (m)

Intermix
WUI-P

Interface
WUI-P WUI-P Intermix

WUI-S
Interface
WUI-S WUI-S

100 193,205 333,031 526,236 293,055 348,807 641,862
200 194,536 330,912 525,448 286,643 353,281 639,924
300 178,304 320,778 499,082 270,657 348,779 619,436
400 164,343 309,183 473,526 251,476 338,938 590,414
500 169,876 302,770 472,646 250,686 332,990 583,676
600 169,342 297,328 466,670 239,243 323,569 562,812
700 168,044 291,569 459,613 222,348 310,722 533,070
800 172,147 283,491 455,638 215,752 298,227 513,979
900 175,652 278,220 453,872 212,330 290,240 502,570
1000 178,112 272,701 450,813 209,434 281,788 491,222

While the total number of structures within the intermix WUI differ greatly between
WUI-P and WUI-S, the difference in the total number of structures within the interface WUI
is much smaller. With the difference within the intermix WUI ranging between about 31,000
at 1000 m to approximately 100,000 at 100 m, the difference between the total number of
structures within interface WUI-P and WUI-S ranges from just over 9000 at 1000 m to a
maximum of approximately 30,000 at 500 m.

4.2. Map Comparison

The map comparison procedure generated multiple vector datasets representing the
total area that each WUI shared with other types of WUI. Figure 6 shows how each WUI
relates to other types of WUI at 100 m, 500 m, and 1000 m buffer distances around Billings,
Montana. The differences between WUI-P and WUI-S are minor, with WUI-S appearing
to cover more area. This difference is likely due to the inclusion of all structures instead
of just address points. WUI-P and WUI-S have a larger area of WUI than WUI-Z at each
buffer distance except WUI-P at 100 m. This difference is likely due to two factors: the use
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of precise structure location in WUI-P and WUI-S and the use of only housing units when
calculating structure density in each census block in WUI-Z (the WUI-P and WUI-S use
all structure points regardless of their classification). Table A1 includes the area shared
between WUI-P and WUI-S at each buffer distance and along with the area each WUI shares
with WUI-Z. WUI-P and WUI-S may show a more precise WUI location due to exact the
structure points used to define WUI classification rather than the blanket housing density
used to determine WUI-Z classification. Dividing the area shared between WUI-P, WUI-S,
and WUI-Z (Table A1) by the combined area classified as WUI in each pairing produces
the percentage agreement between each WUI. Table A2 includes the percentage of WUI-S
that agrees with both WUI-P and WUI-Z at each buffer distance. Figure 7 illustrates the
percentage agreement at each buffer distance. The percentage agreement between WUI-P
and WUI-S varies between 42.60% and 58.57%. The low percentage agreement values occur
at buffer distances of 400 m, 500 m, and 600 m, and the high percentage agreement values
occur at 200 m and 1000 m. While the percentage agreement between WUI-P and WUI-S did
not drop below 40.00%, the percentage agreement between WUI-P and WUI-Z was always
below 40.00% and the agreement between WUI-S and WUI-Z was never above 30.00%.

4.3. WUI Population Estimates

Performing basic dasymetric population mapping showed that differences between
each buffer level and point dataset were relatively minor (Table 4). Table 4 contains the
results showing the estimated populations in the WUI-P and WUI-S at each buffer level and
WUI-Z within non-WUI, interface WUI, and intermix WUI. In all cases, the point-based
WUI methods encapsulate more of the population within intermix and interface WUI.
However, as the buffer distance increases, the percentage of the total population within the
WUI decreases. Figure 8 illustrates the downward trend of the percentage of population
within the WUI-P and WUI-S at each buffer distance as well as the comparison to the
percentage population within WUI-Z.

Table 4. The estimated population within the WUI.

WUI
Type

Buffer
Distance (m)

Non-WUI
Population

(2010)

Intermix-WUI
Population

(2010)

Interface-WUI
Population

(2010)

Total
Population

(2010)

Percentage
Population in

WUI (2010)

WUI-Z NA 373,358 155,175 460,882 989,415 62.26%

WUI-P

100 224,904 231,378 533,133 989,415 77.27%
200 226,189 232,753 530,472 989,415 77.14%
300 259,835 213,634 515,946 989,415 73.74%
400 289,931 198,440 501,044 989,415 70.70%
500 289,560 206,089 493,766 989,415 70.73%
600 297,209 206,534 485,672 989,415 69.96%
700 305,439 205,615 478,361 989,415 69.13%
800 309,969 211,182 468,265 989,415 68.67%
900 311,752 216,063 461,600 989,415 68.49%

1000 315,182 219,568 454,665 989,415 68.14%

WUI-S

100 222,570 247,920 518,925 989,415 77.50%
200 224,085 245,385 519,945 989,415 77.35%
300 237,006 237,926 514,483 989,415 76.05%
400 255,618 227,877 505,920 989,415 74.16%
500 258,819 231,159 499,437 989,415 73.84%
600 270,419 227,018 491,978 989,415 72.67%
700 287,015 219,728 482,672 989,415 70.99%
800 297,194 220,363 471,858 989,415 69.96%
900 303,113 222,037 464,265 989,415 69.36%

1000 310,007 223,002 456,406 989,415 68.67%
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Figure 6. (a–i) WUI comparison results around Billings, Montana (j) at 100 m, 500 m, and 1000 m
buffer distances and the land cover map (k) in Billings.
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Figure 7. Percentage agreement between different types of WUI.

Figure 8. Percentage of population within each WUI at different buffer distances.

4.4. The Spatial Patterns of WUI

Table 5 lists the global Moran’s I, variance, z-score, and p-value for pa and ps at each
buffer distance for each structure location dataset. In most cases, the results show the
presence of spatial clustering, and it is statistically significant with p-values below 0.1. In
the case of pa for WUI-P, all buffer distances have global Moran’s I values between 0.36
and 0.414 with z-scores between 4.581 and 5.276. The z-scores of ps for WUI-P differ
greatly from those of pa. The global Moran’s I values range from 0.109 to 0.137 and have
z-scores that are between 1.588 and 1.881. With these z-scores, the p-values are all much
less statistically significant. The results for the WUI-P at 100 m, 900 m, and 1000 m buffer
distances are not statistically significant, indicating spatial randomness. The results at



Fire 2022, 5, 129 15 of 23

all other buffer distances for ps of the WUI-P are statistically significant. For the WUI-S
dataset, the global Moran’s I values for pa in the WUI are all statistically significant (p = 0.05
or lower). The global Moran’s I values for different buffer distances range from 0.242 to
0.396 and have z-scores between 3.127 and 4.979. The global Moran’s I values of ps range
between 0.178 and 0.395 with z-scores ranging between 2.436 and 4.895. Nearly all data
points for ps of the WUI-S have p-values below 0.01 except the 100 m buffer data point,
which is just above 0.01. Overall, both WUI-S and WUI-P show some level of clustering.
Even with ps of the WUI-P showing less statistical significance than the other data points
and variables, it was safe to proceed to perform local Moran’s I analysis.

Table 5. Global Moran’s I calculation results with variance, z-score, and p-value.

WUI
Type

Buffer
Distance (m)

Area (pa) Structures (ps)

Moran’s I Variance z-Score p-Value Moran’s I Variance z-Score p-Value

WUI-
P

100 0.360 0.00683 4.581 0.000005 0.109 0.00630 1.602 0.109204
200 0.374 0.00691 4.722 0.000002 0.115 0.00630 1.675 0.093882
300 0.379 0.00677 4.833 0.000001 0.126 0.00649 1.785 0.074324
400 0.393 0.00668 5.027 0.000000 0.124 0.00674 1.733 0.083176
500 0.411 0.00671 5.243 0.000000 0.137 0.00677 1.880 0.060071
600 0.414 0.00670 5.276 0.000000 0.136 0.00675 1.881 0.059932
700 0.408 0.00668 5.213 0.000000 0.126 0.00674 1.753 0.079595
800 0.405 0.00667 5.182 0.000000 0.120 0.00671 1.691 0.090899
900 0.403 0.00666 5.161 0.000000 0.116 0.00670 1.642 0.100559

1000 0.397 0.00665 5.094 0.000000 0.112 0.00669 1.588 0.112349

WUI-
S

100 0.273 0.00685 3.516 0.004380 0.178 0.00650 2.436 0.014866
200 0.288 0.00696 3.669 0.000244 0.196 0.00650 2.655 0.007931
300 0.265 0.00695 3.392 0.000693 0.200 0.00643 2.715 0.006632
400 0.242 0.00693 3.127 0.001769 0.207 0.00648 2.798 0.005140
500 0.243 0.00695 3.128 0.001760 0.222 0.00654 2.967 0.003006
600 0.277 0.00695 3.540 0.000401 0.283 0.00676 3.665 0.000247
700 0.332 0.00694 4.198 0.000027 0.342 0.00698 4.312 0.000016
800 0.370 0.00694 4.661 0.000003 0.386 0.00708 4.802 0.000002
900 0.386 0.00694 4.857 0.000001 0.391 0.00710 4.860 0.000001

1000 0.396 0.00693 4.979 0.000001 0.395 0.00711 4.895 0.000001

The local Moran’s I analysis generated twenty sets of results for each point dataset:
ten for pa and ten for ps. Figure 9 shows the results at 100 m, 500 m, and 1000 m buffer
distances. These were chosen as examples to show how the clusters differ at small, medium,
and large buffer distances. The global Moran’s I values for ps of the WUI-P at the 100 m
and 1000 m buffer distances are not statistically significant (p > 0.1). In the resulting maps,
the dark blue areas represent the low–low (LL) clusters where the values of the percentage
of WUI in the county and its surrounding neighbors are lower than average; and the dark
red represent the high–high (HH) clusters where the values are higher than average for the
county and its neighbors. The counties with lighter colors represent spatial outliers, which
have low values (light blue) or high values (light red) surrounded by neighboring counties
with dissimilar values and are considered statistically significant. For pa, the differences
at each buffer distance are subtle, even between the two datasets. In each map for pa, the
LL clusters are predominantly in the east and the HH clusters in the west. Of the counties
with larger populations in Montana, only Missoula County is classified as HH in all pa
maps with Flathead classified as HH in others. However, some lower population counties
in the western portion of the state are also labeled as HH clusters at various buffer levels,
which may indicate that population is not an important factor. A possible factor that could
be driving the HH clusters is the mountainous terrain in western Montana along with the
LL clusters that occur in the eastern plains. However, several of the LL cluster counties are
those with small populations. In contrast to pa, ps varies much more as the buffer distance
changes. With the smaller buffer distances, more HH clusters appear in the east with very
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few clusters (HH and LL) or outliers (HL and LH) in the west. This could be due to more
individual structures being counted as within the WUI as the 100 m buffer surrounding a
single structure will define that area as WUI due to the structure density threshold being
met. As the buffer distance increases, fewer individual structure/address points will be
included in the WUI.

4.5. A Web GIS Application for Mapping the WUI

The developed web GIS application can be accessed at https://tinyurl.com/2p8rajju
(accessed on 16 July 2022). The GUI for the web GIS is shown in Figure 10. A simple
GUI was used to ensure intuitive usability, giving the user the ability to compare different
WUI maps. The web GIS application includes three linked maps that can show the same
location when a user navigates the map via the zoom or pan tool. All three maps have a
search icon that can be used to find any location. The home icon will return the view to
the default view of the entire state. For the WUI-P and WUI-S maps, a select layer widget
is available that allows the user to show or hide the available layers that include the WUI
layers for all buffer distances as well as the respective structure point data layer that was
used to generate the WUI. The lower three panels contain further information related to
the research and guidelines on how to use the web GIS application.

https://tinyurl.com/2p8rajju
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Figure 9. The local Moran’s I results for WUI-P and WUI-S at 100 m (a–d), 500 m (e–h), and 1000 m
(i–l) buffer distances.
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Figure 10. The WUI in Billings, Montana in the web GIS application.

5. Discussion

The first goal of this study was to use two different structure location datasets to
generate WUI maps with multiple buffer distances in Montana. The generated WUI maps
show how the buffer distance affects the total area of interface and intermix WUI. In the case
of the total area, the patterns of WUI-P and WUI-S related to buffer distance presented in
this study are similar to those shown in a previous study done by Bar-Massada et al. [28] in
some ways but differ in relation to at which buffer distance the highest area of WUI occurs.
We found that the intermix WUI has a greater total area as compared to interface WUI in
our study, which aligns with the findings in the previous study [28]. Another similarity
between the two studies is that the interface WUI area in WUI-P peaks at the same buffer
distance of 200 m. However, the intermix WUI in our study peaks at 200 m, while the
intermix WUI in all study areas in the previous study conducted by Bar-Massada et al. [28]
peaks at larger buffer distances. This difference could be due to the larger area of our
study site. As for the behavior of WUI-S in this study, the peak area for both intermix and
interface WUI occurs at the 500 m buffer and then decreases. Similar to the previous study
conducted by Bar-Massada et al. [28], the smallest area occurs at the 100 m buffer distance.
The trend that appears when examining the number of structures within the WUI as the
buffer distance changes is distinct from the trend in WUI area. The number of structures
that fall within WUI-P and WUI-Z is the greatest at the smallest buffer and decreases as the
buffer size increases. This trend is consistent with the results found in a previous study
conducted by Bar-Massada et al. [28] and a more recent study done by Carlson et al. [39].
We employed the buffer distances used by Bar-Massada et al. in a previous study [28] to
compare the two structure location datasets in WUI mapping. Although buffer distance
will affect the derived WUI, little research has been conducted to examine the ideal buffer
distance for different types of applications in WUI management. Future research needs to
be conducted to further identify the ideal buffer distance for different WUI applications.
For example, we can use historical house loss data and the WUI generated with different
buffer distances to determine the ideal buffer distance for generating WUI maps that can
be used for relevant applications related to house loss.

The results of the map comparison analysis in this study are similar to the find-
ings in the previous study done by Bar-Massada et al. [28] with regard to WUI-P. The
percentage agreement between WUI-P and WUI-Z for Montana is similar to the percent-
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age agreement within the Grand County, Colorado in the previous study conducted by
Bar-Massada et al. [28], which could be related to the similarities in topography, as both
study areas contain mountainous and flat terrains. The percentage agreement between
WUI-S and WUI-Z is lower than that in the previous study [28]. The lower level of agree-
ment between WUI-S and WUI-Z could be due to the larger number of structures included
in the MBF dataset as compared to the Montana address/structure framework dataset.
The increased number of structures would likely have the greatest impact on the rural
areas where outbuildings are included in the MBF dataset but are not in the address point
dataset. It could be possible to refine the MBF data to reduce the number of structures
and include only the structures that could be residential. One potential way to accomplish
this could be to classify each structure in the MBF dataset by performing a spatial join
using the OpenStreetMap (OSM) land use polygon data to determine which structures
could be classified as residential. Then we can eliminate the non-residential structures
and those structures that are identified as residential but are too small (e.g., sheds or other
outbuildings) or too large (e.g., commercial structures or schools) [37]. The abovementioned
procedure could increase the agreement between the WUI-S and WUI-Z as the WUI-Z
dataset structure density is based on housing units and does not consider non-residential
structures. As the Montana address framework dataset does not include a standardized
classification system for all addresses, we can use the OSM land use dataset to determine if
an address point is in a residential polygon and remove all non-residential address points.
This can increase the agreement between WUI-P and WUI-Z. Note that OSM data can be
inconsistent in terms of data quality because OSM is a crowdsourcing project [53]. Thus,
more research on the data quality of OSM data should be conducted if we use OSM data to
improve WUI mapping. Additionally, the population estimation procedure in this study
evenly distributes the population over all structure points within a block group. Thus,
trimming each structure point dataset can also improve the accuracy of the WUI population
estimates. It should be noted that the necessity of the data trimming process depends on
the intent and purpose of the WUI to be generated.

The spatial analysis shows distinct patterns between pa and ps at smaller buffer
distances, and the patterns differ less at larger buffer distances. The spatial patterns for the
two variables at each buffer distance do not differ significantly between WUI-P and WUI-S.
However, the difference between pa and ps within the WUI is apparent. For pa, the LL
clusters are in the eastern portion of Montana, while HH clusters are concentrated in the
western part of the state. These patterns are possibly linked to the population distribution
within the state. These patterns remain mostly constant as the buffer distance increases. In
contrast, the cluster patterns shown for ps are sensitive to the increase in buffer distance.
At smaller buffer distances the HH clusters are predominantly in the east, likely due to the
inclusion of individual structures at those buffer distances. As the buffer distance increases,
fewer HH clusters are identified in the east with more appearing in the western portion of
the state. The greater shift of the clusters could be related to a higher sensitivity of ps due
to the change in the number of structures required to meet the structure density threshold
as buffer distance increases. More research related to the spatial patterns of WUI could
help explain the sensitivity of the cluster patterns.

Lastly, the WUI maps that have been compared in this study may beg the question of
which dataset or buffer distance best represents the location of the WUI. This is a challenging
question as the selection of method or dataset depends on the purpose of the WUI maps
and the availability of relevant data in a study area [7,40]. For example, the homeowners in
Montana may find the WUI-S generated using the MBF with a 100 m buffer distance to be
most useful as the defensible space distance recommended by Montana DNRC [54] is less
than 100 m and a single structure will meet the density threshold for WUI [39]. The WUI-S
(100 m buffer distance) will allow homeowners to easily identify any structure on their
property that may be at risk to wildfire damage. The best buffer distance for community
planners and wildfire managers is 500 m as the number of structures required to meet the
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structure density threshold is closest to the structure density in the WUI definition widely
used for wildfire management or community planning purposes [39].

6. Conclusions

As wildfire risk in populated areas continues to grow, it is essential to have tools
available to aid wildfire-related decision-making. By mapping the WUI, higher-risk areas
can be clearly identified. Understanding what areas are classified as WUI is critical to
keeping people and property safe and reducing wildfire risk through wildfire mitigation,
fuel reduction, public education, and government regulation at various levels. The contri-
butions of this study are as follows. First, this study provides a systematical comparison
of address point data and the MBF dataset in WUI mapping, which can help researchers
and practitioners develop a better understanding of these two types of structure location
data and their pros and cons in WUI mapping. Our results demonstrate that the MBF
dataset works well as a basis for calculating WUI in the same manner as the address point
dataset. While the area calculated as WUI-S and WUI-P is larger and more precise than
that of WUI-Z, there are still some limitations as it is more computationally intensive and
may require some additional expertise to derive point-based WUI. Second, our results can
help researchers and practitioners develop a better understanding of the parameters used
to map the WUI and their impacts on the potential applications of the WUI maps. Lastly,
this study also provides a web GIS application that allows different types of users to access
the WUI maps for different applications. This can help researchers and practitioners better
present and share their WUI maps in different applications. Finally, based on the results of
our state-level study, researchers and practitioners can conduct further research to assess
the variations in the methods and parameters used to map the WUI and the applicability of
the methods at the national scale.
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Appendix A

Table A1. The area shared between different types of WUI (unit: km2).

WUI-Z WUI-P
100

WUI-P
200

WUI-P
300

WUI-P
400

WUI-P
500

WUI-P
600

WUI-P
700

WUI-P
800

WUI-P
900

WUI-P
1000

WUI-Z 5299.1 2068.0 3428.6 3597.0 3549.3 3852.8 3941.0 3937.2 3973.3 4026.5 4030.2

WUI-S
100 2075.9 3870.8 5025.7 4100.6 3392.2 3426.6 3308.6 3161.4 3089.1 3063.4 3009.6

WUI-S
200 3405.0 4402.2 9970.3 8069.6 6287.7 6490.7 6222.8 5858.1 5699.2 5653.8 5533.9

WUI-S
300 3780.7 4283.7 9677.9 9375.1 7323.3 7630.1 7301.9 6850.3 6659.8 6606.7 6457.7

WUI-S
400 3859.2 3983.2 8668.9 8783.4 7628.4 8048.8 7701.8 7226.2 7019.5 6952.6 6789.4

WUI-S
500 4132.8 4009.0 8768.5 8926.3 7827.9 8898.8 8663.7 8131.2 7915.5 7859.8 7673.0

WUI-S
600 4231.0 3865.0 8288.9 8587.1 7712.7 8874.5 9036.7 8584.8 8395.5 8353.9 8158.6

WUI-S
700 4241.3 3648.9 7588.2 8008.9 7428.1 8594.9 8887.9 8744.3 8656.7 8647.4 8454.4

WUI-S
800 4274.2 3526.0 7203.4 7652.5 7226.4 8389.8 8745.1 8708.5 8864.0 8959.9 8797.1

WUI-S
900 4314.0 3460.5 7003.6 7447.0 7093.6 8253.5 8646.8 8655.4 8879.9 9181.0 9115.4

WUI-S
1000 4316.6 3371.8 6746.0 7190.7 6915.8 8049.6 8464.8 8517.8 8777.2 9140.2 9244.9

Table A2. Percent agreement between different types of WUI.

WUI-Z WUI-S
100

WUI-S
200

WUI-S
300

WUI-S
400

WUI-S
500

WUI-S
600

WUI-S
700

WUI-S
800

WUI-S
900

WUI-S
1000

WUI-Z 100.0% 22.1% 20.1% 20.0% 21.2% 19.6% 20.4% 23.1% 24.9% 25.8% 27.1%

WUI-P
100 25.3% 53.3% 28.3% 23.8% 22.5% 19.3% 18.6% 19.6% 20.1% 20.1% 20.4%

WUI-P
200 24.6% 38.0% 58.2% 49.0% 43.0% 37.8% 35.4% 34.9% 34.3% 33.7% 33.3%

WUI-P
300 28.4% 31.5% 45.1% 49.5% 46.5% 40.8% 39.0% 39.6% 39.4% 38.7% 38.4%

WUI-P
400 34.1% 29.7% 36.2% 39.2% 43.0% 37.8% 37.5% 40.2% 41.2% 41.1% 41.5%

WUI-P
500 33.9% 27.1% 35.2% 38.9% 43.3% 42.6% 42.9% 46.2% 47.6% 47.5% 47.9%

WUI-P
600 34.9% 25.8% 33.2% 36.5% 40.6% 40.9% 44.0% 48.5% 50.5% 50.8% 51.5%

WUI-P
700 36.0% 25.1% 31.3% 34.1% 37.9% 38.1% 41.6% 48.3% 51.3% 52.0% 53.2%

WUI-P
800 36.1% 24.2% 30.0% 32.7% 36.2% 36.6% 40.1% 47.3% 52.4% 53.8% 55.4%

WUI-P
900 35.7% 23.3% 29.2% 31.8% 35.1% 35.7% 39.2% 46.4% 52.2% 55.5% 57.8%

WUI-P
1000 35.5% 22.7% 28.3% 30.8% 33.9% 34.4% 37.8% 44.7% 50.5% 54.6% 58.6%
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