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Abstract
1.	 Wildfires are a significant ecological force in the western United States, reshap-

ing landscapes and ecological communities. However, assessing wildfires' full im-
pact is challenging due to the complexity of fire severity and its varied effects on 
ecological dynamics. Understanding species-specific responses to disturbances 
within their environmental context is essential for predicting cascading ecological 
impacts. Arthropods, including ticks, are particularly sensitive to both abiotic and 
biotic changes, making them especially vulnerable to the impacts of wildfire.

2.	 In this study, we tease apart the complex direct and indirect effects of wildfire 
on tick populations through a combination of field-level measurements and re-
mote sensing. We assessed tick densities across 88 plots within large, protected 
reserves in California following three wildfires in August 2020, using data on soil 
conditions, vegetation cover, tick densities and landscape-level remotely sensed 
variables related to vegetation regeneration and vertebrate recolonization. To 
support a multi-scalar approach, we applied piecewise structural equation models 
to incorporate factors across distinct spatial scales and assess how fire severity 
affects tick populations, with vegetation and habitat structure as mediating vari-
ables, thereby evaluating the relative importance of local drivers within a broader 
landscape context.

3.	 Our results indicate that tick densities were consistently lower in burned plots 
across all vegetation types, with higher fire severity associated with the greatest 
reductions. This direct effect of fire severity outweighed indirect influences such 
as the presence of remaining woody debris, which can support tick populations 
by offering microhabitat for vertebrate hosts following a fire event.

4.	 Landscape-level characteristics—such as proximity to the fire perimeter and the 
percentage of the reserve burned—exerted stronger influences on tick densities 
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1  |  INTRODUC TION

Wildfires are a key ecological force in the western United States, 
reshaping communities and ecosystems (Ayars et  al.,  2023; Jager 
et  al.,  2021; Schoennagel et  al.,  2017). However, the increasing 
frequency and severity of wildfires are outpacing the capacity of 
field-based studies to investigate their ecological impacts, necessi-
tating greater reliance on remotely sensed data (Gibson et al., 2020; 
Saberi & Harvey,  2023; Wan et  al.,  2020). Keeping pace with the 
increasing frequency of wildfire is essential for accurately quantify-
ing the impacts of fire on ecosystems, particularly as ecologists seek 
to understand the long-term effects of both natural and anthropo-
genically amplified fire regimes on ecological processes (Johnstone 
et al., 2016; Nimmo et al., 2022; Wintle et al., 2020).

To fully capture wildfire's effect on ecological communities, it is 
essential to move beyond simple unburned/burned classifications 
and instead consider multiple components of fire regimes, including 
fire intensity (heat energy released), burn extent (total area affected) 
and vegetation responses across diverse landscapes. While these el-
ements are related, they capture distinct aspects of fire behaviour 
and impact. Among them, fire severity—which reflects the magni-
tude of ecological change, particularly to vegetation and soil—plays 
an important role in shaping post-fire ecosystem responses (Jones & 
Tingley, 2022; Keeley, 2009; Kobziar et al., 2024; Nimmo et al., 2022; 
Perry et al., 2011). Importantly, the ecological effects of fire sever-
ity, and other fire regime components, are not uniform: high heat 
intensity may benefit endemic plants adapted to fire-prone habitats, 
while harming invasive species and altering biodiversity (Keeley & 
Pausas, 2022). The size of the burned area can shape faunal com-
munity reassembly, influencing both intraspecific and interspe-
cific competition (Jager et  al.,  2021; McLaughlin et  al.,  2022; Van 
Mantgem et al., 2015). Larger burns may lead to quicker recoloniza-
tion by mobile species, like deer and birds, while smaller burns could 
see more intense competition as both mobile and less mobile species 

recolonize at similar rates (Andrus et al., 2021; Calhoun et al., 2024; 
Diffendorfer et al., 2012; Van Mantgem et al., 2015). Furthermore, 
post-fire vegetation structure can influence the timing of species' 
return to burned areas where some species take advantage of open 
canopy, while others wait for shrub density to increase (Diffendorfer 
et al., 2012; Swan et al., 2015). The diverse and scale-dependent ef-
fects of fire severity complicate efforts to quantify wildfire's impact 
on ecological processes (Harrison et al., 2024).

Given the complexity of wildfire's effects on ecological com-
munities, understanding species-specific responses to disturbances 
within their environmental context is crucial for predicting cascad-
ing ecological impacts (Albery et al., 2021; Grace & Keeley, 2006; 
Johnstone et al., 2016). Arthropods, including ticks, are highly sen-
sitive to both abiotic and biotic shifts, making wildfires a key driver 
of population dynamics in fire-prone regions (Bieber et  al.,  2023; 
Holmquist et al., 2024; Pascoe et al., 2023). Ticks, as generalist feed-
ers with life stage-specific habitat preferences, are integrated into 
complex multi-species communities (Castro & Wright, 2007; Padgett 
& Lane, 2001). Each life stage (larva, nymph, female adult) requires a 
blood meal from vertebrate hosts like rodents, birds and deer (Castro 
& Wright, 2007). The specific temperature and humidity thresholds 
for each stage influence their distribution across the landscape 
(Padgett & Lane, 2001). For example, larvae and nymphs, with less 
robust exoskeletons, are more prone to desiccation and tend to in-
habit moist microhabitats like leaf litter under trees or shrubs, where 
humidity is higher and encounters with small hosts are frequent. In 
contrast, adult ticks are more resistant to desiccation and typically 
reside in taller grasses, where they encounter larger hosts, such as 
deer. These life stage-specific habitat preferences complicate ef-
forts to quantify the overall impact of wildfire on tick populations. 
Previous studies on post-fire tick dynamics have produced mixed 
results (Gleim et al., 2014, 2019; MacDonald et al., 2018; Padgett 
et al., 2009; Pascoe et al., 2020, 2023), likely due to differences in 
fire severity and a limited focus on a subset of possible mechanisms. 

than plot-level fire severity. These broader spatial characteristics likely facilitate 
the movement of vertebrate hosts into unburned areas, promoting tick recoloni-
zation and recovery following wildfire disturbance. Our results suggest that sim-
plified field assessments focusing on key habitat indicators may be effective for 
monitoring tick responses to wildfire.

5.	 Synthesis and applications. This study highlights the importance of integrating mul-
tiple data sources and ecological scales to predict wildfire impacts on ecosystems 
and public health. By advancing our understanding of wildfire effects on ticks, the 
research offers valuable insights for ecosystem management and disease vector 
control. The use of advanced statistical tools, like piecewise structural equation 
models, combined with remotely sensed data, can facilitate rapid assessments 
and targeted monitoring efforts.

K E Y W O R D S
California wildfires, fire ecology, fire severity, structural equation modelling, tick ecology
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To more effectively assess wildfire's impact on tick populations, it is 
essential to consider the complex interplay of physical factors—such 
as climate and soil—and biotic factors, including vegetation and ver-
tebrate hosts. Due to this complexity, a more integrative approach is 
needed to understand how fire severity influences tick populations 
through its cascading effects on habitat, microclimates and ecologi-
cal communities (Kobziar et al., 2024).

In California, wildfires affect diverse ecosystems, including 
grasslands, shrublands and conifer forests, with the severity of 
the fire's impact depending on the ecological context of each sys-
tem (Calhoun et  al.,  2022; Coop,  2023; Roche et  al.,  2024; Steel 
et  al.,  2018). In landscapes with mixed vegetation, evaluating the 
overall impact of wildfire becomes even more complex, making it 
crucial to understand ecosystem-specific recovery processes and 
their downstream effects on ecological communities. While fire 
can destroy understory vegetation in forests, residual canopy cover 
after low- to moderate-severity burns may provide enough shade to 
reduce tick desiccation during the early post-fire period, before the 
understory regrows. In contrast, high-severity fires that remove the 
canopy crown can result in forest structures that resemble shrub-
lands, potentially leading to comparable post-fire tick densities in 
both systems. Similarly, in grasslands, tick populations may remain 
relatively stable after low-intensity burns, as ticks can burrow into 
the soil to avoid high temperatures and vegetation often regrows 
rapidly enough to restore microclimatic conditions before desic-
cation. Variations in fire severity across these landscapes can lead 
to long-term shifts in ecosystem structure and function, influenc-
ing critical processes such as nutrient cycling, predator–prey inter-
actions and food web resiliency (Doherty et al., 2022; McLaughlin 
et al., 2022; Pellegrini et al., 2020). Understanding these landscape-
specific nuances is vital for assessing the broader impacts of wild-
fires, especially in the context of climate change (Jager et al., 2021; 
Kobziar et al., 2024; Van Mantgem et al., 2015).

In this study, we investigate the direct and indirect effects of 
fire severity on tick densities across 88 plots within large, protected 
reserves in California, following three independent wildfire events 
in August 2020. By combining local-level field data with landscape-
level remotely sensed data, we construct a quasi-causal network 
to explore the cascading effects of wildfire on tick populations. To 
evaluate the relative importance of various pathways, we employ 
piecewise structural equation models (SEMs), which are particularly 
suited for handling non-normal and spatially autocorrelated data 
within complex ecological networks (Lefcheck, 2016). Our focus is 
on both local conditions and broader spatial factors, including vege-
tation and potential vertebrate recovery rates, which may influence 
post-fire tick densities. We hypothesize that fire severity (1) directly 
affects tick densities through mortality, and (2) indirectly influences 
ticks by altering vegetation and habitat structures, which reduces 
microhabitat humidity, increases tick desiccation, and diminishes 
shelter for vertebrate hosts—critical blood meal sources for ticks. 
We explore these relationships in the context of reserve-specific 
characteristics, emphasizing vegetation regeneration and the poten-
tial recolonization of mobile hosts, as these factors may significantly 

impact recovering tick populations. This study enhances our under-
standing of how wildfire severity influences tick populations and 
contributes to broader ecological processes, such as species recov-
ery and ecosystem resilience (Kobziar et  al.,  2024). By examining 
the cascading effects of fire on ecological communities, this study 
helps predict long-term impacts on both ecosystem dynamics and 
public health, highlighting the importance of integrating diverse data 
sources and ecological scales in wildfire research.

2  |  MATERIAL S AND METHODS

2.1  |  Wildfire events

In August 2020, an intense thunderstorm hit California, U.S.A., 
peaking at 200 lightning strikes in 30 min (Holmquist et  al.,  2024; 
Keeley & Syphard, 2021). Within 96 h, more than 12,000 lightning 
strikes sparked multiple fires around the northern California region, 
with some of these fires merging into the largest fire complexes in 
California history (CAL Fire, 2022) (Holmquist et al., 2024). Three of 
these fires impacted four large nature preserves in the University 
of California Natural Reserve System (UC NRS): McLaughlin Natural 
Reserve (LNU Lightning Complex, Hennessy Fire), Quail Ridge 
Reserve (LNU Lightning Complex, Hennessy Fire), Hastings Natural 
History Reservation (River Fire) and Landels-Hill Big Creek Reserve 
(Dolan Fire) (Figure 1).

2.2  |  Field-based data collection

2.2.1  |  Plot selection

Following the August wildfires, the UC NRS launched a rapid response 
team to assess the extent and severity of fire effects on protected 
ecosystems concentrated in the far-western region of California. A 
research team from the University of California, Santa Cruz, estab-
lished a network of permanent plots across four reserves: McLaughlin 
Natural Reserve (ML; Lake County), Quail Ridge Reserve (QR; Napa 
County), Hastings Natural History Reservation (HT; Monterey County) 
and Landels-Hill Big Creek Reserve (BC; Monterey County). The goal 
was to create a long-term record of fire effects and vegetation re-
sponses, which could be linked with other ongoing studies and data 
collection (e.g. arthropods (Holmquist et al., 2024)) (Text S1). At each 
reserve, burned and unburned plots were selected across three domi-
nant vegetation types—grassland, shrubland and forest. A total of 30 
plots were targeted (15 per burn status, with 5 replicates per vegeta-
tion type). However, exceptions were made based on the extent of fire 
in different habitat types across the reserves sampled: Quail Ridge had 
only burned plots (n = 15), and Big Creek lacked a full set of unburned 
grassland plots (n = 23). Detailed sampling design and exceptions are 
provided in Table  S1. To minimize environmental variability, plots 
were carefully selected to match conditions as closely as possible be-
tween burned and unburned areas, with attention given to maintaining 
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consistent aspects within each vegetation type (e.g. shrubland on 
southerly aspects, forest on northerly aspects). Specific vegetation 
types (e.g. shrubland or chamise chaparral) and plot locations within 
each reserve are detailed in Figure S1. All plots were 10 m diameter 
circles and separated by at least 40 meters.

2.2.2  |  Plot-level fire severity metrics

Within 3 months of the fire, plot-level assessments were conducted 
by a field team. To assess fire severity on the soil surface, each plot 
was classified into one of five fire severity categories: unburned, 
scorched (litter partially burned), lightly burned (litter charred but 
not fully consumed), moderately burned (litter mostly or entirely 

consumed) and heavily burned (litter and duff completely con-
sumed). We use the soil surface severity category as our primary 
metric for assessing fire severity. For more detailed descriptions of 
the fire severity classifications, refer to Table S2.

2.2.3  |  Plot-level vegetation sampling

Vegetation assessments were made within 3 months of the fire (Fall 
2020) and again during Spring 2021. To evaluate fire severity in terms 
of its effects on vegetation at a fine scale, we assessed the remaining 
live green vegetation and fuels at each plot, including the average diam-
eter of coarse woody debris (cm) and the percentage of bare soil char. 
At 2 and 7 m from the plot center, the diameter of coarse woody debris 

F I G U R E  1  Characterization of landscape conditions in the study region. (a) Wildfire perimeter from CAL FIRE, showing the overlap with 
four UC reserves. (b) Wildfire severity map for each UC reserve based on the differenced normalized burn ratio (dNBR) at 20 m resolution, 
derived from Sentinel-2 imagery. Fire severity was binned by numeric dNBR values.
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was estimated with a tape measure where each piece intersected the 
transect tape. The percentage of bare soil char was estimated based 
on ground-level observations and summed per plot. Additional details 
on variable measurements can be found in Table S3. No permits were 
required for the vegetation and soil sampling.

2.2.4  |  Tick sampling

A total of 88 unique plots were sampled for ticks across two seasons, 
with tick collection occurring on a subset of plots in 2021 (n = 28) 
and the full set of plots in 2022 (n = 88) (see Table S4 for sampling 
schedule). To capture the seasonality of all tick life stages (larvae, 
nymphs, adults) and optimize collection, sampling was conducted 
during the peak months of tick activity, from March through June 
each year (Table S5) (Sambado et al., 2024). This resulted in 250 sam-
pling events (reserve-treatment-vegetation-replicate). At each sam-
pled plot, an 80 m2 area was surveyed using traditional tick sampling 
methods with a 1 × 1 m2 drag cloth (Salomon et al., 2020). Sampling 
began at the center of the plot and proceeded along eight transects 
in the cardinal (north, east, south, west) and intermediate (northeast, 
northwest, southeast, southwest) directions. After each transect, 
the drag cloth was lifted and checked for ticks. Collected ticks were 
removed with fine-tipped forceps and preserved in 70% ethanol for 
later identification in the laboratory. Tick counts were converted 
to density estimates (ticks per 100 m2) using the formula: tick den-
sity = (tick counts/80 m2) × 100. Only plots suitable for tick popula-
tions were sampled; for example, shrubland areas on serpentine rock 
at McLaughlin were excluded due to their habitat unsuitability for 
ticks. Ticks were collected under California Department of Fish and 
Wildlife Scientific Collecting Permits (S-193220002-19357-001).

2.3  |  Remotely sensed data

Tick populations are shaped by both local and landscape factors, 
making it difficult to disentangle the relative contribution of each 
(MacDonald et al., 2022). To address this complexity, we integrated 
fine-scale, field-collected data with coarse-scale, remotely sensed 
measurements to capture variation across spatial scales. Plot-level 
factors were measured within a 10-m diameter sampling area and 
reflect immediate habitat conditions, while landscape-level factors 
were derived from remote sensing data aggregated at the UC re-
serve boundary. This multi-scalar approach enables us to evaluate 
the relative importance of local versus landscape drivers in shaping 
tick population dynamics following a wildfire.

2.3.1  |  Landscape-level fire perimeter metrics

To capture potential recolonization effects of mobile species moving 
from unburned to burned plots, we calculated (a) the percentage of 
area burned per reserve, and (b) the distance from plot centroid to 

fire perimeter. After the focal fire event, we calculated the percent-
age of area burned per reserve using two spatial datasets: the his-
torical California wildfire perimeter (CALFIRE FRAP) and UC reserve 
perimeter (UCNRS GIS) shapefiles. With the ‘sf’ package (Pebesma & 
Bivand, 2023), we calculated the percentage of reserve area burned 
as: (area of intersection/ total area of reserve) × 100. To calculate 
the distance from plot centroid to the edge of the fire perimeter, 
we used the st_distance() function to calculate the Euclidean dis-
tance between the spatial features. We calculated the distance from 
each plot centroid to the nearest edge of the fire perimeter for both 
burned and unburned plots, under the assumption that proximity to 
the fire boundary influences vertebrate host movement. Specifically, 
we hypothesized that plots closer to the fire edge, whether within or 
outside the burn perimeter, would have a greater potential for host 
recolonization (in burned areas) or spillover (in adjacent unburned 
areas). To test this, we included an interaction between distance to 
fire perimeter and treatment status, expecting a steeper negative re-
lationship in burned plots, where recolonization dynamics are more 
pronounced.

2.3.2  |  Landscape-level fire severity metrics

To visualize the potential impact of variability in fire severity within 
a UC reserve, we calculated the differenced normalized burn ratio 
(dNBR) using satellite imagery (Sentinel-2) at a 20-m resolution for 
each reserve (Figure 1) (Calhoun et al., 2024). Normalized burn ratio 
(NBR) is commonly used to estimate fire severity and is calculated 
by (NIR − SWIR)/(NIR + SWIR) (Keeley, 2009). A higher NBR signals 
healthier vegetation compared to a lower NBR. To calculate dNBR, 
an index that assesses relative change in dominant vegetation from 
pre- and post-fire images, for each reserve we downloaded satellite 
images pre-fire (2020-08-01) and post-fire (2020-10-01) and used 
the equation NBRprefire − NBRpostfire. A higher dNBR signals higher 
fire severity compared to a lower dNBR. To classify fire severity for 
figures, we classified dNBR values as unburned (<0.1), low sever-
ity (0.1–0.26), moderate-low severity (0.27–0.43), moderate-high 
severity (0.44–0.65) and high severity (>0.66) using thresholds set 
by Key and Benson (2006). More details regarding image processing 
can be found in Text S2 and Table S6.

2.3.3  |  Vegetation recovery metrics

To evaluate vegetation before and after the wildfire, during the 
peak of tick seasonality, we calculated the Normalized Difference 
Vegetation Index (NDVI) using satellite imagery (Sentinel-2) for each 
plot centroid. Using remote sensing, we standardized vegetation 
measurements across all plots within the same time frame, enabling 
us to capture both pre-fire vegetation—difficult to assess at the plot 
level—and peak greenness during April, which coincides with peak 
tick seasonality. We downloaded Sentinel-2 imagery for each plot 
from three key time points: the spring prior to the fire (April 2020), 
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the first spring post-fire (April 2021) and the second spring post-
fire (April 2022). For each time point, we averaged 2–3 cloud-free 
images acquired during the month of April to generate representa-
tive monthly composites. We calculated NDVI using the equation 
NDVIprefire − NDVIpostfire to compare the vegetation recovery rates 
between the first and second springs post-fire. Additional details 
can be found in Table S6.

2.3.4  |  Climate variability

Ticks spend most of their life span off host and exposed to the ex-
ternal environment, making them highly vulnerable to climate con-
ditions. To account for climate variability across the UC reserves, 
we obtained data from the Parameter-elevation Regression on 
Independent Slopes Model (PRISM Climate Group, Oregon State 
University, https://​prism.​orego​nstate.​edu, data accessed 3 Jan 
2025) with a spatial resolution of ~4 km, which was then extracted to 
the plot coordinates (Abatzoglou, 2013). We used a 30-year normal 
(1991–2020) for mean annual temperature (°C) and vapour pressure 
deficit (kPa) to account for long-term climate trends across the UC 
reserves. To capture short-term vegetation responses to precipita-
tion, we included the average cumulative precipitation during the 
winter quarters (December–March) at the plot level, generating a 
winter-specific total for each plot per year. Specifically, we calcu-
lated the cumulative winter precipitation for the season preceding 
the fire (Winter 2019: December 2019–March 2020), the first winter 
post-fire (Winter 2021: December 2020–March 2021) and the sec-
ond winter post-fire (Winter 2022: December 2021–March 2022) 
for each plot. Due to the ~4 km spatial resolution of the climate data 
and the occurrence of multiple plots within the same grid cell, these 
variables primarily capture variation among UC reserves rather than 
fine-scale differences between individual plots within a reserve.

2.4  |  Statistical analysis

Our statistical analyses were designed to address three main ob-
jectives: (i) to build on prior tick-fire research by testing for overall 
effects of burn treatment on tick densities using a Wilcoxon rank-
sum test; (ii) to disentangle the direct and indirect pathways through 
which fire severity influences tick populations using piecewise 
SEMs; and (iii) to assess whether vegetation recovery rates differed 
among reserves using a paired Wilcoxon test.

2.4.1  |  Ticks

To assess whether fire influences tick densities and to facilitate 
comparison with previous tick-fire studies, we tested for differ-
ences in tick densities across burn treatments. We calculated tick 
density (ticks per 100 m2) with standard error for each burn treat-
ment, vegetation type, year and reserve. A Wilcoxon rank sum test 

was applied to compare tick density distributions in 2022 between 
burned and unburned plots, both across vegetation types and within 
each specific vegetation category. We focus on 2022 data because 
sampling that year was more systematic and consistent across all 
four UC reserves.

2.4.2  |  Direct and indirect impacts of fire on tick 
populations

Wildfires have cascading effects on ecosystems, influencing mul-
tiple taxa and ecological processes in different ways that, in turn, 
may impact tick populations. These complex relationships were in-
vestigated using SEMs, which allow for the investigation of multiple 
different hypothesized pathways—for example, from fire through 
vegetation, microclimate and host habitat—and their relative 
strengths or contributions to tick densities (Grace et al., 2010; Grace 
& Keeley, 2006; Shipley, 1999). Given the non-normal distribution 
and spatial autocorrelation found in ecological data, piecewise SEMs 
(PSEMs) are particularly well suited to our analysis (Lefcheck, 2016). 
Unlike traditional SEMs, which fit a global model, PSEMs allow for 
the evaluation of individual path models (i.e. local estimation).

Based on prior studies of wildfire's effect on ticks (Gleim et al., 2014, 
2019; MacDonald et al., 2018; Padgett et al., 2009; Pascoe et al., 2020, 
2023), we hypothesized the following key pathways: (1) fire severity di-
rectly affects tick densities through burning and mortality, and (2) fire 
severity indirectly affects tick densities by reducing vegetation habitat. 
This reduction in vegetation can influence tick densities in two primary 
ways: increased fire severity leads to (a) an increase in bare soil char, 
which in turn lowers microhabitat humidity, exacerbating tick desicca-
tion and (b) a decrease in coarse woody habitat, which limits habitat 
availability for vertebrate hosts (i.e. rodents, lizards) that ticks depend 
on for blood meals, thereby increasing tick mortality. We also sought 
to account for landscape-level factors that could influence climate suit-
ability and the recolonization of key vertebrate hosts, thereby affecting 
plot-level tick densities following the wildfire. We hypothesized that (3) 
average climate factors—temperature and precipitation—could directly 
influence tick densities; (4) average climate factors could have affected 
the percentage of the reserve burned (e.g. higher temperatures and 
more winter precipitation may contribute to a greater percentage of 
the reserve being burned); and (5) plot-level fire severity metrics may 
be influenced by the distance from plots to fire perimeter, with plots 
located further within the burn areas hypothesized to experience 
higher fire severity. This expectation is based on the tendency for fire 
behaviour to be less intense near perimeter edges where suppression 
efforts (e.g. back burning, establishment of handlines and dropping of 
fire retardant) are concentrated and more intense farther from perime-
ter edges where fuel continuity is greater. However, we recognize that 
this relationship is a generalization and in reality can vary dramatically 
depending on local topography, weather conditions and fuel structure 
(Parkins et al., 2018). We further hypothesize that this relationship may 
be strengthened in reserves where a greater percentage of the area 
was burned, reflecting more extreme or continuous fire spread.
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    |  7SAMBADO et al.

To explore the direct and indirect effects of fire severity on 
tick densities (measured as ticks per 100 m2), we built PSEMs in-
corporating these pathways incorporating data from both 2021 
and 2022. We first built a plot-level model to identify key char-
acteristics of local effects on tick densities. Plot-level predictors 
included field-measured fire severity of surface soil (0–5 scale, 
with 0 representing unburned and 5 indicating high severity), the 
percentage of bare soil char and the average diameter of coarse 
woody debris. The percentage of bare soil char represents the 
pathway linked to microhabitat humidity, while the coarse woody 
debris represents the pathway linked to shelter for vertebrate 
blood meals. Understanding that plot-level conditions are shaped 
by landscape-level factors, we developed a separate landscape-
level model to examine how vertebrate recolonization rates from 
unburned to burned plots are influenced (Grace & Keeley, 2006). 
This model incorporates variables such as the distance from the 
plot centroid to the fire perimeter and the percentage of the re-
serve area that burned. To account for the influence of climate on 
post-fire dynamics and tick populations, particularly through ef-
fects of vegetation recovery, we included key climate variables in 
our landscape-level model. Specifically, we incorporated tempera-
ture normal and recent cumulative winter precipitation. To isolate 
the distinct roles of precipitation, we modelled separate paths for 
its effects: (i) pre-fire precipitation (Winter 2020) was hypothe-
sized to influence the percentage of the reserve burned, while (ii) 
post-fire precipitation (Winters 2021 and 2022) was expected to 
affect post-fire tick densities by shaping vegetation recovery con-
ditions. After assessing the local- and landscape-level effects on 
tick densities, we developed a comprehensive model that incorpo-
rates all the variables mentioned above (i.e. the inclusive model).

Unlike traditional SEMs, piecewise SEMs use local estimation, 
which requires developing a specific equation for each pathway. 
Given the hierarchical structure of the data, including repeated 
measurements of tick densities across plots, we first fit individual 
path models using the random effect structure with the lmer() func-
tion from the ‘lme4’ package (Bates et al., 2015). Depending on the 
structure of each individual path model, we incorporated different 
random effects, such as reserve, treatment or vegetation category, 
to account for variation at appropriate hierarchical levels. For exam-
ple, in the woody debris path model, we included vegetation cate-
gory as a random effect, based on the assumption that grasslands 
contain less woody debris than forests prior to fire. This approach 
allowed us to better account for baseline differences in structural 
habitat features across vegetation types when modelling fire-related 
effects. After fitting individual paths and checking for normality as-
sumptions, we applied the models to the psem() function from the 
‘piecewiseSEM’ package (Lefcheck, 2016). Model fit was evaluated 
using Fisher's C statistic, and we compared nested models using AIC. 
Models with a ΔAIC > 2 were considered distinguishable. For each 
model, we report standardized coefficients for individual paths and 
estimate indirect effects through coefficient multiplication. To visu-
alize SEM results we use the semPaths() function from the ‘semPlot’ 

package (Epskamp et  al.,  2022). See Text  S3 for additional data 
cleaning justifications and Text S4 for full model pathways.

2.4.3  |  Vegetation recovery/mechanism

We hypothesize that ticks surviving the fire depend on sufficient 
vegetation cover to reduce desiccation risk, and that post-fire veg-
etation regrowth facilitates the return of vertebrate hosts necessary 
for future tick blood meals. To assess vegetation recovery and bet-
ter understand the temporal trends of tick densities, we performed 
a Wilcoxon signed-rank test comparing the Normalized Difference 
Vegetation Index (NDVI) before (1 April 2020) and after (4 April 
2021) the fire for each burned plot (e.g. QR-Burn-G-01). This paired 
test accounted for vegetation types in the NDVI calculation, though 
we tested each reserve separately. We performed a similar analysis 
using the dNBR.

2.4.4  |  Software

All statistical analyses were conducted in RStudio version 4.4.1 (R 
Core Team, 2024), with a significance level set at p < 0.05. Data clean-
ing and visualization were conducted with ‘tidyverse’ and ‘ggplot2’ 
packages, respectively (Wickham, 2016; Wickham et al., 2019). The 
analysis was conducted using the following R package versions: gg-
plot2_3.5.2, lme4_1.1-35.3, piecewiseSEM_2.4.0.1, semPlot_1.1.6, 
sf_1.0-20, tidyverse_2.0.0. A list of data sources used in this study is 
provided in the Data Sources section.

3  |  RESULTS

3.1  |  Tick collection summary

A total of 449 ticks were collected post-fire, with over 90% of them 
being adults. Averaged across our study, unburned plots had higher 
tick densities (mean ± standard error, 4.18 ± 0.7) than burned plots 
(1.00 ± 0.2) (Table 1). When plots were aggregated to dominant veg-
etation type across all reserves, in unburned treatments, shrubland 
had the highest density of ticks per 100 m2 (5.10 ± 1.6), followed by 
forest (4.88 ± 1.1) and grassland (2.58 ± 1.2) (Figure  2). In burned 
treatments, forest had the highest density of ticks (1.17 ± 0.3), 
followed by shrubland (0.94 ± 0.4) and grassland (0.83 ± 0.2). On 
burned plots, 2021 had a higher density of ticks (1.22 ± 0.3) than 
2022 (0.91 ± 0.2), suggesting an indirect effect of fire on tick densi-
ties (Figure S2). Reserve-specific mean tick densities can be found 
in Table 2. The Wilcoxon rank-sum test revealed a significant differ-
ence in the distribution of tick densities sampled from 2022 between 
burned and unburned plots (W = 2432, p-value < 0.001). For specific 
vegetation types in 2022, there was a significant difference between 
burned and unburned plots in shrubland (W = 189.5, p-value = 0.02) 
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8  |    SAMBADO et al.

and forest (W = 246, p-value < 0.001) vegetation types, but no sig-
nificant difference in grassland (W = 380, p-value = 0.70).

3.2  |  Wildfire characteristics at the reserve level

The percentage of burned area per reserve was highest at Quail 
Ridge Reserve (97.97%), followed by Landels-Hill Big Creek Reserve 
(91.49%), McLaughlin Natural Reserve (49.69%) and Hastings Natural 
History Reservation (20.73%) (Table 1). The distance from unburned 
plots to fire perimeters was lowest at Landels-Hill Big Creek Reserve 
(mean ± standard error, 87.19 ± 21.2 m), followed by Hastings Natural 
History Reservation (258.34 ± 41.2 m) and McLaughlin Natural 
Reserve (629.88 ± 113.2 m) (Figure  S3). Variation in long-term (30-
year normals) and short-term (during study period) climate variables 
across the reserves can be found in Figure S4.

Reserve Temp VPD Precip % Burned

Mean tick density (SE)

Unburn Burn

McLaughlin (ML) 15.40 12.90 79.04 49.69 3.01 ± 1.0 1.64 ± 0.4

Quail Ridge (QR) 15.69 11.30 58.69 97.97 NA 0.07 ± 0.0

Hastings (HT) 14.30 10.80 80.97 20.73 5.89 ± 1.4 1.93 ± 0.5

Big Creek (BC) 13.93 6.56 108.23 91.49 2.76 ± 0.8 0.36 ± 0.2

Note: Temperature (temp, °C) and vapour pressure deficit (VPD, kPa) represent the 30-year 
normals of annual mean. Precipitation (precip, mm) represents the average cumulative precipitation 
per rain season during our study period.

TA B L E  1  Summary statistics for climate 
variables, percentage of reserve burned in 
August 2020 and mean tick densities (with 
standard error) on unburned and burned 
plots across each reserve (abbreviation).

F I G U R E  2  Post-fire dynamics of vegetation and tick populations at UC reserves. (a) Tick densities (per 100 m2) by reserve and vegetation 
type, colour-coded by burn treatment. Error bars represent standard errors. p-values are from Wilcoxon rank-sum test for 2022 samples 
between burned and unburned vegetation plots. (b) Normalized Differenced Vegetation Index (NDVI) values from Sentinel-2 for all burned 
plots, with data colour-coded by reserve. The dashed line represents the pre-fire median NDVI for each habitat type. NDVI measurements 
were taken annually in the first week of April (see Table S6 for dates). Asterisks indicate significances: ***p ≤ 0.001, *p ≤ 0.05.

TA B L E  2  Mean tick densities (with standard error) by treatment, 
reserve and vegetation type.

Treatment Reserve

Dominant vegetation type

Grassland Shrubland Forest

UNBURN ML 0.9 ± 0.5 NA 5.1 ± 1.9

QR NA NA NA

HT 4.2 ± 2.2 10.2 ± 3.1 4.8 ± 1.9

BC NA 1.4 ± 0.6 4.6 ± 1.7

BURN ML 1.1 ± 0.4 NA 2.1 ± 0.6

QR 0 ± 0 0.1 ± 0.1 0.1 ± 0.1

HT 1.6 ± 0.6 2.2 ± 1.4 2.1 ± 0.6

BC 0.4 ± 0.2 0.6 ± 0.4 0.1 ± 0.1

Note: Reserve names are McLaughlin (ML), Quail Ridge (QR), Hastings 
(HT) and Big Creek (BC).
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    |  9SAMBADO et al.

3.3  |  SEM results

We applied piecewise SEMs to test the direct and indirect effects of 
fire severity on tick densities per plot (Figure 3). The inclusive model 
with both plot- and landscape-level conditions was an adequate fit 
to the data based on Fisher's C statistic (C2 = 4.26, p-value = 0.10), 
with significant direct and indirect effects on tick densities. The 
greatest direct effects on tick densities were the percentage of the 
reserve burned (standardized coefficient = −0.27, p-value < 0.001), 
distance from plot centroid to fire perimeter (standardized coeffi-
cient = −0.23, p-value < 0.001) and soil surface fire severity (stand-
ardized coefficient = −0.21, p-value = 0.001). Variance inflation factor 
analysis indicated high collinearity among the three winter precipi-
tation variables (pre-fire, post-fire year 1 and post-fire year 2). To 
address this and reduce multicollinearity in the model, we averaged 
precipitation across all three winters to generate a single composite 
variable representing overall winter precipitation for each reserve 
(i.e. average cumulative winter precipitation). The cumulative win-
ter precipitation served as a general proxy for regional precipitation 
patterns over the study period. Indirectly, mean temperature and 
cumulative winter precipitation had an effect on tick densities, with 

the strongest path mediated by the percentage of reserve burned 
(standardized coefficient = −0.11 for temperature, standardized co-
efficient = −0.13 for precipitation). The landscape-level (C2 = 4.62, 
p-value = 0.10) and plot-level (C2 = 2.34, p-value = 0.31) models also 
fit the data sufficiently. To note, in the plot-level model, the average 
coarse woody debris had a significant direct effect on tick densities 
(standardized coefficient = 0.17, p-value = 0.03) but was insignificant 
in the full model that contained landscape-level effects (i.e. inclusive 
model). Additional pathway results, including results from the full 
model (landscape and local conditions), can be found in Table S7.

3.4  |  Vegetation recovery rate

The Wilcoxon signed-rank tests indicated that some reserves had sig-
nificantly different NDVI values between pre-fire and post-fire, sug-
gesting that vegetation was significantly different after fire, which 
was expected and represented by a decreased NDVI value (Table 3; 
Figure 2). Reserves that had significant differences of NDVI values in 
the first springcompared to pre-fire spring—indicating significant differ-
ences in vegetation post fire—were Quail Ridge (V = 0, p-value < 0.001), 

F I G U R E  3  The best fit piecewise structural equation models for (a) the main, inclusive model, (b) plot-level model, (c) landscape-level 
model. Standardized regression coefficients are displayed and colour-coded for negative (red), positive (blue) and non-significant (grey) path 
results (p > 0.05). R2 values are included for each path model. Square boxes are colour-coded for variable groupings.
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10  |    SAMBADO et al.

Big Creek (V = 0, p-value < 0.001) and Hastings (V = 8, p-value = 0.002). 
The vegetation differences from pre- and post-fire were not signifi-
cantly different at McLaughlin for Spring 2021 (V = 19, p-value = 0.4) 
or Spring 2022 (V = 32, p-value = 0.70) (Figure S5). Our results for NBR, 
which showed similar patterns, are reported in Table S7.

4  |  DISCUSSION

Understanding how wildfires affect arthropod vectors, such as ticks, 
is inherently challenging due to the complex interplay between these 
organisms, their vertebrate hosts and the environment. Factors such 
as long life cycles, habitat–host preferences, and the numerous direct 
and indirect pathways through which both local- and landscape-level 
elements influence tick populations further complicate this task. The 
variability in fire severity across heterogeneous landscapes only adds 
another layer of complexity. In this study, we adopt a novel approach 
by examining the impact of three wildfires that occurred in August 
2020, spanning multiple vegetation types and regions in California. 
By incorporating both local- and landscape-level characteristics of fire 
severity, we explore how these factors shape tick populations through 
a range of direct and indirect mechanisms. Our primary findings re-
veal that: (1) increased fire severity directly reduces tick densities, (2) 
landscape-level factors, such as distance from the fire perimeter and 
the percentage of reserve burned, have significant and negative ef-
fects on tick populations, which we hypothesize reflect the potential 
for mobile host recolonization from unburned to burned areas, (3) 
burned plots generally exhibit lower tick densities, although this pat-
tern is influenced by vegetation type, with forests showing a signifi-
cantly larger difference in tick densities between unburned and burned 
plots. Through this integrative approach combining field data, remote 
sensing and modelling, we aim to clarify how wildfires influence tick 
populations through both direct and indirect pathways, offering valua-
ble insights for future research and ecological monitoring in fire-prone 
ecosystems facing increasingly frequent and severe wildfires.

Earlier studies on the effect of wildfire on tick populations have 
reached opposing conclusions, with varying methods of measuring 

wildfire impacts and differing ecological contexts. Some research 
has focused on prescribed burns (Gleim et al., 2014, 2019; Padgett 
et al., 2009), while others have examined the consequences of wild-
fires (MacDonald et al., 2018; Pascoe et al., 2020, 2023). In prescribed 
burns, there was not always a significant difference in questing tick 
abundance between burned and unburned plots, possibly due to 
the lower heat intensity and perimeter size typically associated with 
prescribed fires (Padgett et al., 2009). From our SEMs, we found that 
increased fire severity reduced tick densities, likely because more in-
tense fire penetrates deeper into soil refugia, which may protect ticks 
in lower-severity fires (Padgett et al., 2009). Higher levels of soil heat-
ing can influence post-fire recovery dynamics where an increase in 
heat can have lasting effects on the soil itself, altering its chemistry, 
structure and microbiome, all of which can have negative influence 
on vegetation recovery and thus ticks. Additionally, previous stud-
ies have targeted different vegetation types, including grasslands 
(Goodenough et al., 2017), chaparral (Padgett et al., 2009) and oak 
woodland/forests (MacDonald et al., 2018, Pascoe et al., 2020, 2023), 
each with distinct fire ecologies (Calhoun et al., 2022). Our study adds 
a unique perspective by examining the effect of wildfires across four 
distinct regions and multiple dominant vegetation types, allowing us 
to explore how wildfire influences tick populations across different 
ecosystems. We found that burned plots generally had lower tick 
densities than unburned plots within 2 years post-fire, a result that 
aligns with some studies (Pascoe et al., 2020) but contradict others 
(MacDonald et al., 2018). This discrepancy may be attributed to dif-
ferences in vegetation types, local ecological factors, or fire severity. 
Specifically, we found that burned plots in forests had higher tick den-
sities compared to shrublands and grasslands. This could be due to 
the structural characteristics of forests remaining after low-severity 
fires—such as denser vegetation and greater shade—which provide 
better protection from desiccation and create more favourable habi-
tats for vertebrate hosts, crucial for tick survival (Pascoe et al., 2023). 
Conversely, in the grassland sites we see no observable difference 
in tick densities or NDVI values likely because the grasslands of this 
region are primarily composed of annual and fast-growing perennial 
species, compared to shrublands and forest. Although we did not di-
rectly measure vertebrate host abundance, we used coarse woody 
debris as a proxy for potential host presence. Other studies have 
shown that plots with more woody debris or less disturbed habitats 
tend to support higher numbers of mammals, including the dusky-
footed woodrat, a key host for ticks (MacDonald et al., 2018; Pascoe 
et  al.,  2020, 2023). These findings suggest that the availability of 
suitable hosts and habitat structure likely plays a crucial role in shap-
ing tick populations following wildfire, and further research on host 
dynamics in burned and unburned areas would be valuable to better 
understand these interactions.

The mechanisms through which fire severity influences tick 
populations are multifaceted, and our study identifies several key 
factors. Although our plot-level SEM suggested that increased 
coarse woody debris could enhance tick densities, our inclusive 
SEM model highlighted the importance of broader landscape con-
text. Factors such as distance to the fire perimeter (standardized 

TA B L E  3  Wilcoxon signed-rank test comparing post-fire NDVI to 
pre-fire NDVI for paired burned plots.

Reserve
Pre-fire vs.  
1st year spring

Pre-fire vs.  
2nd year spring

ML p-value = 0.43 (V = 19) p-value = 0.70 (V = 32)

QR p-value = <0.001 (V = 0)*** p-value = <0.001 (V = 1)***

HT p-value = 0.002 (V = 8)** p-value = <0.001 (V = 1)***

BC p-value = 0.001 (V = 0)** p-value = <0.001 (V = 0)***

Note: NDVI values were downloaded from the first week of April in 
2020 (pre-fire), in 2021 (1st year spring) and in 2022 (2nd year spring). 
The V statistic reflects the rank sum of differences between post-
fire and pre-fire NDVI values. A V value of 0 indicates that NDVI is 
higher in pre-fire than post-fire. Reserve names are: McLaughlin (ML), 
Quail Ridge (QR), Hastings (HT) and Big Creek (BC). Asterisks indicate 
significances: ***p ≤ 0.001, **p ≤ 0.01.
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    |  11SAMBADO et al.

coefficient = −0.27, p-value < 0.001) and the percentage of the re-
serve burned (standardized coefficient = −0.23, p-value < 0.001) 
emerged as stronger direct influences on tick densities than 
plot-level fire severity (standardized coefficient = −0.21, p-
value = 0.001). Specifically, as the distance from the fire perimeter 
and the percentage of burned area increased, tick densities tended 
to decrease. From our additional analysis (Text S5), we find that 
the negative relationship is driven primarily by unburned plots, 
where tick densities are higher closer to the fire perimeter and 
decline with increasing distance for unburned plots. This pattern 
may reflect the spillover of mobile hosts, such as birds and deer, 
migrating from burned to unburned areas, which could aid in tick 
population recovery. Although this is an interesting finding, the 
relationship between tick densities and distance to the fire perim-
eter should be further evaluated with targeted field collections. 
In general, community reassembly is contingent upon the rate of 
vegetation regeneration and the availability of suitable habitat 
outside the fire perimeter, which will be spatially and temporally 
context dependent (Van Mantgem et al., 2015).

Interestingly, while we hypothesized that climate variables 
like annual mean temperature and cumulative winter precipita-
tion would directly impact tick densities, our SEM results showed 
no significant direct effects of these variables on tick popula-
tions, possibly due to the coarse scale of our evaluation, which 
micro-habitat data loggers could better address. However, both 
climate factors did indirectly affect tick populations through the 
percentage of the reserve that burned (temperature indirect stan-
dardized coefficient = −0.16; precipitation indirect standardized 
coefficient = −0.13). Specifically, reserves with higher average 
annual temperatures and greater cumulative winter precipitation 
tended to have larger areas burned (temperature standardized 
coefficient = 0.48; precipitation standardized coefficient = 0.59). 
This observation may be linked to the increasing hydroclimatic 
variability California has experienced in recent years and linked to 
other large-scale wildfires (Swain et al., 2025), as these conditions 
can intensify fire behaviour and burn severity. The reserves with 
the highest burn percentage—Quail Ridge (~97%) and Big Creek 
(~91%)—showed notable differences in vegetation recovery, as 
indicated by significant changes in NDVI and dNBR, particularly 
in the second spring post-fire (April 2022), when tick sampling 
occurred. In contrast, reserves like McLaughlin (~49% burned) 
and Hastings (~20% burned) showed less pronounced vegetation 
differences pre- and post-fire. These landscape characteristics 
likely explain why our landscape-inclusive SEM model (R2 = 0.23) 
accounted for more variation in tick densities than the plot-only 
model (R2 = 0.17). However, it is important to acknowledge that 
our SEM models have relatively low explanatory power, and we 
encourage future research to refine these models by incorporat-
ing additional factors, such as the historical wildfire regime and 
tick population dynamics at each reserve, to improve the robust-
ness of predictions. Future analyses could benefit from a more 
spatially nuanced approach—such as calculating the percentage 
of burned areas within concentric buffers around each plot—to 

better capture gradients of landscape influence and potential host 
movement patterns. Integrating both field-collected and remotely 
sensed data remains a challenge, but advancing this integration 
could improve the scalability and accuracy of wildfire impact stud-
ies, offering valuable insights into ecosystem management strat-
egies in the context of global change (Gibson et al., 2020; Saberi 
& Harvey, 2023).

While our study offers valuable insights into the effects of 
wildfire on tick populations, several limitations should be noted. 
Accurately measuring fire severity is inherently complex, but 
doing so is critical for capturing the nuanced ecological responses 
to fire. Our plot-level fire severity assessment, while less rigorous 
than established metrics such as the Composite Burn Index (BCI; 
Key & Benson, 2006), offers a practical and scalable alternative 
for comparing conditions across many plots within a limited time-
frame. We believe this index represents a meaningful improve-
ment over simple binary classifications of burned versus unburned 
areas. However, the effectiveness of our fire severity metric could 
have been enhanced by more balanced representation across the 
full severity spectrum, particularly at the lower end (severity lev-
els 1 and 2, indicating scorched or lightly burned conditions). This 
uneven distribution may limit our ability to detect subtle ecolog-
ical responses to low severity burns and could bias our findings 
towards patterns associated with moderate to high fire severity. 
We also acknowledge that using woody debris as a proxy for ver-
tebrate presence is an imperfect assumption. This limitation could 
have been addressed by incorporating camera traps at our plots to 
directly monitor vertebrate activity. Temporal data on the return 
of mobile hosts, such as deer and birds, would have provided valu-
able context for interpreting landscape-level metrics like distance 
to the fire perimeter and percentage of reserve burned. These 
data would have allowed for a more explicit assessment of post-
fire community reassembly—a process known to follow diverse 
trajectories in biodiversity-rich regions (McLaughlin et al., 2022; 
Pascoe et al., 2020; Van Mantgem et al., 2015). While it was ben-
eficial that all wildfires occurred in August, enabling more con-
sistent comparison across reserves, we note that tick activity is 
generally low at this time, which limits our ability to assess imme-
diate fire impacts. This seasonal mismatch may obscure short-term 
responses in tick populations. Extending the temporal scope of 
tick sampling to encompass a full life cycle (approximately 3 years) 
post-fire would offer a more comprehensive understanding of 
population dynamics, including potential lag effects and variation 
across life stages (Bieber et al., 2023). In sum, while our study of-
fers an important step in the wildfire-tick literature, future work 
has many opportunities to refine and expand upon this founda-
tion, as the ecological consequences of wildfire are complex and 
multifaceted.

As wildfire events increase in frequency and severity, outpac-
ing the capacity of field-based monitoring, linking on-the-ground 
data with remote sensing is becoming not only a promising avenue 
of research but also a necessary strategy for effective ecologi-
cal monitoring and management. However, the ecological effects 
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12  |    SAMBADO et al.

of fire are highly context-dependent and often difficult to gen-
eralize, requiring integrative, hypothesis-driven approaches that 
can bridge spatial and temporal scales. Piecewise SEMs provide a 
powerful framework for integration and comparison of the various 
components that are part of ecosystems. Our study demonstrates 
how integrative modelling can build upon prior knowledge to 
streamline future data collection and improve predictive capacity 
in post-fire landscapes. We propose ticks are useful indicator spe-
cies for monitoring ecosystem responses to wildfire, given their 
connectedness to both abiotic (e.g. vegetation structure, micro-
climate) and biotic (e.g. host availability) components of the en-
vironment. Ticks are relatively easy and cost-effective to sample 
across a range of habitats in the western U.S.A., requiring minimal 
equipment and permitting compared to more logistically demand-
ing taxa such as rodents, birds or large mammals. This practicality 
makes ticks a strong candidate for use in long-term monitoring 
programmes, particularly in fire-prone systems where rapid as-
sessment is critical. By selecting indicator species that are ecolog-
ically informative yet logistically feasible to monitor—and pairing 
them with robust, multi-scale statistical tools—we can improve our 
ability to assess ecosystem recovery and guide adaptive manage-
ment in landscapes increasingly shaped by wildfire.

Our findings carry several important management implications 
for a wide range of stakeholders. First, as the use of prescribed 
fire, or ‘good fire’, continues to expand across California as a cost-
effective strategy for reducing fuel loads and controlling invasive 
species, our research highlights an additional public health benefit: 
the potential to reduce tick populations, and in turn, tick-borne dis-
ease risk. This is particularly relevant in regions where tick-borne 
pathogens are common, such as the northern coastal areas and 
Sierra foothills. However, our results indicate that the effectiveness 
of prescribed fire in reducing tick populations is strongly influenced 
by both vegetation type and fire severity. Specifically, we found that 
fire is most effective in shrublands and least effective in forested 
areas. Second, our research demonstrates the value of using tick 
populations as a multi-dimensional indicator of post-fire ecosystem 
recovery. Because tick density can reflect the regrowth of vegeta-
tion and the return (or absence) of wildlife hosts, monitoring tick 
populations, especially with pre-fire baseline data, offers a promis-
ing tool for assessing ecological recovery. This approach is especially 
timely, as California faces increasingly frequent, severe and expan-
sive wildfires with complex, long-term ecological impacts that land 
managers and researchers, much account for.

5  |  CONCLUSIONS

Our study highlights the complex, multi-scale interactions between 
wildfire and tick populations, showing how fire severity, vegeta-
tion type and landscape context collectively shape tick densities in 
post-fire environments. While we identify clear direct effects of fire 
severity, a deeper understanding will require incorporating host dy-
namics and expanding long-term monitoring. Future research should 

prioritize multi-year sampling to capture full tick life cycles, integrate 
tools such as camera traps to track vertebrate hosts, and include 
controls such as climate variability and fire history to improve pre-
dictive models. By combining field-based sampling with scalable 
remote sensing and integrative modelling, this research offers a 
practical framework for monitoring post-fire ecological change. 
Using ticks as a cost-effective indicator species provides a feasible 
strategy for assessing ecosystem recovery across fire-prone land-
scapes. Ultimately, our findings inform both ecological theory and 
applied efforts to manage public health risks and biodiversity in an 
era of increasingly frequent and severe wildfires.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Maps of reserves with plot locations, treatment (burned, 
unburned) and vegetation type. Plot coordinates were jittered by 
0.001 to help with visualizations.
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Figure S2. Tick densities with standard error by vegetation type per 
(A) year, and (B) reserve (shrub = shrubland, grass = grassland).
Figure S3. Euclidean distance (m) from plot centroid to the perimeter 
of fire.
Figure S4. Climate conditions by plot. 30-year normal (1991–2020) 
of mean annual (A) temperature (°C) and (B) vapour pressure deficit 
(vpd, kPA). (C) Cumulative winter precipitation (mm) calculated 
between December through March of each season (2021, 2022).
Figure S5. Normalized difference vegetation index (NDVI) values 
of burned plots per reserve and vegetation type. NDVI values were 
downloaded from the first week of April in 2020 (pre-fire), in 2021 (1st 
year spring), and in 2022 (2nd year spring). See Table S6 for exact dates.
Table  S1. Study design plot replicates. McLaughlin's shrubland 
habitat was located on Serpentine soil, which is considered 
unsuitable for tick populations, and was therefore excluded from this 
analysis. Due to extensive burning at Quail Ridge, no unburned plots 
were established. At Big Creek, there was insufficient unburned 
grasslands to sample. The Big Creek forest area was classified as 
Redwood forest, which can still support tick populations.
Table  S2. Fire severity classifications were assigned to entire plot 
based on soil surface conditions outlined below.
Table S3. Extended definition of plot-level measurements.
Table  S4. Plot coordinates and occurrence of tick sampling. ‘X’ 
indicates whether tick sampling occurred. Vegetation types are 
denoted as follows: G = Grassland, O = Oak woodland, C = Chamise, 
R = Redwood and S = Scrub. Vegetation categories for the analysis 
were grassland (G), shrubland (C, S) and forest (O, R). Plot IDs follow 
the format: reserve-treatment-vegetation-type-replicate.
Table S5. Field sampling schedule. Ticks were sampled by Sambado. 
Plot-level vegetation measurements (Veg) were sampled by the UC 
Santa Cruz field team.

Table S6. Dates for Sentinel-2 imagery used to calculate normalized 
burn ratio (NBR) and normalized difference vegetation index 
(NDVI). Dates were acceptable when there was less than 30% cloud 
coverage.
Table S7. Wilcoxon signed-rank test comparing post-fire NBR to pre-
fire NBR for paired burned plots. NBR values were downloaded from 
the first week of August in 2020 (pre-fire), and October 2020 (post-
fire). The V statistic reflects the rank of sum of differences between 
post-fire and pre-fire NBR values. A V value of 0 indicates that 
NBR is higher (healthier vegetation) in pre-fire than post-fire. 95% 
confidence intervals (CI) are included with 0.05 significance level. 
Reserve names are McLaughlin (ML), Quail Ridge (QR), Hastings (HT) 
and Big Creek (BC).
Table S8. Summary of data sources used in the main and supplemental 
files with respective hyperlinks and references. For datasets with 
gridded spatial resolutions (i.e. 20 m or ~4 km), data were extracted 
at the centroid of each plot.
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