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snowpack and spring flows. Forest thinning treatments contributed modest increases to‘annual
flows, although effects were overshadowed by the influences of climate and wildfire. Warmer
winter temperatures extinguished snowmelt-driven flows in low- and mid-elevation watersheds,

causing a transition from spring snowmelt- to autumn rain-dominated streamflow regimes.

Our results complement prior empirical studies showing that forest treatments can improve
snowpack retention and annual streamflow, and they emphasize the importance of wildfire as a
primary factor governing landscape hydrology. We found that neither land management practices
nor wildfire could completely compensate for the top-down.controls of future climate on
landscape hydrology. Declines in snowpack retention and a regime shift in the timing of peak
flows will have dramatic consequences for forest health, human water resources, and Pacific

salmon populations.

Introduction

Warming temperatures and in€reasing variability in precipitation are causing declines in winter
snowpacks and late-season low flows throughout western North America (Mote et al. 2018, McCabe
and Wolock 2009). Forests and the\ﬁ‘ disturbance processes also mediate snowpack dynamics and
surface water flows (Bisson et al, 2003, Boisramé et al. 2017, Nippgen et al. 2011, Jones et al. 2012).
Yet, it is not clear how the bottom-up influence of vegetation may amplify or impede the top-down
influences of climate, or similarly, how climate effects on forests (Aitken et al. 2008, Germain and
Lutz 2020, MeDowell et al. 2020, Povak and Manley 2024) will interactively mediate future trends

in landscape hydtelogy.
The role of forest disturbances

Historically, frequent wildfire in the dry landscapes of western North America maintained a

complex mosaic of forests and nonforests (Churchill et al. 2013, Hessburg et al. 2016, 2019,
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Hagmann et al. 2021, Povak et al. 2023). Forests were patchy and fractional coverage was low

(Hessburg et al. 2005), and this heterogeneity maintained snowpack late into the spring
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(Dickerson-Lange et al. 2021, Boardman et al. 2025). Forest densification overthe past century
10 has had detrimental impacts on snowpack in some forests as denser tree cover intercepts more

snow in the canopy (Dickerson-Lange et al. 2021, Sun et al. 2022), increases evapotranspiration
15 (ET), and can hasten spring snowmelt via decreased albedo and resemitted fong-wave radiation

17 (Lundquist et al. 2013).

20 Wildfire effects on streamflow dynamics vary in both space and.time (Goeking and Tarboton

22 2022, Biederman et al. 2022). Initially, wildfires increase streamflows by reducing ET and vegetation
24 cover (Seibert et al. 2010, Boisramé et al. 2017, Maxwelland St®Clair 2019, Saksa et al. 2020), but
27 post-fire vegetation responses (e.g., rapid growth.of shrubs)€an offset and even reverse these effects
29 within a short time frame (Goeking and Tarboton 2020).'Severe fire also changes soil hydrophobicity
31 and infiltration (Ebel and Moody 2013, Loiselle et al. 2020), altering hillslope erosion processes,

groundwater recharge, and water quality.
36 The role of forest treatments

39 Forest treatments are underway throughout the mountain West to reduce wildfire risk and

41 bolster climate resilience (WA DNR 2024, USDA Forest Service 2022). Thinning has been

43 shown to increase snowpack retention and reduce ET (Sun et al. 2018, Lundquist et al. 2013,
Dickerson-Lange et al. 2023), which together can increase streamflows (Jones and Post 2004,
48 Saksa etal. 2017)sThus, forest adaptation treatments (i.e., selective thinning to increase climate
50 and wildfire resilience) may have the potential to increase winter snowpack and late-season low
flows (Saksa et al. 2020, Boardman et al. 2025), thereby achieving multiple ecological benefits

55 /“mand mitigating impacts of climate warming on snowpack-dependent species such as Pacific
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salmon (Flitcroft et al. 2016, Fullerton et al. 2022). Thinning treatments also impact forest soils,
but the focus of this study is on the above-ground vegetation dynamics so we did not consider

changes in soil properties in our analyses.

Objectives

Here, we combined a large forest landscape succession and disturbance mo\del (LANDIS-II;
Scheller et al. 2007) with a process-based distributed hydrologyssoil-vegetation model
(DHSVM; Wigmosta et al. 1994) to disentangle effects of forest treatments, vegetation regrowth,
and fire on mountain snowpack and flow regimes in the Eastern.Cascades of Washington. We

addressed three research objectives:

1) Evaluate the interactive effects of climate, wildfire, and forest treatments on future

snowpack and streamflow.

2) Compare several alternative management strategies (thinning, prescribed fire, and wildland

fire use) on landscape hydrolegy over a 100-yr simulation period.

3) Identify the biophysical characteristics and treatment rates in areas with the greatest

N
potential for treatment improvements to snowpack and streamflow.

Methods

Study area

We conducted out study mithe Wenatchee and Entiat sub-basins, a 452,420-ha landscape on the
eastern gslopes of the Cascade Mountains in central Washington State (Fig. 1) with elevations
ranging from,187 m to 2870 m. We used the Hydrologic Unit Codes (HUC) to delineate the
study,domain, with sub-basins (defined as 8-digit HUCs; Seaber et al. 1987) used to define our

study.domain and subwatersheds (HUC12-level) used to subdivide the study area into smaller

Page 4 of 43
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domains for subsequent analyses. The climate is characterized by warm-dry summers, ¢old-wet
winters, and most precipitation falling as snow. Land ownership is primarily public (USDA
Forest Service), with 54% of the study area managed as wilderness or roadless<areas (hereafter,
“wildlands”) and 31% as actively managed forests (Table 1, Fig. 1). The remaining area
comprises industrial timber lands (all privately owned), urban and rural development, and

agricultural lands. ~

Vegetation in the study area is heterogeneous due to steep elevationaligradients, dissected
terrain, and complex disturbance histories (Fig. 1; Povak etal. 2022, Furniss et al. 2022). Dry
forests exist at lower elevations and south-facing slopes‘feature shrub-steppe communities
alongside open canopy ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and Douglas-fir
(Pseudotsuga menziesii Mirb. Franco) forests. These dry forests were historically subject to low-
and mixed-severity fires with intervals of 5-25 years (Everett et al. 2000, Hessburg and Agee
2003, Hessburg et al. 2007). Moist forests exist at mid-elevations and on steep north facing slopes,
dominated by Douglas-fir, western larch (Larix occidentalis Nutt.), western white pine (Pinus
monticola Douglas ex D. Don), an\d grand fir (4bies grandis (Douglas ex D. Don) Lindley). The
moist forests also experienced mixed-severity burns, with a higher percentage (20-25%) of high-
severity and longer fire return intervals of 25-80 years (Hessburg et al. 2005, 2007). Cold forests
in upper elevations are dominated by subalpine fir (4bies lasiocarpa (Hook.) Nutt.), Engelmann
spruce (Piceasengelmannii Parry ex Engelm.), whitebark pine (Pinus albicaulis Engelm.), and
subalpine larch (Larix lyallii Parl.). Cold forests here experienced moderate- and high-severity fires

with return intervals of 75—150 years (Povak et al. 2023, 2025, Prichard et al. 2017).

Landscapesimulation modeling

Weused LANDIS-II with the NECN v6.8 (Scheller et al. 2011), SCRPPLE v3.2 (Scheller et al.
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2019), and Biomass Harvest v4.0 (Gustafson et al. 2000) extensions to simulate vegetation
dynamics (growth, succession, recruitment, and mortality), wildfire, and climate adaptation
treatments (mechanical thinning, Rx fire, and wildland fire use) over a 100-yr simulation period
(2020-2120). Wildfire and harvest activities were simulated on a 1-yr timestép, with regeneration
in disturbed pixels applied following the disturbance. Forest succession in the absénce of
disturbance was simulated at a 10-yr timestep. We classified the initial landseape into eight land
cover types to delineate zones required for climate inputs and harvesting prescriptions: grassland,
shrubland, hardwood, alpine meadow, dry mixed conifer, moistimixed conifer, cold-moist

conifer, and cold-dry conifer.

Initial vegetation layers were derived from TreeMap/{(Riley*et al. 2021), a raster-based
imputation of forest inventory data (Forest [nventory andAnalysis [FIA], circa 2016), projected to
the 90-m spatial resolution of our model. We linked the'imputed FIA plot codes from TreeMap
with the full FIA database to derive attributes not directly available in the TreeMap tree list (tree
age, understory composition). Overstory vegetation was represented at the species level, and we
grouped understory vegetation intg four functional types (nitrogen (N) fixing resprouters, non-N-
fixing resprouters, non-N-fixing'nonstresprouters, and grass/forbs). In LANDIS-II, vegetation in
each pixel is given as the:amount of biomass per “cohort” (unique species and size class
combinations), with an unlimited potential number of cohorts per pixel (e.g., a simple pixel may

have 100 g/m#of 50-yr 6ld Douglas fir, 150 g/m? of 80-yr old ponderosa pine, 50 g/m? of N-fixing

resproutingsshrubs, and 2 g/m? of grass/forb).
Evaluating the performance of forest landscape models is challenging because model outputs

cannot be distilled into a single metric (e.g., streamflow) that can be compared against empirical

data. Consequently, model performance must be evaluated by comparing model performance
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among multiple metrics that all vary in space and time (biomass trajectories by forest type, area
burned, fire sizes, patch size distributions, etc.). In short, we calibrated and validated the LANDIS-
I model using empirical data (MTBS and FPA-FOD datasets; Eidenshink et al. 2007, Short et al.
2022) and forest growth estimates from the Forest Vegetation Simulator (FVS; Crookston and
Dixon 2005) and found that the LANDIS-II model could reliably simulate forest growth and
wildfire dynamics in the study landscape. Full details regarding model development, calibration,

and validation were documented in Furniss et al. 2022 and 2023.

Future climate forecasts were generated using the MACAvV2-METDATA dataset (Abatzoglou
and Brown 2012). Climate for years 2100-2120 were notavailable'ih the MACA dataset (it ends in
2099), so we performed a random resampling procedureusing years 2080-2099 to extend the
dataset through 2120. We used only the RCP8.5,climate secénario to focus on the effects of

different management and wildfire scenarios rather than on uncertainty in climate forecasts.

Management scenarios

We employed a partial factorial design of treatment tactics including mechanical thinning
(“harvest”), prescribed fire (“Rx”} and wildland fire use (“WFU”) to compare tradeoffs and
synergies between strategies. We designed management scenarios to reflect real-world objectives
for the land ownership and management zones in the study area, and treatment rates were set to

approximate current implementation rates (Table 1).

The four management scenarios were: (1) Wildfire + WFU, (2) Wildfire + Rx fire + WFU,
(3) Wildfire + Harvest, and (4) Wildfire + Harvest + WFU. We also simulated two reference
scenarios to.compare against treatment scenarios: (1) “Grow Out”, a simulation of forest growth
withoutiany wildfire or treatments, and (2) Wildfire Only, which included wildfire and “business-

as-usual” suppression practices (calibrated to suppressed wildfire activity from 1984-2019).



oNOYTULT D WN =

8

AUTHOR SUBMITTED MANUSCRIPT - ERL-121155.R3 Page 8 of 43

We applied different thinning-based mechanical harvest treatments based on the forest type
and land ownership objectives within each of four management zones (Table 1; Fig. 1). These
treatments applied differential cut rates that were based on the cohorts present within each stand
at the point of harvest, allowing treatments to be “customized” to each stand: These treatment
methods have been described in greater detail by Furniss et al. (2023, 2024). Briefly, dry forests
had thinning from below (~90% reduction in surface and ladder fuels) to-achieve fuel reduction
objectives in large treatment patches (20-100 ha in size); moist forests had variable retention
patch cuts (1-3 ha gap size) to increase heterogeneity (~75% mean reduction in density for trees
<120 years old, no removal of older trees); industrial timber lands had clearcutting to maximize

economic returns (100% harvest); and in wildlands, we did noet apply any mechanical treatments.

Simulated harvest treatments occurred at the patch-level (5-20 ha), where patches were
randomly selected and evaluated for harvest eligibility: Patches were developed using an
unsupervised aggregation algorithm that identified spatially contiguous polygons sharing similar
ownership, topographic setting, and potential vegetation. Treatments started in one patch and
would spread to additional patches until the target harvest area was reached. Patches could be
treated multiple times during the 100-yr simulation, with a minimum re-treatment interval set to
prevent patches from being re-treated continuously without allowing for realistic regrowth

between treatment cycles (10 years for dry forests, 30 years for moist forests).

We simulated wildland fire use (WFU) management practices by adjusting the level of
suppressionapplied compared to the baseline Wildfire Only scenario. For the WFU scenarios, we
applied less suppression effort to natural ignitions during mild and moderate weather conditions
in wildlands. In contrast, more suppression effort was applied in urban/rural areas and in the

wildland urban interface. For the Rx fire scenarios, Rx fire was applied to approximately 5,000
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ha/year in all USFS lands, including wildlands and actively managed forests. Additional details

and specific model parameters may be found in Furniss et al. 2023 and 2024.

oNOYTULT D WN =

9 Hydrology modeling

12 We modeled treatment effects on flow regimes by translating annual LANDIS-IT outputs into

14 input layers for the DHSVM (Wigmosta et al. 1994, Furniss et al. 2023, Po\vak et al. 2022). This
resulted in dynamic vegetation surfaces that were updated annually throughout the 100-yr

19 simulation period for four key vegetation parameters: leaf area index-LAl, canopy height (HT),
21 fractional cover (FC), and forest type. For DHSVM inputs that were not available directly from
23 LANDIS-II (HT and FC), we used Forest Inventoryand Analzsis (FIA) data to fit generalized
linear mixed effects models that estimated plot-level HT and FC. The HT model used In(age) and
28 In(biomass) to predict individual tree height with species and forest type as fixed effects, and we
30 calculated plot-level canopy height as the 90 pereentile of tree heights. The FC model used a
third-order polynomial of stand‘biomass, stand age, and elevation to predict fractional coverage,
35 with forest type as a fixed effect. We fit these models using the Ime4 package in R (Bates et al

37 2015, R Core Team 2023). N

The DHSVM model was calibrated using historical climate data from the 1/16° Livneh

42 dataset (2015) in conjunction with empirical observations of snow water equivalent (SWE) from
44 a nearby SNOTEL station (Trinity Snow Telemetry site) and streamflow records for the
Wenatchee and Entiat'sub-basins (USGS gauges 12456500, 1245800) for water years 1997-2003
49 and 1966-1971, tespectively. We chose these water years to isolate periods of streamflow that

51 were minimally impacted by water management (dam releases), upstream water withdrawals
(diversions for agriculture), and winter icing conditions. Model performance was evaluated using

56 "0, Nash Sutcliffe Efficiency (NSE) and Kling-Gupta Efficeinty (KGE) metrics, resulting in NSE =



oNOYTULT D WN =

L o

AUTHOR SUBMITTED MANUSCRIPT - ERL-121155.R3 Page 10 of 43

0.758 and KGE = 0.786 for the Entiat watershed and NSE = 0.796 and KGE= 0.873 for the
Wenatchee watershed. DHSVM was calibrated using current vegetation as high-resolution maps

of historical vegetation for the calibration period do not exist.

Future climate forecasts were derived from the MACAvV2-LIVNEH climate dataset
(Abatzoglou and Brown 2012). Future landscape hydrology was summarized using peak SWE
amount, peak SWE date, monthly flow, total annual flow, and sprifig melt-out date (first snow-
free day in the spring). Snow-based variables were generated as 90-m raster maps and flow
variables were summarized at the HUC12 level. The raster-based hydrologic outputs were

generated at an annual resolution and streamflow by HUC12 was output monthly.

Treatment efficacy

We assessed positive treatment effects on streamflow. by comparing hydrology outputs between
the Wildfire Only scenario and the four alternative future management scenarios. We integrated
these metrics into an overall “treatment efficacy” value by calculating landscape-scale mean
based on area-weighted values for each patch, then calculating the difference in landscape-level
mean between scenarios. Positive\reatment efficacy indicated that a treatment scenario resulted
in better-than-expectédresults across hydrological metrics compared to the Wildfire Only

scenario.

Results

There was considerable interannual variability in future landscape hydrology, but important
trendsremerged.over the 100-yr simulation period (Fig. 2). Across all scenarios, peak snow water
equivalent (SWE) decreased from 2020-2120, with most of that decline occurring during the first

half of the simulation (Fig. 2). Mean annual flows declined until ~2060 then increased from

10
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1

2

z 2060-2120, despite a relatively steady trend in precipitation (Fig. S1). Peak SWE date did not

6 show a sustained shift in either direction, while average spring melt-out date shifted earlier by ~3
7

8 weeks from early-June to mid-May (Fig. 2).

9

:(1) Differences between the Grow Out scenario (no wildfire or treatment) and the Wildfire Only
12

13 scenario highlighted the effects of wildfire on flow regime. In the absence of wildfire, peak SWE
14

15 continued to decline throughout the latter half of the century, whil¢ scenarios involving wildfire
16

:; had relatively stable levels of peak SWE from 2080-2120. The Grow. Out'scenario also had lower
19

20 streamflows compared to Wildfire Only, and that difference. increased over the course of the

21

22 simulation (Fig. 2).

23

;g There was enormous interannual variability in all hydrology tetrics (Fig. S4). Interannual

26

27 fluctuations in SWE and flows were much greater.in magnitude than both the differences between
28

29 scenarios and the long-term trend (Fig.2). Variability in peak SWE date and spring melt-out

30

g ; increased over the simulation period, while variability in peak SWE amount and mean annual flows
33

34 remained relatively constant (Fig. S4)./This variability was reduced, but not eliminated, when

35

36 looking at 10-yr rolling means (F i§2).

37

38

23 Treatment efficacy

41

42 Examining treatment effects further revealed differences among management scenarios.

43

j;' Scenarios involving mechanical harvest produced the greatest SWE and mean annual flow for
46

47 the first half of the simulation period. After an uptick in fire activity around 2060 (Fig. S2),

48

49 however, this trénd shifted and the two scenarios with the greatest high-severity area burned

50

g; (Wildfire Only and Wildfire + Harvest) had the highest SWE and streamflows (Fig.3). Despite
53 y . . .. . o

54 the gradual increase in wildfire activity that we observed among all scenarios, the shifting

55

56 "9, scenario ranking in response to feedbacks in wildfire activity (Furniss et al. 2024, Povak et al.
57

58

59 11
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2023) emphasizes the dominant role of wildfire on hydrologic functioning in this landscape:

At the HUC12-scale, total area treated was positively related to increases in mean annual
flows, although the relationship was weak (R’ = 0.07; Fig. 4). Treating any amount was often
enough to increase flows, but treating at least 50% of the total area was required to reliably
increase flows in some watersheds. This treatment ratio is obviously sensitive to the intensity of
treatments in our simulations, and further work will be required to/examine how treatment area
and intensity may interact to modify the treatment area required to havesatangible impact on
landscape hydrology. Proportion area burned was the strongest predictor of increased flows (R’ =
0.32), while total area burned was also weakly related/Although we did not directly consider fire
severity in this analysis, area burned was positively corfelatedwith proportion of high-severity
(Fig. S2) so it is likely that the subwatersheds with the greatest area burned also burned with at
higher severities. Mean burned per HUC12 was nearly twice the area affected by harvest
treatments (mean area treated per HUC12= 2,200 ha, mean area burned per HUC12 = 5,800 ha;
Fig. 4), causing wildfire to be the primary driver of flows at the landscape scale given the
treatment area and intensity applied in our simulations. Neither elevation nor HUC12 size were

related to treatment effects on streamflow (Fig. 4, bottom row).

Overall treatment €fficacy was highest in dry and moist mixed-conifer vegetation types (Fig.
5), which had the greatest total area and proportion area treated. Treatment efficacy was also
high in hardwood forests despite having low total and proportion area treated, possibly because
these forestsrare primarily occupying riparian habitat and may therefore have a disproportionate
impact omhydrology. Grouping by land ownership type revealed that treatment efficacy was
highest for industrial forests, followed by actively managed federal lands (Fig. 6). These stand-

scale effects did have significant impact on landscape-scale results since private lands covered

12

Page 12 of 43
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only 4% of the landscape (Table 1; Fig. 6). Although treatment efficacy was lower in actively
managed federal forests, they covered a much larger area (31%) and therefore contributed more

to the landscape-level results.

Changes in Seasonal Flow

Monthly hydrographs revealed how changes in temperature and snowpack \dynamics caused
changes in the timing of snowmelt and streamflow throughout the year. We observed a
significant decline in late-season (August — September) streamflows over the course of the
simulation the entire study area, and a shift from snowmelt- to rain-dominated flow regimes in
low- and middle-elevation watersheds (Fig. 7). Peakflows in . upper-elevation watersheds
(greater than ~1,200 m) continued to be driyen by spring snowmelt, but increasing temperatures

and rain-on-snow events led to the emergence of a secondary peak in the fall and lower late-

season flows.

This shift in streamflow regimes was a gradual transition rather than a distinct tipping point.
Thus, we found it useful to examine results by grouping decades relative to the timing of this
transition from a snow- to rain-do\minated streamflow regime. This revealed two distinct
regimes: the early-mid-21% century, where the hydrograph was dominated by spring snowmelt
among all watersheds, and theearly-22" century where peak flows in low- and mid-elevation
watersheds were.driven by/fall rains. The late-215 century was a period of transition, where fall
flows increased steadily among all watersheds and eventually overtook the spring peak at lower
elevations. Below, we further examine projected trends in the seasonal hydrographs during each

of these three periods.

« Early-mid 21% century (2020-2060): The seasonal hydrograph under present-day

climate conditions were characterized by a large, snowmelt-dominated peak in the spring

13
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through early summer (June-July) that was evident across all watersheds in the sub=basins
(Fig. 7). “Harvest” scenarios had subtle, yet still detectable, effects on these trends, with
mechanical treatments conferring a slight increase in spring flows (Fig.4), especially in

actively managed watersheds (see Fig. S5).

Late 215 century (2060-2100): This was a period of transition, with peak flows in low-
and mid-elevation watersheds shifting from spring to fall by thedatter decades of the
century (red and orange lines in Fig. 7). Fall flows increasediin high-elevation
watersheds, but not enough to surpass the snowmelt-driven peak in the spring. There was
a growing divergence between the Grow Out s€enario and Wildfire Only, while the
differences between treatment scenarios remained subtle (Fig. 8) as the relative impacts

of wildfire began to overshadow the effects of mechanical treatments (Fig. 3).

Early 22" century (2100-2120): The shift from spring snowmelt- to fall rain-dominated
streamflow regimes in warmer watersheds was solidified during this period as the fall
peak grew and the spring peak diminished. High elevations remained dominated by a
snowmelt-driven peak in Qle spring, although the fall flows developed into a prominent
second peak (Fig. 7). Positive treatment effects were dwarfed by wildfire influences,

despite contintous,application of mechanical treatments throughout the simulation.

Discussion

Ongoing climate changes are causing widespread declines in snowpack across the western US
(Mote et al. 2018). Our modeling demonstrates how these changes impact snow retention and
streamflows at the landscape scale, and how future wildfire and management scenarios can
mediate top-down climate impacts. We found that in this mountainous, snow-dominated study

region, projected climate trends will result in more winter precipitation falling as rain, earlier

14
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1

2

z snowmelt dates, and an overall reduction in peak SWE and late-season streamflows. Mechanical
6 treatments increased snowpack retention (Fig. 2) and maintained higher spring flows (Figs. 8,

7

8 S5), but these effects were small compared with the impact of wildfire (Fig. 3)4The beneficial

9

1(1) impact of wildfires and thinning on flows grew over time (Figs. 2, 8), but simulated management
:g actions could not offset the effects of warming on the shifting seasonality of flows (Fig. 7).

14

15 Climatic influences drove a shift from snow- to rain-dominated flow regimes, especially for low-
16

17 and mid-elevation watersheds, demonstrating the overriding effects.of climate warming on forest
18

;g landscape hydrology.

21

22 The role of wildfire

23

;g Despite relatively stable levels of annual precipitation ovér the'edming century (Fig. S1), forest

26

27 regrowth and wildfire dynamics shaped trends in'mean annual flows over the course of the

28

29 simulation (Fig. S3). Mean annual flows tracked trends 1 forest biomass, with a decline during the
30

; ; first half of the simulation period as forest biomass accumulated (Figs. 2, S3) followed by an increase
33

34 during the latter half of the simulation as wildfire activity accelerated (Fig. S2) and forest biomass
35

36 began to decline (Fig. S3). The ﬁniing that mean annual flows remained relatively stable under the
37

gg baseline Grow Out scenario underscores the importance of vegetation and disturbance regimges on
40 .

41 streamflow dynamics.

42

43 Evidence for the dominance of wildfire as a driver of future landscape hydrology was evident in
44

22 other results as well. The differences between the Wildfire Only and Grow Out scenarios were

47

48 ultimately far greaterthan differences between active management scenarios (all of which contained
49

50 wildfire), and the proportion area burned was the strongest predictor of improvements to hydrology
51

g g metrics (R?> =0.32; Fig. 4). Together, these results underscore the importance of wildfire as a

54

55 447 nkeystone process in fire-adapted, wildland-dominated landscapes of the western US.

56

57

58

59 15
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While the scenarios with the greatest area burned (Wildfire Only and Wildfire + Harvest) had
the greatest improvements to hydrology metrics, these benefits were achieved at the expense of
other important ecosystem services (e.g., carbon storage), reflecting the inevitability of tradeoffs
in managing for diverse ecosystem services. Recent papers by Furniss et al£(2023, 2024) and

Povak et al. (2022, 2024) explore these tradeoffs in greater detail.

These results provide evidence for the strategic use of wildfire to partially Gompensate for climate
change impacts on snowpack and streamflow (North et al. 2015, 2021,2024; Calkin et al. 2015,
Stephens et al. 2016). A key finding was that hydrology metrics responded positively to area burned,
regardless of whether that area burned was achieved through Rx fire, WFU, or wildfire. Wildfire will
continue to affect far more area than is treatable with mechanicalmethods alone (Churchill et al.
2022, Larson et al. 2022, WA DNR 2022), and wildfire is the dominant driver of vegetation
dynamics and climate adaptation in forests of the Interior West (North et al. 2012, Hessburg et al.
2021, 2022, Stephens et al. 2021, Furniss etal. 2024). Restoring naturally diverse patch size
distributions using mixed- and high-severity fire in subalpine and moist-mixed conifer forests may be
an appropriate target for WFU prac\tices (Hessburg et al. 2007, 2016, 2021), and our results
demonstrate the potential for such practices to improve snowpack retention and late-season

streamflows as well.

Mechanical treatments and wildfire management decisions

Our results suggest that treatments can have beneficial impacts on mountain hydrology if they
are used to increase—rather than decrease—area burned (Reinhard et al. 2008, North et al. 2012,
Young et al. 2019, Thompson et al. 2022). The key to achieving benefits is that fuel reduction
and climate-adaptation treatments are strategically applied to facilitate more wildfire, enabling

managers to let more fires burn while protecting human communities and vulnerable ecosystems.

16



Page 17 of 43 AUTHOR SUBMITTED MANUSCRIPT - ERL-121155.R3

1
2
z Reducing the existing wildfire deficit (Parks et al. 2025) is a key part of climate and wildfire
5 . . . . .
6 adaptation strategies (Schoennagel et al. 2017, North et al. 2015), and intentionally preparing
7
8 landscapes for fire using landscape restoration principles (Hessburg et al., 2015, Stephens et al.,
9
1(1) 2021) can result in more desirable wildfire effects (Taylor et al. 2022, Chamberlain etal. 2024,
:g Shive et al. 2024). If treatments are instead used to increase suppression efficacy.and reduce
14
15 overall acres burned, our results indicate there would be negative consequences for snowpack
16
17 retention and streamflows.
18
19
;? Limitations and generalizability
22
;i The spatial resolution of our model (90-m cells) didmotallow us to account for fine- to meso-
4
;2 scale (<1 ha) variability in canopy gap patterning (sensu Larson and Churchill 2012, Churchill et
27
28 al. 2013, Chamberlain et al. 2023), or to simulate restorative treatments in riparian areas such as
29
30 floodplain restoration and beaver introduction(sezsu Justice et al. 2017, Fullerton et al. 2022).
31
gg Fine-scale heterogeneity and riparian restoratiomshave been shown to mediate snowpack dynamics
34
35 (Lundquist et al. 2013, Sun et al. 2018, Dickerson-Lange et al. 2023, Justice et al. 2017), and it is
36
37 therefore possible that we uderestimatéd treatment effects due to our modeling resolution. This
38
4313 limitation reflects theifundamental tradeoff between resolution and scale that exists in any spatial
41 . .
42 simulation model.
43
44 Another limitation. is that we did not consider wildfire effects on soil infiltration rates in
45
j? DHSVM. Wildfite and thinning treatments do impact soil carbon values in LANDIS-II, but we did
48
49 not use these valties to update the DHSVM soil layers. The purpose of this study was to focus on
50
51 above-ground vegetation dynamics, so we kept our model integration limited to changes in
52
g i vegetationcover and height.
55
56 3 The results of this study are most relevant in fire-adapted forest landscapes with cold winters and
57
58
59 17
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large snowpacks. The importance of snowpack retention is obviously much lower in lands¢apes
without a persistent snowpack, and we would therefore expect treatments and wildfire to have less of
an impact on snowpack and streamflow dynamics in rain-dominated landscapes. We.also recognize
that wildfire is not always an appropriate management tool, and restoring natural wildfire regimes
may be an unrealistic goal due to patterns of dispersed human development and rapidly shifting

climatic conditions. ~

Downstream implications

Forest ecosystems and aquatic species throughout the western United States are dependent on
mountain snowpacks to provide snowmelt late into the summer when precipitation is low and

4
temperatures are high. Human communities,and water resource managers are similarly
dependent on the winter snowpack to serve as a natural reservoir with storage capacity that can
greatly exceed the volume of water stored martificial reservoirs. Foundational changes in the
timing of streamflow, such as those we observed in this study, are likely to have profound
consequences for ecosystems and human.communities that are adapted and accustomed to
snowmelt-derived flow regimes.These changes will increase summer water deficit in forest
ecosystems, reshaping forest elevational zones and negatively impacting fish and wildlife species
that rely on snowmelt and late-season streamflows. This offers a dire warning for Pacific salmon
and coldwater trout species, as snowmelt is of acute importance for maintaining cool stream
temperatures and ‘providing spawning habitat (Mote et al. 2003, Battin et al. 2007, Naik and Jay
2011, Wenger etal. 2011, Falke et al. 2015). The effects of altered streamflow regimes on

intefconnected ecosystems is an important topic for future research as these changes will have

major downstream consequences for ecosystem health and resilience (Bisson et al. 2003).

18
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1

2

2 Conclusions

5

6 Projected warmer winter temperatures will increase the proportion of precipitation'falling as rain,

7

S greatly reducing spring snowpacks and late-season flows. Elevated future wildfire activity may

10

1 offset some of these climate impacts, but neither wildfire nor mechanical treatments is likely to

12

13 forestall a transition from snow- to rain-dominated streamflow regimes in low- and mid-

14

12 elevations in the eastern Cascades by the end of the 215 century. The befiefits of thinning in our

17

18 study were relatively small compared to the overwhelming effects of wildfire, underscoring the

19

20 importance of wildfire as a primary driver of landscape andwatersheddynamics. Our results

21

;g provide support for more widespread use of wildfire in landscape management, and suggest that

;g landscape-scale adaptation treatments involving the restoration of natural wildfire regimes may

26

27 reduce or delay some of the most deleterious effects of warming on future snowpack and

28

29 streamflows.

30
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TABLES

TABLE 1. Management zones and target treatment rates. The wildlands zone was defined as

oNOYTULT D WN =

9 wilderness and roadless areas that are managed with minimal human intervention and

n therefore did not receive any mechanical treatments. Industrial managed, forests were located
on private lands and represented the most intensive management category. Thinning

15 o

16 prescriptions on public lands were applied differently based on real-world management

18 objectives in dry versus moist forests.

Area Area treated/ year

% of mgt
Management zone Ha % of total Ha zone
24 Wildlands 243,556 54% 0 ’ 0%
25 Industrial forests 19,866 4% 667 3%
26 Dry managed forests 83,491 18% 3,361 4%
27 Moist managed forests 59,269 13% 524 1%
28 Other (urban/rural, water, rock) 44,788 10% 0 0%

29 Total 450,970 100% 4,552 1%
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FIGURE 1. Vicinity map and study.area of the Wenatchee and Entiat River subbasins in central

Washington State. The study landscape.is wildlands (54%), with the remainder comprising a mix

of actively managed forests, indlgtrial timber lands, and urban/rural development (left).

Vegetation in the study domainds heterogeneous, spanning from grass and shrub-dominated
vegetation types in the lowlands tosubalpine forests and alpine vegetation at the upper elevations
(right). The thick black lines.in the nested panels denote the boundaries of the Wenatchee and
Entiat sub-basins (HUCS8-level), while the thin grey lines indicate HUC10-level watersheds. The

red perimeter reépresents.aS-km buffer that was included in the simulations to account for edge

effects.
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FIGURE 2. Simulated future stream flow and snowpack dynamics (10 year rolling mean) under an
29 RCP 8.5 emissions scenario for the Wenatchee and Entiat subbasins. Values represent landscape-
31 level averages across the study domain. Units for peak SWE and mean annual flow are in meters,
33 units for the right two panels are day of year. The RCP8.5 scenario without treatments (grey line)
represents a no fire “grow-out” s€enarig; one with neither treatment nor wildfire. Unsmoothed

36 trend lines may be found in Fig. §6 Lings represent simulated hydrologic dynamics under

38 different management scenarios. Differences between scenarios were much smaller than

40 interannual fluctuations'due to intef- and intra-annual climatic variability. Over the 100-yr
simulation period, there wasian/overall decline in peak snow water equivalent (SWE), a two-

43 week shift towards earlier melt-out date, and an increase in mean annual flows.
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FIGURE 3. Differences in hydrology metrics between scenarios, where the Wildfire Only (i.e., the
RCP 8.5 no treatment) scenario was held constant (herizontal line at 0). Each panel corresponds
to the same metrics reported in Fig. 2, butwvalues are differenced with the Wildfire Only scenario.
Values above zero indicate better performanee than no treatment, while values less than zero
indicate poorer performance relative.to the Wildfire Only scenario. All scenarios involving
mechanical treatment or Rx fire performed better than the Wildfire Only scenario for the first half
of the simulation, but relative rankings-changed after 2060 as area burned under Wildfire Only
increased sharply, leading to gteater peak SWE and mean flows in the Wildfire Only scenario.

By the end of the simulation, the two scenarios with the greatest area burned, Wildfire Only and

Wildfire + Harvest, had the best outcomes across hydrology metrics.
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FIGURE 4. Efficacy of harvest treatments (top row) and wildfire (middle row) in terms of mean

annual stream flow (m/unit area/year) for all HUC12 subwatersheds. Harvest-induced changes in

flow are also shown as a function\of watershed area and elevation belt (bottom row). Mean flows

represent differences,in flowbetween scenarios at the simulation midpoint (year 2070). Delta

flow values for the harvest.treatments (top row) represent differences between Wildfire Only and

Wildfire + Harvest scenarios, while delta values for area burned represent differences between

the Grow Out and Wildfire Only scenarios. Solid black lines indicate significant relationships,

gray shading représents the 95% confidence interval.
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FIGURE 5. Efficacy of harvest treatments by vegetation type. Treatment efficacy represents the
potential for mechanical treatments to inerease snowpack retention and water yields, calculated
as the difference between the Wildfire Onlyscenario and the Wildfire + Harvest scenario,
averaged among all hydrology metrics. As scenario differences also include indirect effects of
altered wildfire regimes, treatment efficacy can be non-zero even when treated area was
negligible. Asterisks indicatedegtee of significant difference between the bars (****: p <0.001;
ns: not significant). Fill colors fepresent proportion area treated (area treated / total area per
vegetation class), while border represents total area treated within each vegetation class. Warmer
colors indicating high preportion (or total area) and greens indicating low proportion (or total
area). Treatment@fficacy was highest in dry and moist mixed conifer vegetation types, both of

which had both high proportion area treated and high total area treated.
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25 FIGURE 6. Treatment efficacy by land ownership. Treatmentefficacy represents the potential for

restorative forest treatments to increase snowpack retention and water yields, calculated as the

28 difference between the Wildfire Only scenario and the Wildfire + Harvest scenario. As scenario
30 differences also include indirect effects of altered wildfire regimes, treatment efficacy can be
non-zero even when treated area was negligible. Asterisks indicate degree of significant

33 difference between the bars (****:p. < 0.001; ns: not significant). Fill colors represent proportion
35 area treated (area treated / total area per vegetation class), while border represents total area

37 treated within each vegetation‘class: Warmer colors indicating high proportion (or total area) and
greens indicating low proportion (or total area). Industrial forests (right) had a high proportion

40 area treated despite low total area, while actively managed federal lands (left) had a high

42 proportion area treated and large total area.
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FIGURE 7. Seasonal hydrographs showing monthly mean flows by decade under the climate

change RCP8.5 emissions scenario and Wildfire.Only management scenario. Lines represent

flows in each of the 91 subwatersheds (HUC12-level) in the study domain, colored by mean

watershed elevation. Currently (2020-2030), peak flows occur in the spring for all

subwatersheds, indicating a snow-dominated hydrologic regime. By the end of the simulation

period, however, peak flows in low elevation watersheds (less than approximately ~1,200 m

elevation) occur in the fall, indicating a transition to rain-dominated flow regimes.
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FIGURE 8. Seasonal hydrographs showing monthly mean flows by decade under the RCP8.5

climate scenario for all management scenarios. Elows represent average flow per HUC12 for all

subwatersheds within the Wenatchee and Entiat subbasins. Differences between HUCs are

displayed in Figure 7. Scenario differences were minimal, but differences between all scenarios

that included wildfire and the no disturbance scenario (labelled “Grow Out”) were pronounced.
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