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A B S T R A C T   

Despite the ecological and socioeconomic impacts of wildfires, little attention has been paid to the spatiotem-
poral patterns of nighttime fire activity across the conterminous United States (CONUS). Daytime fire radiative 
power (FRP) detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) was nearly evenly split 
(54% vs. 46%) between inside and outside wildfires from 2003 to 2020. In contrast, 94% of nighttime FRP was 
detected within wildfires, of which 95% was detected within large wildfires (> 2023 ha). Nighttime proportions 
(i.e., the proportion of total summed FRP detected by MODIS at night) were lowest (3%) outside wildfires when 
coincident 1000-hr fuel moistures were highest and vegetation fires were smaller and less intense. As 1000-hr 
fuel moistures decreased, MODIS active fire pixels shifted out of agricultural and prescribed fires and into 
wildfires with higher nighttime per-pixel values of FRP such that nighttime proportions peaked at 29% for the 
largest wildfires. Increases in nighttime proportions within larger wildfires were attributed to increases in 
nighttime persistence whereby under the driest conditions, daytime fire activity detected by MODIS was more 
likely to continue burning with sufficient vigour to be detected again at night. From 2003–2020, MODIS detected 
significant (p < 0.01) increasing trends in nighttime wildfire fire activity, with a +54%, +42% and +21% in-
crease in the annual nighttime sum of FRP, annual nighttime active fire pixel counts and annual mean nighttime 
per-pixel values of FRP, respectively, detected in the latter half of the study period. Nighttime trends were 
corroborated using observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) as well annual 
wildfire statistics reported by U.S. federal, state and local agencies. Moreover, MODIS detected a significant 
positive trend in the nighttime proportion of FRP emitted from wildfires, indicating that in the absence of diurnal 
differences in detection biases, increases in nighttime fire activity since 2003 have outpaced daytime increases. 
However an analysis of MODIS omission rates revealed that increasing nighttime proportions were at least 
partially attributed to a relatively greater improvement in nighttime detection performance compared to the 
daytime for larger wildfires burning during drier conditions. Nighttime fire activity already poses additional risks 
to firefighters and communities, and this work suggests that projected increases in the frequency of large 
wildfires will be accompanied by increases in the extent and intensity of nighttime fire activity.   

1. Introduction 

Vegetation fires are a common global disturbance that shape 
ecosystem patterns and processes, influence terrestrial and atmospheric 
carbon balances, control vegetation structure and distribution and 
modify land surface-atmosphere coupling (Bowman et al., 2009). 
Compared to other vegetation fire types, such as agricultural fires and 
prescribed fires, wildfires in the United States (US) are uniquely classi-
fied because they are unplanned (Gill et al., 2013), either through 

natural, unintentional or malicious ignitions, and are therefore assigned 
firefighting resources to implement a range of suppression strategies 
(Hand et al., 2017; Riley et al., 2018). The conterminous US (CONUS) 
currently resides on the leading edge of an increasing trend in wildfire 
burned area (NICC, 2021), and particularly large wildfires (Stephens, 
2005; Littell et al., 2009; Dennison et al., 2014), that drives suppression 
costs (Abt et al., 2009), threatens property loss (Syphard et al., 2012) 
and compromises firefighter and public health and safety (Cova, 2005; 
Withen, 2015; Roberts and Wooster, 2021). 
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The area burned by wildfires can be reduced to the product of two 
terms: duration and spread rate. Since most studies have concentrated 
on the annual area burned by wildfires within large regions, examina-
tions of wildfire duration have mainly focused on season length. The fire 
activity season length (FASL), or the number of days per year when fires 
are actively burning, is increasing across CONUS (Freeborn et al., 2016). 
Expansions of the FASL coincide with expansions of the fire weather 
season length (FWSL), or the number of days per year when weather 
conditions are most conducive to the ignition and spread of wildland 
fires (Jolly et al., 2015). Expansions in both the FASL and FWSL have led 
to an increase in the number of days per year that wildfires are being 
managed, as evidenced by an increase in the number of days between 
wildfire discovery and control dates (Westerling et al., 2006). Although 
the seasonal duration of regional wildfire activity (i.e., months) is the 
culmination of multiple, temporally overlapping wildfire events burning 
at shorter time scales, the factors affecting individual incident lifetimes 
(i.e., days to weeks) or the length of the diurnal burning period during 
which fires spread most rapidly, typically sometime between 1000 and 
sundown (i.e. hours), have largely remained unexplored. 

In contrast to duration which covers a broad range of temporal 
scales, fire growth rates are more appropriately interpreted at the 
shortest time scales (i.e., hourly to daily). Weather variables such as 
wind speed facilitate fire spread and intensity by improved heat transfer 
to adjacent fuels and by providing oxygen for combustion. Other 
weather factors, such as temperature, humidity and solar insolation, can 
indirectly affect wildfire spread rates through their influence on fuel 
moisture content (Viney, 1991). Fuel moisture content variations are the 
dominant factor in determining whether or not new wildfires will start 
(Chuvieco et al., 2004), and in the absence of wind, fuel moisture con-
tent strongly drives wildfire spread rates (Rossa, 2017). Given that fire 
weather conditions vary over 24-hr periods, they can potentially have 
strong impacts on diurnal variations in fuel moisture content and sub-
sequent fire activity (Williamson et al., 2016). However very few studies 
have focused on characterizing diurnal variations in fire activity. Wil-
liamson et al. (2016) showed that the occurrence of nighttime burning 
across Australia was greatest during periods of the highest fire danger. 
However, this study did not characterize seasonal differences in daytime 
and nighttime fuel moisture nor did it leverage additional information 
about fire size and intensity. 

Despite the complicated ecological and socioeconomic trade offs 
associated with wildfires (Moritz et al., 2014), little attention has been 
paid to nighttime fire activity across CONUS (Little, 2020). Periods of 
low fire behaviour during the nighttime hours provide firefighters with 
opportunities to rehydrate, eat, sleep and lower their core body tem-
peratures (Aisbett et al., 2012; Larsen et al., 2015; Vincent et al., 2018). 
However, if wildfires do not subside at night, even fire camps may not 
offer respite in the face of increasing nighttime smoke production 
(McNamara et al., 2012). Working at night is not uncommon on large 
wildfires (Graham, 2003). Whilst cooler temperatures and higher rela-
tive humidities may enable firefighters to make better progress, night-
time operations take on additional risk due to reduced visibility. Vehicle 
accidents were the second leading cause of wildland firefighter fatalities 
from 1990 to 2006, and although the times of the accidents were not 
reported, the possible effect of darkness and/or fatigue was not dis-
counted (Mangan, 2007). Without accounting for the number of fire-
fighters or the number of hours worked on night shifts, Britton et al. 
(2013) reported that 28.8% of slips, trips and falls and 20.9% of equi-
pment/tools/machinery injuries experienced by US department of 
Interior (DOI) wildland firefighters occurred at night. The dangers of 
unseen hazards such as snags (Dunn et al., 2019) and rolling debris are 
ever present, but may be compounded if a firefighter is injured at night 
when they are more difficult to access, treat and extricate. 

Extreme fire behaviour is possible at night under the driest and 
windiest conditions. Firefighters rely on the ability to recognize 
changing fire environments to avoid entrapments (Page et al., 2019), 
and without the ability to see the motion of the clouds or the smoke 

plume, firefighter safety can be compromised during extreme nighttime 
burning conditions when there are rapid, unexpected changes in fire 
behavior. While rare, firefighter entrapments have occurred at night 
(Page et al., 2019; Bagley and Clements, 2021). To avoid these situa-
tions, firefighters will completely disengage from the fire and may be 
reassigned to help emergency service personnel warn and evacuate 
communities - an inherently more complicated situation at night as 
evidenced by the Chimney Tops 2 fire in Gatlinburg, TN, in 2016 
(Kuligowski et al., 2020). Compared to the day when most people are at 
work or in school, people return to their homes at night. Hence emer-
gency services must have access to accurate census data and addresses 
(Bhaduri et al., 2007; Li et al., 2019) when evacuating residential pop-
ulations during extreme nighttime wildfire events since people may wait 
for official information before making their own decision to evacuate 
when it’s dark (Wong et al., 2020). 

Ultimately, the annual area burned by wildfires across CONUS is the 
result of multiple, individual fires burning at different spread rates and 
intensities through the day and night. As such, more work is needed to 
characterize the diurnal cycle of wildfires and its drivers. In this study, 
we intersect an 18 year time series (2003–2020) of daytime and night-
time Moderate Resolution Imaging Spectroradiometer (MODIS) active 
fire detections across CONUS with a historical database of wildfire pe-
rimeters to differentiate diurnal fire cycles inside and outside of wild-
fires. Furthermore, we use a moderate resolution surface weather 
dataset to explore and characterize seasonal differences in the preva-
lence of wildfires as well as the influence of fuel moisture variations on 
observed fire radiative power (FRP), nighttime persistence, and MODIS 
daytime and nighttime detection performance. Finally, we analyse 
trends in nighttime fire activity detected by MODIS and corroborate 
these trends using observations from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) and US Government interagency wildfire 
statistics. 

2. Methods 

2.1. Data 

Diurnal fire activity across CONUS from 2003 to 2020 was charac-
terized using the Standard MODIS Version 6 Terra and Aqua active fire 
(AF) products (Giglio et al., 2016) obtained from the Fire Information 
for Resource Management System, FIRMS (Davies et al., 2009). Relevant 
attributes for each MODIS 1km AF pixel included latitude and longitude, 
date and time, satellite, day/night flag, Fire Radiative Power (FRP), 
along-scan pixel size, inferred hotspot type and detection confidence. All 
AF pixels labelled as “presumed vegetation fires” were retained 
regardless of detection confidence. Combinations of the satellite and 
day/night flag were used to distinguish the four daily MODIS overpasses 
that occur approximately at 0130, 1030, 1330 and 2230 local time. 
From 20 January 2012 to 2020, the MODIS AF products were supple-
mented with the Visible Infrared Imaging Radiometer Suite (VIIRS) AF 
products generated from the Suomi National Polar-orbiting Partnership 
(S-NPP) satellite (Schroeder et al., 2014). S-NPP VIIRS has 375m spatial 
resolution and provides two daily overpasses approximately at 0130 and 
1330 local time. The Standard VIIRS Version 1 active fire products ob-
tained from FIRMS contained the same AF pixel attributes as MODIS and 
were similarly processed. 

Different vegetation fire types are distinguished from each other by 
the fuels in which they burn, how and why they were ignited, how they 
were managed, and their final size. Unplanned wildfires that typically 
garnered a suppression response were distinguished from other vege-
tation fire types by intersecting AF pixels with wildfire perimeters ≥405 
ha in western CONUS and ≥202 ha in eastern CONUS compiled between 
2003–2018 by the Monitoring Trends in Burn Severity (MTBS) project 
(Eidenshink et al., 2007). To capture smaller wildfires and extend the 
temporal coverage, AF pixels from 2003–2020 were also intersected 
with incident perimeters created via the National Wildfire Coordinating 
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Group (NWCG) Standards for Geospatial Operations (NWCG, 2021) and 
obtained from the National Incident Feature Services (NIFS, 2021). All 
AF pixels were buffered by 1/2 their along-scan pixel size to account for 
increasing pixel sizes with scan angle and geolocation accuracy. At the 
very least, AF pixels were temporally clipped to the year in which the 
wildfire occurred. Where possible AF pixels were restricted to discovery 
and contain dates obtained by matching MTBS and NIFS perimeters with 
records in the Fire Program Analysis Fire Occurrence Database, FPA 
FOD (Short, 2014). Each AF pixel detected inside a wildfire perimeter 
was assigned a fire size class defined by the NWCG, as follows: A & B < 4 
ha; 4 ha ≤ C < 40 ha; 40 ha ≤D < 121 ha; 121 ha ≤ E < 405 ha; 405 ha ≤
F < 2023 ha; 2023 ha ≤ G. Note that NWCG size classes refer to the final 
burned area and not the instantaneous area of flaming and smoldering 
combustion. 

Active fire pixels detected outside of a MTBS or NIFS wildfire 
perimeter were not assigned a specific fire type and are generically 
referred to as “outside wildfires” or “other” vegetation fire types (Ran-
derson et al., 2012). The majority of “other” fire types were likely 
agricultural fires used to remove crop residue (McCarty et al., 2007, 
2009) or prescribed fires used for ecosystem restoration (Ryan et al., 
2013) or fuel hazard reduction (Stephens et al., 2012). As reported by 
Lin et al. (2014), it is possible - if not expected - that some AF pixels 
assigned to “other” fire types may in fact be associated with wildfires 
that were not included in the MTBS or NIFS datasets either because they 
were smaller than the MTBS minimum mapping threshold or the inci-
dent perimeter was never uploaded to the NIFS. 

The near-surface environment coincident with each AF pixel was 
characterized using gridMET - a daily, gridded meteorological dataset 
covering CONUS from 1979 to 2019 (Abatzoglou, 2013). Following 
Jolly et al. (2019), the 1978 version of the National Fire Danger Rating 
System (Bradshaw et al., 1984; Cohen and Deeming, 1985) was used to 
generate a daily, CONUS-wide 4 km gridded climatology of fuel mois-
tures. Large fuel particles with diameters ranging from 7.6 to 20.3 cm 
are referred to as “1000-hr” fuels (Fosberg et al., 1981) and their fuel 
moistures were calculated using the daily maximum temperature and 
minimum relative humidity. Large fuels respond slowly to changes in 
atmospheric moisture and are therefore most suitable for capturing the 
low-frequency seasonality of moisture conditions. In locations such as 
grasslands and agricultural fields where coarse woody debris is sparse or 
absent, the 1000-hr fuel moisture is more indicative of the near-surface 
soil moisture content. Due to geographical variations in temperature and 
relative humidity, the long-term minimum and maximum fuel moistures 
in each grid cell varied across CONUS. Therefore, per Jolly et al. (2019), 
fuel moistures in each grid cell were converted to percentiles based on 
the local climatology such that in each grid cell the 1st percentile 
defined 1% of the locally driest conditions and the 99th percentile 
defined 1% of the locally wettest conditions. Fuel moistures were 
assigned to AF pixels by spatially and temporally intersecting the AF 
products with the 4 km gridded climatology. 

2.2. Analysis 

Analysis of nighttime fire activity across CONUS was mainly based 
upon the MODIS Terra and Aqua observations. The use of VIIRS was rare 
and limited to assessing the MODIS detection performance (Section 
2.2.2) and complimenting the MODIS nighttime trend analysis (Section 
2.2.3). Unless specifically noted, the following methods describe the 
analysis of the MODIS Terra and Aqua AF products. 

2.2.1. Spatiotemporal patterns of nighttime fire activity 
Diurnal fire activity across CONUS and throughout the year was 

characterized by aggregating MODIS daytime and nighttime AF pixels at 
a variety of spatiotemporal scales. Aggregations of AF pixels were 
summarized by summing per-pixel values of FRP (ΣFRP, MW). Admit-
tedly, summing radiant heat release rates has no physical interpretation. 
Rather, observations of FRP should be temporally integrated to yield fire 

radiative energy (FRE, MJ). However, without the ability to fully resolve 
the diurnal cycle, estimating FRE from polar-orbiting observations re-
quires more innovative approaches (Boschetti and Roy, 2009; Vermote 
et al., 2009; Kumar et al., 2011). Here it is simply assumed that ΣFRP is 
proportional to FRE (Freeborn et al., 2011). On occasion ΣFRP was 
decomposed into AF pixel counts, C, and mean per-pixel FRP, FRP, such 
that ΣFRP = C× FRP. Active fire pixel counts have been related to 
burned area (Giglio et al., 2006b) and therefore can be considered in-
dicators of the broad areal extent of fire activity. In contrast, mean 
per-pixel values of FRP are better indicators of local fire behaviour 
characteristics at sub-pixel resolutions. 

Two proportions are most often reported in this work: the nighttime 
proportion (ϕN) and the wildfire proportion (ϕW), both expressed as 
percentages. The former is the proportion of total ΣFRP detected at 
night, and the latter is the proportion of total ΣFRP detected inside 
wildfires. The daytime proportion (ϕD) and the “outside wildfire” or the 
“other” fire type proportion (ϕO) are defined as complementary 
percentages: 

100% = ϕN + ϕD (1)  

100% = ϕW + ϕO (2)  

Low values of ϕ indicate little fire activity relative to the total. For 
example, ϕN < 50% indicates that less ΣFRP was detected at night 
compared to the day, and ϕW < 50% indicates that less ΣFRP was 
detected inside wildfires compared to outside. 

Nighttime and daytime proportions were partitioned into contribu-
tions from inside and outside wildfires, and ϕW and ϕO were partitioned 
into daytime and nighttime contributions. A deliberate notation is used 
to express these tiered proportions: the subscript identifies the second-
ary proportion (i.e., the child) and the superscript identifies the aggre-
gation of AF pixels (i.e., the parent) from which the secondary 
proportion was calculated. Each parent was re-scaled so that the chil-
dren added up to 100%. For example, the wildfire proportion at night is 
expressed as ϕN

W and the nighttime proportion inside wildfires is 
expressed as ϕW

N , which when added to their complements leads to the 
following: 

100% = ϕN
W + ϕN

O (3)  

100% = ϕW
N + ϕW

D (4)  

Fig. 1 illustrates the calculation and notation of the tiered proportions. 
Lastly, large wildfire proportions (ϕW

G ) were calculated as the percentage 
of ΣFRP detected in NWCG size class G relative to the total ΣFRP 
detected inside all wildfires. 

2.2.2. Fuel moisture, nighttime persistence and detection performance 
Diurnal and seasonal differences between vegetation fire types were 

summarized based on the near-surface environmental conditions at the 
times and locations of the AF detections. Cumulative sums and distri-
butions of per-pixel values of FRP were generated as functions of 1000- 
hr fuel moisture percentiles. Nighttime proportions, wildfire pro-
portions, and large wildfire proportions were similarly summarized 
whence AF pixels were aggregated by fuel moisture. 

Although in reality many vegetation fires continue burning through 
the night, areas of flaming and smoldering combustion may not be large 
enough or intense enough at night to be detected by a satellite sensor. In 
this work nighttime persistence has a specific definition: when locations 
with a daytime AF detection were detected again at night. For every 24- 
hr period between 2012 and 2019, the MODIS Terra, Aqua and VIIRS AF 
pixels were projected onto the 4 km gridMET domain to provide one 
daytime and one nighttime detection mask for each sensor. The MODIS 
Terra and Aqua daytime masks were intersected to yield a single day-
time mask indicating the 4km grid cells where both MODIS daytime 
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overpasses detected an AF pixel. The MODIS daytime mask was then 
used to extract 1000-hr fuel moistures. Two separate nighttime masks 
were created for each 24-hr period: one for MODIS indicating the 4 km 
grid cells where either the Terra or Aqua nighttime overpass detected an 
AF pixel, and one for VIIRS. Nighttime masks were clipped to only those 
4 km grid cells containing a MODIS daytime detection. This resulted in 
two datasets, one for MODIS and one for VIIRS, each consisting of 1000- 
hr fuel moistures and a binary response variable indicating whether 
daytime fire activity was detected again at night (i.e., “1”) or not (i.e., 
“0”). All masks generated for each 24-hr period between 2012 and 2019 
were accumulated. Using 1000-hr fuel moistures as the single explana-
tory variable, the probability of nighttime persistence was modelled 
separately for MODIS and VIIRS using logistic regressions fit to AF pixels 
detected inside wildfires, outside wildfires and for all AF pixels detected 
regardless of vegetation fire type. 

To properly interpret MODIS observations of fire activity requires an 
understanding of the MODIS low spatial resolution detection bias, or the 
inability of MODIS to detect smaller, lower intensity vegetation fires 
(Freeborn et al., 2011). The MODIS daytime and nighttime detection 
performance was evaluated relative to the VIIRS daytime and nighttime 
AF detections, respectively, using the same set of masks constructed for 
the analysis of nighttime persistence. Since the MODIS Aqua overpass 
schedule more closely aligns with that of VIIRS, only the MODIS Aqua 
daytime and nighttime masks were utilized to ensure more direct 

comparisons. MODIS Aqua daytime and nighttime masks were clipped 
to those 4 km grid cells containing a VIIRS daytime or nighttime AF 
pixel, respectively. This resulted in two datasets, one for the daytime and 
one for the nighttime, consisting of 1000-hr fuel moistures and a binary 
response variable indicating the 4 km grid cells where MODIS Aqua 
failed to detect an AF pixel coincident with VIIRS (i.e., “1”) or where 
MODIS Aqua successfully detected an AF pixel coincident with VIIRS (i. 
e., “0”). After all masks were accumulated over 8 yrs, the MODIS Aqua 
daytime and nighttime omission rates were modelled as functions of 
1000-hr fuel moistures using logistic regressions fit to AF pixels detected 
inside wildfires, outside wildfires and for all AF pixels detected 
regardless of vegetation fire type. 

The MODIS low spatial resolution detection bias is further compli-
cated by increased pixel sizes at higher scan angles. The MODIS mini-
mum detection threshold increases approximately 10-fold as a function 
of scan angle (Freeborn et al., 2011). Therefore, although smaller and/or 
lower intensity fires may trigger the MODIS AF detection algorithm 
near-nadir where pixel sizes are finer, fires must be larger and/or more 
intense to be detected near the swath edges where pixel sizes are coarser. 
Consequently, the ability of MODIS to detect nighttime persistence at 
any single overpass will depend on the location of the fire within the 
MODIS nighttime swath. Here, however, nighttime persistence was 
evaluated using both the MODIS Terra and Aqua overpasses. Occasions 
when a fire may not have been detected at the edge of the Terra 

Fig. 1. Binary masks at 4 km grid cell resolution of locations across CONUS where from 2003 to 2020 MODIS detected at least one (a) daytime active fire (AF) pixel, 
(b) nighttime AF pixel, (c) AF pixel outside a wildfire, and (d) AF pixel inside a wildfire. Panels (a)–(d) also report proportions of the sum of fire radiative power 
detected during the day (ϕD), during the night (ϕN), outside wildfires (ϕO), and inside wildfires (ϕW), respectively. Daytime and nighttime proportions are 
decomposed into contributions from AF pixels detected outside and inside wildfires, and conversely, proportions outside and inside wildfires are decomposed into 
contributions from AF pixels detected during the daytime and nighttime. 
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nighttime swath will have another opportunity a few hours later to be 
detected during the Aqua nighttime overpass, and vice versa, amelio-
rating the impact of the scan angle associated with a single overpass. 
Whilst VIIRS only offers a single nighttime overpass, increases in pixel 
sizes in the along-scan direction are minimized using a data aggregation 
scheme (Schroeder et al., 2014) thereby mitigating the impact of scan 
angle on the evaluation of nighttime persistence. Moreover, whilst we 
cannot discount the possible impact of scan angle on an individual night, 
nighttime persistence was evaluated over multiple years and thousands 
of nighttime overpasses. As such, the effects of scan angle on the eval-
uation of nighttime persistence will further average out over time if 
MODIS observes ground locations uniformly across the swath. This 
assumption was examined by intersecting the MODIS daytime masks 
with the MOD11A1 (Terra) and MYD11A1 (Aqua) Version 6 Land Sur-
face Temperature and Emissivity Daily Global 1km products (Wan et al., 
2015). Doing so enabled the retrieval of the nighttime scan angles at 
which MODIS detected - and more importantly - didn’t detect nighttime 
persistence. Inspection confirmed that MODIS observed nighttime fire 
activity uniformly across the swath regardless of fire type or fuel mois-
ture conditions, enabling MODIS nighttime persistence and omission 
rates to be interpreted without considering scan angle. 

2.2.3. CONUS-wide trends 
CONUS-wide trends from 2003 to 2020 were fit to the end-of-year 

wildfire statistics compiled by the National Interagency Coordination 
Center (NICC, 2021), which included annual burned area and annual 
wildfire counts from which annual mean wildfire sizes were calculated. 
Trends were fit to the NICC wildfire statistics since the MTBS and NIFS 
datasets did not contain a complete record of all wildfire occurrences or 
burned area. Nevertheless, to corroborate the perimeters used to identify 
AF pixels inside wildfires, annual burned areas were determined from 
the MTBS and NIFS datasets. CONUS-wide trends from 2003–2020 were 
fit to MODIS annual nighttime AF characteristics detected inside known 
wildfires. VIIRS annual nighttime AF characteristics inside known 
wildfires were also summarized between 2012 and 2020 for comparison, 
though trends were not fit to the VIIRS data due to the shortened time 
period. Since MODIS and VIIRS differ in spatial and temporal resolution, 
annual sums of nighttime FRP, annual nighttime AF pixel counts and 
annual nighttime mean per-pixel values of FRP from both sensors were 
normalized to standard anomalies (i.e., z-scores) based on the mean and 
standard deviations calculated from 2012 to 2020. Since large wildfire 
proportions, nighttime persistence and nighttime proportions for MODIS 
and VIIRS were calculated relative to each sensor they shared the same 
scale and did not require standardization. To avoid the influence of 
outliers, the slope and associated p-value of all trends were based on 
Thiel-Sen estimators. 

Trends in nighttime wildfire activity observed by MODIS could be 
affected by two factors. First, due to the bow-tie-effect (Wolfe et al., 
2002), MODIS pixels begin to overlap and may be double counted at 
high scan angles (Freeborn et al., 2014). Since pixels above 40∘ are 
affected by significant off-nadir bias (Giglio et al., 2006a), the fraction of 
AF pixels detected above this threshold, relative to the total annual 
count, was used quantify the possible impact of the bow-tie effect. The 
notion here is that if the relative contribution of AF pixels detected 
above 40∘ is constant, then the influence of double-counting at the swath 
edges can be discounted as a possible factor affecting the annual trends 
in nighttime fire activity. Secondly, nighttime cloud cover over wildfires 
could be decreasing, or increasing, providing satellite sensors with more, 
or less, opportunities to detect nighttime fire activity. To cope with this 
possibility, we utilized the MOD11A1 and MYD11A1 products to 
retrieve the nighttime land surface temperature (LST) at the locations 
where MODIS Terra and Aqua, respectively, detected daytime wildfire 
activity. Unless a clear-sky criteria is met, these products do not provide 
a nighttime LST, and the location with daytime wildfire activity is 
considered obscured at night. If the annual frequency of nighttime 
obscuration is constant, then the effects of cloud cover on the trends in 

nighttime wildfire activity can be discounted. 

3. Results 

3.1. Spatiotemporal patterns of nighttime fire activity 

Between 2003 and 2020 MODIS detected approximately 1.9 million 
AF pixels across CONUS. Daytime AF pixels were widespread and 
accounted for 81% (i.e., ϕD = 81%) of the total ΣFRP detected by MODIS 
emitted from all vegetation fire types (Fig. 1a). Daytime fire activity 
detected by MODIS was nearly evenly split between inside and outside 
wildfires, with ϕD

W = 54% and ϕD
O = 46%. In contrast, nighttime AF pixels 

were rarer and concentrated in western CONUS (Fig. 1b). Although 
MODIS nighttime AF pixels accounted for only 19% of the total ΣFRP 
detected over all vegetation fires (ϕN = 19%), the majority of nighttime 
ΣFRP was detected inside wildfires (i.e., ϕN

W = 94%). As such, the 
CONUS-wide MODIS nighttime proportion inside wildfires (ϕW

N = 28%, 
Fig. 1d) was considerably higher than for other vegetation fire types 
where very little fire activity located outside wildfires was detected 
during the night (ϕO

N = 3%, Fig. 1c). 
Diurnal differences in MODIS AF detections varied spatially as 

evident from Fig. 1 which shows that localized nighttime proportions at 
4 km resolution were zero across much of CONUS. Nighttime pro-
portions outside wildfires were not investigated at a finer spatial scale, 
but nighttime proportions inside wildfires were determined for NWCG 
fire size classes (Fig. 2a). In general, nighttime proportions increased as 
AF pixels shifted from outside to inside wildfires and also with 
increasing wildfire size, ranging from a minimum of 7% in combined 
classes A and B to a maximum of 29% in class G. Nighttime AF detections 
in the largest wildfire size class G had the highest per-pixel values of FRP 
(Fig. 2b) and accounted for 95% of the nighttime ΣFRP detected in all 
wildfires. As such, wildfire size class G accounted for 89% of the 
nighttime ΣFRP detected by MODIS across CONUS regardless of vege-
tation fire type and therefore strongly influenced the overall nighttime 
proportion. 

Interpreting the seasonality of CONUS-wide vegetation fire activity 
was complicated by the fact that monthly detections were composed of a 
variety of vegetation fire types and wildfire sizes burning in different 
locations. Nevertheless, in general, agricultural and prescribed fires 
prevailed across CONUS in the winter and spring while wildfires 
dominated in the summer and fall (Fig. 3a). Monthly CONUS-wide 
nighttime proportions varied through the year as the balance of AF 
pixels shifted into and out of wildfires such that ϕN was lowest during 
the winter and spring and highest during the summer and fall (Fig. 3b). 
Consequently the seasonality of ϕN and ϕW were well synchronized and 
strongly correlated at weekly resolution (r2 = 0.87, n = 52). 

3.2. Fuel moisture, nighttime persistence and detection performance 

The seasonality of 1000-hr fuel moistures at the times and locations 
of MODIS AF detections coincided with the seasonality of wildfire ac-
tivity such that fuel moistures were highest in the winter and spring and 
lowest in the summer and fall. MODIS detected half of the ΣFRP outside 
wildfires when 1000-hr fuel moistures were between the 12th and 51st 
percentiles. In contrast, MODIS detected half of the ΣFRP inside wild-
fires during much drier conditions, when 1000-hr fuel moistures were 
between the 1st and 7th percentiles. Although the fuel moisture distri-
bution in all wildfires was heavily influenced by AF pixels detected in 
the largest size class G, MODIS was nevertheless capable of detecting 
smaller wildfires burning at higher fuel moistures (Fig. 4a). Therefore as 
fuel moistures decreased, not only did fire activity shift from outside to 
inside wildfires, as captured by the increasing wildfire proportion, ϕW, it 
also shifted from smaller to larger wildfires, as captured by the 
increasing large wildfire proportion, ϕW

G (Fig. 4b). 
The CONUS-wide nighttime proportion, ϕN, also increased as 1000- 
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hr fuel moistures decreased, particularly below the 50th percentile 
(Fig. 4b). The increase in ϕN with decreasing fuel moistures is partly 
attributed to a combination of and coupling between higher nighttime 
FRP values and greater nighttime persistence for larger wildfires. Due to 
lower per-pixel values of nighttime FRP, indicating smaller and lower 
intensity areas of combustion, MODIS was least likely to detect night-
time persistence outside of wildfires (Fig. 5a). Above the 50th percentile 
of 1000-hr fuel moistures when most AF pixels were detected outside 
wildfires, nearly all locations where Terra and Aqua detected daytime 
fire activity subsided by nightfall to drop below the MODIS minimum 
detection threshold. In contrast, with higher nighttime per-pixel values 
of FRP, MODIS was most capable of detecting nighttime persistence 
inside wildfires. As fuel moistures decreased and fire activity shifted into 
wildfires, AF pixels composed of larger and more intense areas of 
combustion were more readily distinguished from the non-fire back-
ground and the probability that MODIS detected nighttime persistence 
increased. Ultimately, the probability of MODIS detecting nighttime 
persistence achieved a maximum of 72% inside wildfires burning at the 
lowest fuel moistures, indicating that approximately three-quarters of 4 

km grid cells that contained a MODIS Terra and Aqua daytime detection 
also contained either a MODIS Terra or Aqua nighttime detection. 

Despite only providing a single nighttime observation, VIIRS with its 
finer spatial resolution was more capable of detecting nighttime 
persistence than MODIS (Fig. 5b). For CONUS, the MODIS minimum 
detection threshold at night was ~3 MW for AF pixels with a detection 
confidence of at least 50%. Based on the lowest 0.1% of per-pixel FRP 
values, the VIIRS minimum detection threshold at night was ~1 MW. 
The regions above the MODIS curves in Fig. 5a but below the VIIRS 
curves in Fig. 5b illustrate the MODIS low spatial resolution detection 
bias for different vegetation fire types. Vegetation fires within these 
regions continued burning into the night with sufficient size and in-
tensity to trigger the VIIRS nighttime detection algorithm but were 
incapable of triggering the MODIS nighttime detection algorithm. Hence 
the nighttime ΣFRP emitted by vegetation fires burning within these 
regions was truncated by MODIS due to the omission of AF pixels con-
taining smaller areas of lower intensity combustion burning below the 
MODIS ~3 MW nighttime detection threshold. 

Without the ability to estimate the amount of nighttime ΣFRP 

Fig. 2. (a) Nighttime proportions of the sum of fire radiative power (ΣFRP) detected by MODIS outside wildfires (ϕO
N) and inside wildfires (ϕW

N ) sorted by fire size 
classes defined by the National Wildfire Coordinating Group, NWCG. (b) Nighttime per-pixel values of fire radiative power (FRP) detected by MODIS outside wildfires 
and inside wildfires sorted by NWCG size class. In (b), the boxes represent the interquartile range (IQR), the lower whiskers capture the minimum and the upper 
whiskers capture 1.5 × IQR, with outliers removed. 

Fig. 3. (a) Monthly sums of fire radiative power (ΣFRP) detected by MODIS across CONUS from 2003–2020 separated by whether active fire pixels were located 
inside or outside wildfires. (b) Corresponding seasonal profiles of CONUS-wide wildfire proportions (ϕW) and nighttime proportions (ϕN). 
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truncated by MODIS due to the low spatial resolution detection bias, the 
MODIS Aqua nighttime omission rate was used as a proxy. Compared to 
VIIRS, the nighttime detection performance of MODIS Aqua was poorest 
outside wildfires burning at the highest fuel moistures (Fig. 6a). Above 
the 50th percentile of 1000-hr fuel moistures, MODIS Aqua failed to 
detect more than 97% of the locations outside wildfires where VIIRS 
detected nighttime fire activity. Although the ability of MODIS Aqua to 
detect nighttime fire activity outside wildfires improved slightly over 
the full range of 1000-hr fuel moistures, the omission rate never dropped 
below 0.80. In contrast, MODIS Aqua was exceedingly more capable of 
detecting wildfires burning at night. Moreover, detection performance 
improved as fuel moistures decreased and fires became larger and more 
intense such that at the lowest 1000-hr fuel moistures the MODIS Aqua 
nighttime omission rate inside wildfires dropped to 0.59. MODIS Aqua 
performed best, however, when observing wildfires burning during the 
daytime (Fig. 6b). Although the MODIS Aqua daytime omission rate also 
decreased as 1000-hr fuel moistures decreased, the daytime detection 
performance curve was not parallel with the nighttime detection 

performance curve. Over the full range of 1000-hr fuel moistures, im-
provements in the MODIS Aqua nighttime omission rate were relatively 
greater than improvements in the MODIS Aqua daytime omission rate. 
Whereas from the highest to lowest fuel moistures, the MODIS Aqua 
nighttime omission rate inside wildfires dropped from 0.82 to 0.59, the 
MODIS Aqua daytime omission rate inside wildfires dropped from 0.31 
to 0.17 (Fig. 6b). Hence higher MODIS nighttime proportions, ϕN, at 
lower fuel moistures (Fig. 4b) are at least partially attributed to a non- 
constant relationship between MODIS daytime and nighttime detec-
tion biases as fires grow larger. 

3.3. CONUS-wide trends 

During the MODIS era from 2003–2020, the NICC reported a sig-
nificant (p = 0.03) positive trend of +0.05 Mha/yr in the annual area 
burned by wildfires across CONUS, which tracked well with estimates 
determined from the MTBS and NIFS perimeters used to identify AF 
pixels inside wildfires (Fig. 7a). The increase in burned area was not due 

Fig. 4. (a) CONUS-wide cumulative distributions of the sum of fire radiative power (ΣFRP) detected by MODIS as a function of 1000-hr fuel moisture percentiles, 
grouped by whether active fire pixels were detected outside or inside wildfires sorted by size class. The whiskers indicate the range of fuel moistures over which 
MODIS detected 95% of the ΣFRP, the box captures the interquartile range, and the median line indicates the fuel moisture above and below which MODIS detected 
half of the ΣFRP in each group. (b) CONUS-wide nighttime proportions (ϕN), wildfire proportions (ϕW) and large wildfire proportions (ϕW

G ) as a function of 1000-hr 
fuel moisture percentiles. 

Fig. 5. Probability of (a) MODIS and (b) VIIRS detecting nighttime persistence as a function of 1000-hr fuel moisture percentiles. Given that both MODIS Terra and 
Aqua detected a daytime active fire (AF) pixel in a 4 km grid cell, the logistic regressions indicate the probability of (a) MODIS Terra or Aqua detecting a nighttime AF 
pixel in the same grid cell or (b) S-NPP VIIRS detecting a nighttime AF pixel in the same grid cell. Logistic regressions were built from AF pixels detected inside 
wildfires, outside wildfires and all AF pixels detected regardless of vegetation fire type. The shaded areas capture the 95% confidence interval of the logis-
tic regression. 
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Fig. 6. Assessment of MODIS Aqua omission rates relative to VIIRS as functions of 1000-hr fuel moisture percentiles. A MODIS omission error is classified as a 4 km 
grid cell where VIIRS detected an active fire pixel (AF) but MODIS Aqua did not. Nighttime omission rates in (a) were based on logistic regressions built from AF 
pixels detected inside wildfires, outside wildfires and all AF pixels detected regardless of vegetation fire type. Nighttime and daytime omission rates shown for 
comparison in (b) were based on logistic regressions built from AF pixels detected inside wildfires only. The shaded areas capture the 95% confidence interval of 
the prediction. 

Fig. 7. Annual time-series of year-end CONUS-wide wildfire statistics compiled by the National Interagency Coordination Center (NICC, 2021). Also included for 
comparison are annual burned area estimates obtained from the Monitoring Trends in Burned Severity (MTBS) and National Incident Feature Service (NIFS) pe-
rimeters used to identify active fire pixels inside wildfires. The annual area burned by wildfires (a) and the annual number of wildfires reported by NICC (b) were 
used to calculate annual mean wildfire sizes (c). Trends based on Thiel-Sen estimates (with p-values) are shown in (a)–(c). The correlation between the annual area 
burned by wildfires and annual mean wildfire size is shown in (d). 
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to the number of wildfires, which actually declined (Fig. 7b), but rather 
due to an increase in the mean wildfire size (Fig. 7c), with mean wildfire 
sizes increasing by 32.3% during the latter 9 years of the study period 
(Table 1). Compared to the inverse relationship and poor correlation 
between annual burned area and the annual number of wildfires 
(r2 = 0.15), annual burned area was positively and strongly correlated 
(r2 = 0.87) with annual mean wildfire size (Fig. 7d). Two years in the 
study period illustrate two different ways to achieve the same annual 
burned area: either through numerous small wildfires or fewer but larger 
wildfires. Although the annual area burned by wildfires was nearly 
equivalent in 2006 and 2020 (3.9 and 4.1 Mha, respectively), the 
wildfire size distributions were different. Mean wildfire sizes in 2006 
and 2020 were 40.4 and 69.7 ha, respectively, indicating that the area 
burned in 2020 was due to larger wildfires. 

Based on annual z-scores, MODIS detected a significant (p < 0.01) 
positive trend in nighttime fire activity inside wildfires, with the latter 9 
years showing good agreement with VIIRS. The positive trend in MODIS 
nighttime ΣFRP (Fig. 8a) is attributed to positive trends in both the 
annual AF pixel counts (Fig. 8b) as well as the annual mean nighttime 
FRP per-pixel, FRP (Fig. 8c). For reference, compared to 2003-2011, 
these three nighttime AF characteristics increased by 54%, 42% and 
21%, respectively, over the latter half of the study period (Table 1). 
Moreover, despite the nearly equivalent areas burned by wildfires, the 
annual nighttime ΣFRP was 3.8× higher, the annual number of night-
time AF pixels was 2.5× higher, and the annual nighttime FRP was 1.5×
higher in 2020 compared to 2006, demonstrating the influence of 
wildfire size distributions on retrievals of nighttime active fire charac-
teristics. Since 2003, nighttime persistence has been more readily 
detected by MODIS (Fig. 8d and Table 1), indicating that locations with 
MODIS daytime AF pixels inside wildfires are becoming increasingly 
more likely of being detected again at night due to increased fire size and 
intensity, as evidenced by the increasing nighttime mean per-pixel FRP 
(Fig. 8c). 

Although trends in the nighttime ΣFRP and AF pixel counts could be 
partially attributable to the bow-tie effect, whereby doublets of AF pixels 
were increasingly being detected at the swath edges, this artifact would 
be less likely to affect nighttime FRP, nighttime persistence or the VIIRS 
observations. Nevertheless, an examination of the bow-tie effect 
revealed no significant trend (p < 0.01) in the relative contribution of 
AF pixels detected at scan angles greater than 40∘ to the total annual 
values. A change in the rate at which wildfire activity was obscured at 
night would have a broader impact, affecting all trends with the 

exception of the nighttime FRP. However, based on the nighttime LST 
retrievals at the locations where MODIS detected daytime AF pixels, 
there was a slight, though significant (p = 0.02), increase in the night-
time obscuration of wildfires, perhaps due to increased nighttime smoke 
production. If increasing nighttime obscuration had any effect at all, it 
would have prevented the detection of nighttime fire activity. 

Given that 95% of all MODIS nighttime ΣFRP detected inside wild-
fires was emitted from NWCG size class G, MODIS trends in nighttime 
fire activity inside wildfires were primarily driven by the largest wild-
fires. As corroborated by annual mean wildfire sizes, annual large 
wildfire proportions increased at a rate of +0.7% per year (Fig. 9a). 
Ultimately with a shift towards larger wildfires accompanied by 
increased nighttime per-pixel values of FRP and nighttime persistence, 
MODIS detected a significant (p < 0.01) positive trend in the annual 
nighttime proportion inside wildfires (Fig. 9b), suggesting that from 
2003 to 2020 the rate of increase in nighttime fire activity outpaced the 
daytime. Although relative changes in MODIS active fire characteristics 
from the first half to the second half of the study period were greater for 
the nighttime compared to the daytime (Table 1), these comparisons 
inherently contain artifacts of the MODIS low spatial resolution detec-
tion bias. As such, correctly interpreting diurnal differences in the 
relative changes presented (Table 1) heavily relies on the assumption of 
a constant relationship between the MODIS daytime and nighttime 
omission rates over the full range of wildfire sizes (Fig. 6b). 

4. Discussion 

This work has revealed an active fire characteristic that can be used 
to help distinguish different vegetation fire types burning across CONUS. 
Similar to results found by Andela et al. (2015), compared to agricul-
tural and prescribed fires, wildfires and particularly large wildfires are 
more likely to trigger the MODIS active fire detection algorithm at night. 
The ability of MODIS to detect vegetation fires is limited by the size and 
intensity of sub-pixel combustion areas (Wang et al., 2007). Agricultural 
and prescribed fire sizes are bounded by pre-planned fuel breaks 
designed to contain the fire, and their intensity is moderated by the 
decision to burn during low to moderate fire weather conditions (Knapp 
et al., 2009; Hiers et al., 2020). As fuels dry out and fire danger in-
creases, agricultural and prescribed fires may be restricted by local, 
state, and federal agencies to prevent intentional ignitions from escaping 
control and becoming unwanted wildfires (Yoder, 2008; Prestemon 
et al., 2013). The probability of new wildfires increases with fire danger 
(Andrews et al., 2003), and despite the placement of fuel treatments and 
fuel breaks to interrupt their growth (Finney, 2007; Cochrane et al., 
2012; Agee et al., 2000), extreme wildfire behaviour during historically 
dry and windy conditions may override landscape-scale fuel continuity 
(Prichard et al., 2020) and reduce suppression effectiveness (Plucinski, 
2019). Hence, wildfire sizes and intensities were considerably greater 
than for agricultural and prescribed fires and were therefore more likely 
to be detected by MODIS at night. 

Differences in fire diurnal cycles between vegetation fire types and 
wildfire sizes were directly captured by the nighttime proportion, ϕN. 
From Fig. 1, MODIS detected daytime fire activity without nighttime fire 
activity in many locations across CONUS. Only for the smallest, least 
intense vegetation fires that burned during the day and completely 
extinguished at night can values of ϕN = 0 be considered accurate. 
However, it was not uncommon for MODIS to detect individual, longer 
duration vegetation fires burning on several consecutive days without 
detecting a single nighttime AF pixel. Values of ϕN = 0 for these events 
were underestimated since, although these vegetation fires burned 
through the night in reality, the true nighttime FRP was not included in 
the estimation of ϕN due to the omission of nighttime AF pixels. Given 
the greater likelihood of dropping below the minimum detection 
threshold at night, it is expected that MODIS nighttime proportions were 
systematically underestimated for aggregations of smaller, lower 

Table 1 
Wildfire statistics reported by the National Interagency Coordination Center 
(NICC, 2021) and MODIS daytime and nighttime active fire characteristics in-
side wildfires. All variables are summarized by the mean annual values observed 
in the first (2003–2011) and second (2012–2020) halves of the study period 
along with the relative change between halves.   

Mean   

2003–2011 2012–2020 Relative change 

Wildfire burned area (Mha) 2.1 2.5 +16.2% 
Wildfire counts (# ×104) 7.5 6.0 -23.9% 
Mean wildfire size (ha) 27.9 41.3 +32.3% 
ΣFRP (MW ×106)    
Daytime 21.1 32.9 +35.6% 
Nighttime 6.6 14.5 +54.3% 
AF pixel counts (# ×104)    
Daytime 12.6 18.2 +30.9% 
Nighttime 9.3 16.0 +42.2% 
FRP (MW)     
Daytime 168.1 180.3 +6.8% 
Nighttime 71.6 90.6 +20.9% 
Nighttime persistence 0.58 0.68 +15.6% 
Large wildfire proportion (ϕW

G )  82.5% 91.2% +10.6% 

Nighttime proportion (ϕW
N )  23.8% 30.6% +22.2%  
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intensity vegetation fires due to this low spatial resolution detection 
bias. Although nighttime proportions increased from a minimum of 3% 
for “other” fire types to a maximum of 29% for the largest wildfires 

(Fig. 2), it was not possible to quantify how much of this increase was 
attributed to reduced nighttime detection biases for larger fires or a 
genuine change in the shape of the fire diurnal cycles. 

Fig. 8. CONUS-wide annual time-series of (a) sums of nighttime fire radiative power, ΣFRP, (b) nighttime active fire (AF) pixel counts, (c) nighttime mean FRP per 
pixel, FRP, and (d) the probability of nighttime persistence. The MODIS (black) time series spans 2003–2020 and the VIIRS (red) time series spans 2012–2020. 
Nighttime AF characteristics in (a–c) are presented as standard anomalies (i.e., z-scores) to facilitate comparisons between MODIS and VIIRS. Thiel-Sen estimates 
(with p-values) are only shown for MODIS. 

Fig. 9. CONUS-wide annual time-series of (a) large wildfire proportions, ϕW
G , and (b) nighttime proportions inside wildfires, ϕW

N , detected by MODIS and VIIRS. The 
MODIS (black) time series spans 2003–2020 and the VIIRS (red) time series spans 2012–2020. Thiel-Sen estimates (with p-values) are only shown for MODIS. The 
horizontal dotted lines at ϕW

G = 91% and ϕW
N = 28% indicates the CONUS-wide value detected by MODIS from 2003–2020. 
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Based on empirical relationships with measurements of radiant heat 
release rates (Wooster et al., 2005; Freeborn et al., 2008), CONUS-wide 
trends in annual MODIS nighttime ΣFRP can be directly linked to 
increasing trends in nighttime fuel consumption and nighttime smoke 
production. Since it is often assumed that active fire pixel counts are 
proportional to burned area (Giglio et al., 2006b), the trend in nighttime 
AF pixel counts indicates an increase in the annual area burned by 
wildfires during the night, with the caveat that wildfire size distributions 
affect the MODIS nighttime detection performance. If the increase in 
annual burned area was driven by numerous small wildfires rather than 
fewer large fires, then it seems less likely that MODIS would have 
detected an increase in nighttime AF pixel counts, given that the ability 
of MODIS to detect nighttime persistence depends on fire size and in-
tensity. At the local scale, an increase in mean nighttime per-pixel values 
of FRP indicates changes in nighttime fire behaviour characteristics. 
This could be attributed to either longer, deeper and more intense 
firelines during the night or larger pockets of more intense post-frontal 
combustion at night, both of which increase the difficulty of controlling 
a wildfire. 

Interpreting the increasing trend in the nighttime proportion is 
confounded by the low spatial resolution detection bias. With a perfect 
sensor capable of detecting the true FRP, an increasing trend in the 
nighttime proportion would indicate that the rate of increase in night-
time fire activity is outpacing the increase in daytime fire activity. 
However both MODIS and VIIRS are imperfect sensors and fail to ac-
count for the FRP emitted from vegetation fires burning at night but 
below the minimum detection threshold. Hence the increasing trend in 
the nighttime proportion observed by MODIS is at least partially 
attributed to relatively better nighttime detection performance and thus 
a reduced truncation of nighttime FRP over larger, more intense vege-
tation fires. Although the MODIS low spatial resolution detection bias 
may seem like a disadvantage, it can nevertheless be used as a consistent 
threshold to gauge changes in vegetation fire activity. Ultimately, as 
mean wildfire sizes have increased across CONUS, nighttime fire activity 
has grown larger, more intense and therefore more capable of triggering 
the minimum detection threshold. 

Increases in the annual area burned by wildfires and the frequency of 
large wildfires have been attributed to a variety of variables including 
temperature and vapor pressure deficit (Williams et al., 2014), within 
fire season precipitation (Holden et al., 2018), drought indicators (Riley 
et al., 2013), and fire danger indices (Barbero et al., 2014). The 1000-hr 
fuel moistures used herein were selected as a predictor variable since it 
is the major driver of the Energy Release Component, a common fire 
danger index produced by the US-based NFDRS. The 1000-hr fuel 
moistures were also selected because additional smaller size class fuels 
can easily be included to capture the influence of higher frequency 
fluctuations of fuel moistures on diurnal fire activity. Future work 
should incorporate 1-hr fuel moistures (Weise et al., 2005), which 
respond the quickest to changing atmospheric conditions, in order to 
capture the diurnal influences of the near-surface environment on 
relative changes in daytime and nighttime fire activity. Asymmetric 
changes in daytime and nighttime temperatures (Easterling et al., 1997; 
Davy et al., 2017) and/or vapor pressure deficit (Chiodi et al., 2021) 
may disproportionately affect nighttime fire activity more than the 
daytime and including 1-hr fuel moistures in the analysis may help 
confirm whether or not increases in nighttime wildfire activity across 
CONUS are truly outpacing the daytime. 

5. Conclusion 

In this study we have investigated the diurnal dynamics of active fire 
detections across the conterminous United States (CONUS) using nearly 
two decades of MODIS active fire data (2003–2020) stratified according 
vegetation fire type, wildfire size and time of detection (day/night). 
Whereas daytime fire activity was widespread, nighttime fire activity 
was concentrated inside wildfires, and particularly large wildfires in 

western CONUS. Analysis of coincident 1000-hr fuel moistures indicated 
that as fuels dried out, MODIS detected increasingly larger and more 
intense wildfires with higher probabilities of nighttime persistence and 
lower nighttime omission rates. Over the past 18 years, average wildfire 
sizes have increased across CONUS leading to both increases in daytime 
and nighttime MODIS active fire detections. Strictly interpreting the 
results without accounting for diurnal differences in the MODIS detec-
tion performance over larger wildfires suggests that increases in night-
time fire activity across CONUS have been outpacing the daytime. 
Increased nighttime fire activity has important implications for our 
ability to manage and contain wildfires and thus our ability to mitigate 
risks to firefighters and the public. 
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