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Abstract Wildfires have increasingly affected human and natural systems across the western United States
(WUS) in recent decades. Given that the majority of ignitions are human‐caused and potentially preventable,
improving the ability to predict fire occurrence is critical for effective wildfire prevention and risk mitigation.
We used over 500,000 wildfire ignition records from 2000 to 2020 to develop machine learning models that
predict daily ignition probability across the WUS and incorporate a wide range of physical, biological, social,
and administrative variables. A key innovation of this work is development of novel sampling techniques for
representing ignition absence. Unlike traditional purely random sampling or hyper‐sampling, which does not
account for temporally autocorrelated factors (such as droughts, insect outbreaks, and heatwaves) and spatially
autocorrelated factors (such as proximity to human settlements, infrastructure presence, and fuel type), we
introduce spatially and temporally stratified sampling of ignition absence. By drawing absence samples near the
location and time of historical ignitions, we better captured the complex environmental and anthropogenic
conditions associated with fire occurrence or lack thereof. Models trained without stratified sampling produced
ignition probability maps that consistently overestimated fire risk during high fire danger periods, whereas
models incorporating stratified fire absence samples more accurately captured the spatial and temporal
variability of fire potential and achieved predictive accuracies exceeding 95%. In addition to operational utility
for fire prevention and resource allocation, our approach offers insights into the drivers of wildfire ignitions and
highlights the value of incorporating spatial and temporal structure in absence sampling for wildfire modeling.

Plain Language Summary Wildfire prevention is one of the most effective and economical risk
mitigation strategies. Human‐started wildfires account for over 60% of all recorded wildfires across the western
United States and are responsible for the vast majority of wildfire‐related societal impacts, underscoring the
value of effective wildfire prevention strategies. To address this need, we developed machine learning models
that not only effectively predict spatial and temporal patterns of wildfire ignitions but reveal the nuanced
interactions among physical, biological, social, and administrative factors that govern wildfire ignition
outcomes. Annual temperature (climate), discovery day‐of‐year (seasonal pattern), fire year (trend), and
national preparedness level (management and fire danger) were the primary governing factors in models of all
ignitions, natural ignitions, and human‐caused ignitions. Secondary governing factors of natural and human‐
caused ignitions, respectively, were weather‐related attributes and weather and social attributes. Our results
indicated that although daily ignition probabilities generally track weather patterns, they can remain persistently
high in areas where human factors dominate. Our results also show that models relying solely on weather do not
accurately predict wildfire ignitions, reinforcing the fact that ignitions are caused by complex interactions
among diverse factors.

1. Introduction
Wildfires, hereafter fires, are one class of climate‐related extremes that have increasingly impacted several re-
gions globally, including the western United States (WUS), with compound and cascading effects (Higuera
et al., 2023; Modaresi Rad, Abatzoglou, Fleishman, et al., 2023; Modaresi Rad, Abatzoglou, Kreitler,
et al., 2023). Fires impact a variety of systems and sectors, including the built environment (Seydi et al., 2024;
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Wibbenmeyer & McDarris, 2021), public health (Buchholz et al., 2022), and land management and firefighting
resources (Hosansky, 2023). Fires also affect the environment in numerous ways, such as altering vegetation
structure and composition, increasing the risk of post‐fire debris flows, modifying snowpack dynamics, and
accelerating erosion in burned areas while contributing to sedimentation in downstream channels (Buchholz
et al., 2022; Williams et al., 2022).

Increasing fire risks in the WUS have been attributed to intensification of fire weather (Abatzoglou & Wil-
liams, 2016; Zhuang et al., 2021), expansion of the wildland‐urban interface (Radeloff et al., 2018), and increased
fuel loads due to historical fire suppression (Boisramé et al., 2022). Strategies for mitigating increased fire risk
include fuel treatments around values‐at‐risk and in critical ecological areas (Chung, 2015; Finney, 2001), home
hardening to enhance the structure's ability to survive fire (Kodur et al., 2020), and fire prevention efforts
(Edgeley et al., 2025). Fire prevention is among the least costly and most effective strategies in the WUS (Calkin
et al., 2023) given that over 60% of all fire ignitions in the region are human‐caused and potentially preventable.
Because human‐caused ignitions typically occur closer to human settlements and values‐at‐risk, they tend to be
more destructive (Kumar, 2025) and more intense (Hantson et al., 2022).

Studies have focused on understanding the patterns and drivers of fire ignitions (Balch et al., 2017; Mann
et al., 2016; Syphard et al., 2007). Weather conditions have been associated with fuel flammability and human
outdoor activities, contributing to seasonal and interannual variability in the number and location of fire ignitions
(Finney et al., 2011; Littell et al., 2016; Noonan‐Wright et al., 2011). Widespread drying and increases in the
number of critical fire weather days (Alizadeh et al., 2023; Khorshidi et al., 2020), in conjunction with human
factors such as the expansion of the wildland‐urban interface (Radeloff et al., 2018), increasing population size,
and fire prevention efforts, have been linked with long‐term trends in the number of ignitions (Nagy et al., 2018;
Noonan‐Wright et al., 2011). Although there is no widespread increase in the number of ignitions across the West
(some studies show declines in the number of human‐ignited fires; Jorge et al., 2025; Pourmohamad, Abatzoglou,
et al., 2025, Pourmohamad, Sadegh, & Abatzoglou, 2025; Syphard et al., 2025), suggesting that various fire
prevention efforts have been effective, the persistence of high‐impact, human‐ignited fires suggests that more fire
prevention is needed. Essential to effective fire prevention is identifying not only where and when ignitions occur,
but also what drives such variability.

In this paper, we develop machine learning models to predict daily fire ignition occurrence and investigate their
drivers across the WUS. Such information is essential for understanding fire risk; prioritizing regional fuel
management, fire suppression resources, and fire prevention efforts; and preparing communities for fire emer-
gencies (Chen & Jin, 2022; Di Giuseppe et al., 2025). To train these models, we use extensive historical fire
ignition records, and propose a novel method to develop robust samples that indicate absence of fire (Jiménez‐
Ruano et al., 2022). Our absence‐of‐fire samples not only are randomly distributed across space and time, but
reflect conditions generally similar to those of ignition presence, with subtle yet important differences. We also
evaluate the relative influence of various drivers on ignition occurrence. Gaining insight into the spatial and
temporal patterns of fire ignitions is essential for informing fire and land management strategies aimed at reducing
ignition risk (Chen et al., 2021; Faivre et al., 2014). Finally, we investigate the applicability of these models,
which are trained on point samples, to develop gridded ignition probability maps for the WUS, and conduct a
sensitivity analysis of these models to grid sizes.

2. Data and Methods
Our fire occurrence prediction framework (Figure 1) integrates a variety of factors identified in the literature as
influences on fire ignition probability, including weather, fire danger, climate, land cover, topography, social
factors, population density, and management. In the following sections, we first describe the samples repre-
senting fire presence and absence, and the attributes used to distinguish between them. We then describe our
models and their evaluation, followed by a brief discussion of how our predictive maps of ignition probability
are generated.
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2.1. Data

2.1.1. Data to Train, Validate, and Test Models

2.1.1.1. Presence of Ignition

We obtained fire records from the FPA FOD‐Attributes data set (Pourmohamad et al., 2024), which augments the
sixth version of the Fire Program Analysis‐Fire Occurrence Database (FPA FOD v6; Short, 2014, 2022) with
nearly 270 physical (e.g., weather, climate, topography, infrastructure), biological (e.g., land cover), social (e.g.,
population density, social vulnerability index (SVI)), and administrative (e.g., national preparedness level (NPL),
jurisdiction) attributes that coincide with the date and location of each ignition. This data set contains information
on the location, discovery time, cause, and final size of >2.3 million fires in the United States from 1992 to 2020.
Of these fires, 752,461 occurred in the WUS (Arizona, California, Colorado, Idaho, Montana, Nevada, New
Mexico, Oregon, Utah, Washington, andWyoming), with final sizes from <0.1 acres to 1,068,802 acres. Here, we
address fire occurrence without regard for fire size.

2.1.1.2. Absence of Ignition

We created three sets of samples that represent absence of ignition, and compiled physical, biological, social, and
administrative attributes associated with each point‐date.
◾ Hyper‐sampling: We created a 4 km grid mesh over the WUS (193,545 grid cells). Because fire occurrence

peaks during summer and is minimal during winter in the WUS (Table S1 in Supporting Information S1)
(Podschwit & Cullen, 2020), we randomly selected four dates in summer, one date in winter, and two dates
each in spring and autumn (nine dates per year for each year from 2000 through 2020—timeline dictated by
data availability, details later). For each date, we randomly selected one point in each grid cell to ensure a
uniform spatial distribution of the samples. This resulted in 36,580,005 (193,545 × 9 × 21) samples of ignition
absence (Figure 2).

Figure 1. Fire ignition prediction framework.
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◾ Spatially Stratified Sampling (SSS): A majority of previous studies used either entirely random sampling
(Zaidi, 2023) or a version of hyper‐sampling (Moradi et al., 2024) to develop ignition absence samples. In
contrast, we used spatially and temporally stratified sampling (TSS) to better capture the nuances in the at-
tributes associated with the location and date of ignition presence and absence. By investigating these stratified
samples, one can better understand the exact underlying conditions that lend themselves to a fire occurrence.
We sampled 9 dates—4 in summer, 2 in fall, 2 in spring, 1 in winter—at the exact location of historical fire
occurrences but on dates other than the ignition date. This resulted in 6,772,149 (752,461 × 9) SSS ignition
absence samples (Figure 2).

◾ Temporally Stratified Sampling (TSS): We randomly sampled points that coincided with the date of an ignition
and in close proximity to the ignition location, but not at the exact location. We randomly sampled points
within a 4 km (TSS‐4) radius of the ignition location, and then within a 15 km radius (TSS‐15). This resulted in
752,461 ignition absence samples for each of the TSS‐4 and TSS‐15 sets (Figure 2).

Ignitions are more likely to occur in certain locations than others due to a variety of factors, including human
activity and infrastructure, fuel type, and moisture regime. Similarly, specific periods—such as the Fourth of July
for fireworks ignitions and growing season tails for ignitions caused by debris burning—are more prone to new
ignitions. Hyper‐sampling methods implicitly assume that ignition probability is uniformly distributed across
space and to some extent time, although constraints on temporal distributions try to alleviate this shortcoming. In
contrast, SSS and TSS techniques account for the spatial and temporal variability in ignition probability, thereby
providing a more representative sample of ignition absence cases.

2.1.2. Data to Assess Predictive Models

We develop two sets of samples, beyond formal training, validation, and test data, to assess the predictive model.
We first develop daily time series of attributes from 2000 to 2020 for a set of points to assess the dynamics of
ignition probability over time. Next, we develop gridded maps of attributes at certain dates to assess the spatial
distribution of ignition probabilities. The latter case also helps to evaluate whether a point model can develop
predictive maps, and if so, to identify the grid resolution that can accurately represent attributes of the point
samples used to train the models.

◦ Time series data: To assess how fire ignition probability changes over time, we selected the locations of 13
historical fires. We ensured that these fires were distributed over the entire WUS (Figure S1 in Supporting
Information S1) and that each had a different ignition cause (arson or incendiarism; debris and open burning;
equipment and vehicle use; firearms and explosives use; fireworks; data missing, not specified, or undeter-
mined; misuse of fire by a minor; natural; other causes; power generation, transmission, or distribution; railroad
operations and maintenance; recreation and ceremony; and smoking). We extracted daily physical, biological,
social, and administrative attributes at each location from 2000 to 2020.

Figure 2. Sampling of point‐dates that represent absence of fire ignition.
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◦ Map data: To assess whether point models can develop ignition probability maps, and if so, to determine the
optimal grid size, we developed four sets of gridded data with different grid sizes (4 km, 1 km, 250 m, and
30 m). In each case, we acquired physical, biological, social, and administrative attributes associated with the
centroids of the grids (Figure S2 in Supporting Information S1). This exercise aims to strike a balance in grid
resolution: although finer resolutions more effectively capture local, bottom‐up factors (e.g., land cover,
population density), their information content is limited by the uncertainty in the locations of ignitions reported
in the FPA FOD data set. We selected 5 September 2019, with 323 reported fires across the WUS, and 4 July
2020, with 250 reported fires across the WUS, to develop fire probability maps.

2.1.3. Attributes Used in the Predictive Model

Following Pourmohamad, Abatzoglou, et al. (2025), Pourmohamad, Sadegh, and Abatzoglou (2025), we selected
29 attributes with the highest predictive power for fire ignition modeling and the least collinearity. These attri-
butes are enlisted in Table S2 in Supporting Information S1, and are summarized below:

◦ General information: Discovery day of year (DOY), fire year, and ignition cause. DOY captures intra‐annual
seasonality of ignitions, such as an increase in the number of fire ignitions around the Fourth of July, US
Independence Day (Balch et al., 2017). Fire year acts as a proxy for long‐term trends in fire ignitions, such as
those due to fire prevention efforts. Each ignition cause is associated with distinct attributes (Pourmohamad,
Abatzoglou, et al., 2025, Pourmohamad, Sadegh, & Abatzoglou, 2025). The National Wildfire Coordinating
Group provides a list of 13 causes (National Wildfire Coordinating Group, 2025); here, we classify fires as all
fires, naturally ignited fires, and human‐ignited fires.

◦ Weather and fire danger indices: Daily precipitation, wind speed, minimum temperature, 100‐ and 1000‐hr
dead fuel moisture, burning index, vapor pressure deficit (VPD), energy release component (ERC), and
ERC percentile. Fuels are more receptive to ignitions during dry‐hot conditions, and wind enhances the
likelihood of certain ignition causes, such as power‐started fires (Balch et al., 2024). We note that there is a
level of correlation between these attributes, but opted to include them in our model since each conveys
nuanced information that can inform our predictive models. For example, ERC and VPD provide comple-
mentary information given that ERC evolves slowly whereas VPD evolves quickly. Daily precipitation enables
differentiation between dry and wet lightning, which are associated with widely different probabilities of fire
ignition (Kalashnikov, 2024).

◦ Climate attributes: Long‐term average annual precipitation, temperature, and reference evapotranspiration.
Climatic attributes largely shape fuel availability and type, and therefore the fire regimes in each region (Pausas
& Paula, 2012).

◦ Topography and land cover: Average elevation, aspect, slope, and topographic position index within a 1 km
radius of the ignition point, and existing vegetation cover and fire regime group (FRG) at the point of ignition.
Topography is highly correlated with the type of ignition; for example, lightning‐caused ignitions generally
occur at higher elevations and slopes compared to human‐caused ignitions (Narayanaraj & Wimberly, 2012).
We selected average topographical indices within 1 km of the ignition point to address uncertainties in the
reported ignition locations (Short, 2015). The 1‐km radius also contributed to generalizing the point model to
develop ignition probability maps (details later). Finally, existing vegetation cover helps capture different
flammability levels among fuels and represents land‐cover types such as roads (Fares et al., 2017).

◦ Social factors:Annual gross domestic product, global human modification (GHM), average human population
density within a 1 km radius of the ignition point, and overall SVI. Various social attributes have been linked
with human ignitions of fire (Flanagan et al., 2018). For example, moderate population densities were linked
with a higher probability of ignition, whereas lower and higher population densities translate to absence of
humans and limited vegetation cover, respectively, and hence were associated with lower ignition probabilities
(Syphard et al., 2008).

◦ Administrative factors: Suppression difficulty index, FRG, management unit, protected area status (GAP
Status Code), NPL, FIPS code—Land and fire management practices impact ignition loading (Keane, 2012).
The number of human‐caused ignitions is lower in protected areas (Nelson & Chomitz, 2011). NPL represents
the national availability of fire suppression resources, with higher values indicating coincidence of multiple
large fires across the country and strained suppression resources (Abatzoglou et al., 2021). FIPS code acts as a
proxy for local factors such as demographics, suppression resources, and level of recreational activities, among
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others, which are relevant to ignition modeling but are not readily available as independent data to be included
in the model.

2.2. Modeling

We developed two ensemble machine learning models (Random Forest and XGBoost) and two deep learning
models (one‐dimensional convolutional neural networks, with convolution over attributes; CNN‐1D with Keras
and PyTorch; Figure S3 in Supporting Information S1) to estimate ignition probability in three ignition classes: all
ignitions (regardless of reported cause), human‐caused ignitions (12 classes of human‐caused ignitions com-
bined), and natural ignitions (almost entirely lightning‐caused in the WUS). We used data from 2000 to 2018 to
train, validate, and test our models, and used data from 2019 to 2020 as additional test cases (extra test). We did
not use data before 2000 because certain data attributes (such as population density) were unavailable before
2000. We used dummy encoding to convert string‐type attributes to digits. Importantly, we removed fire records
that met three criteria: (a) reported by county or local agencies, (b) less than 0.1 acre in final size, and (c)
associated with developed land cover with low, medium, or high development intensity. We deemed the un-
certainty in reporting of these fires unacceptable due to temporal changes in governmental fire reporting pro-
cedures (Jorge et al., 2025). This process decreased the total number of ignition records between 1992 and 2020
from 752,461 to 574,522, of which 383,872 occurred between 2000 and 2020 and were used in our modeling
effort. We divided the 2000–2018 machine learning‐ready ignition records and ignition absence samples into
training (∼65%), validation (∼15%), and test (∼20%) data (Table S3 in Supporting Information S1). We used
training data to learn model parameters, validation data to learn model hyperparameters, and test data to assess
model accuracy. We considered ignition probabilities over 50% as an ignition incident. This threshold was
selected through fine tuning of hyperparameters. We also performed a sensitivity analysis to examine how the
model's performance changed with different cutoff thresholds used to distinguish between ignition presence and
absence. We found a higher probability threshold to marginally reduce false positives at the expense of a large
increase in false negatives (Figure S4 in Supporting Information S1).

We used a Bayesian optimizer and cross‐validation to learn hyperparameters for each model. The training data
had a significant class imbalance, with ignition absence incidents vastly outnumbering ignition presence incidents
(98.9% vs. 1.1% of all samples, respectively). We developed separate models both with and without class weights
to assess the potential impacts of class imbalance on the model performance. We then selected the best model on
the basis of precision, recall, F1 score, and overall accuracy. We refrained from additional input data pre-
processing, including temporal detrending, smoothing, or using a moving average, and spatial blocking. Spe-
cifically, temporal trends in the observed ignitions respond to interannual climatic fluctuations, the chronology of
adoption of fire prevention strategies, and other factors that are directly or indirectly included in the modeling
framework. Similarly, potential clustering of ignitions can be explained by underlying governing factors that are
explicitly provided to the model.

We used the ignition absence samples to develop two categories of models. In the first category, Ignition Model
(IM), we included the samples representing absence of fire derived from hyper‐sampling (Figure S5 in Supporting
Information S1). In the second category, Augmented Ignition Model (AIM), we included the absence of fire
samples from hyper‐sampling and from SSS and TSS‐4 (Figure S6 in Supporting Information S1). In each
category, we kept 20% of the fire absence samples for model testing. Furthermore, we withheld the entire group of
TSS‐15 data from the training process for additional testing. We used Shapley Additive explanations (SHAP) to
calculate global feature importance, a measure of each feature's overall contribution to the model's predictive
power. This metric is crucial for model interpretation and identifying the underlying relationships between
features and the target variable (Nohara et al., 2022).

Interested audience are referred to Text S1, Table S4, and Figures S7 and S8 in Supporting Information S1 that
describe machine learning versus weather‐based ignition modeling.

3. Results and Discussion
3.1. Attributes Associated With Ignition Presence and Absence

Kernel density distributions of attributes associated with presence and absence of fire ignitions (Figure 3) have
similarities and distinctions that can be used in machine learning models to predict an ignition or lack thereof.
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Here, ignition absence includes both hyper‐sampled and stratified (SSS, TSS‐4) samples. Differences were more
pronounced for weather‐related attributes: ignition presence samples (all ignitions in Figure 3) were associated
with drier and hotter conditions than ignition absence samples. For example, daily VPD (Figure 3a) and daily
minimum temperature (Figure 3c) distributions shifted toward higher values, and 1,000‐hr dead fuel moisture
distribution shifted toward lower values (Figure 3b), for samples associated with presence of ignitions. This
pattern is consistent with expectations given the higher likelihood of ignitions in drier and hotter conditions.
Differences were less pronounced for other attributes, but still apparent for elevation (Figure 3g), aspect
(Figure 3i) and global human modification index (GHM; Figure 3j), which are to some extent explained by the
geography of fire occurrences (mainly human‐caused ignitions, but also natural fires following mountain patterns;
Pourmohamad et al., 2024) and our hyper‐sampling method—generating a majority of ignition absence samples
—drawing uniformly distributed samples for the absence of fire case. Figure S9 in Supporting Information S1
summarizes similarities and differences among the 27 numerical attributes associated with presence and absence
of ignitions.

Figure 3. Kernel density distribution of attributes associated with ignition presence (all fire occurrences; red) and ignition absence (blue; combined hyper‐sampled and
stratified samples). The 12 attributes included in this figure are vpd: vapor pressure deficit (kPa), fm1000: 1,000‐hr dead fuel moisture (%), tmmn: minimum daily
temperature (Celsius), Annual_temperature (Celsius), Annual_etr: annual average reference evapotranspiration (mm), Annual_precipitation (mm), Elevation_1 km (m),
Slope_1 km (%), Aspect_1 km (degrees from north), GHM: global human modification index (–), GDP: gross domestic product (US $), RPL_THEMES: overall social
vulnerability index (–).
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Nuanced differences emerged when separating natural from human‐caused ignitions (Figures S10 and S11 in
Supporting Information S1). Specifically, distributions of weather‐related attributes associated with natural ig-
nitions were more distinct from absence of fire samples (Figure S11 in Supporting Information S1) than those
associated with human‐caused ignitions (Figure S10 in Supporting Information S1). The latter is consistent with
the concentration of natural ignitions in summer as compared to the expanded spatial and temporal presence of
human‐caused ignitions (Balch et al., 2017). These differences were also observed for topographical attributes
with natural ignitions occurring at higher elevations and on steeper slopes than human‐caused ignitions. The
GHM distribution for natural ignitions, unlike that for human‐caused ignitions, closely resembled the distribution
of fire absence samples. Human‐caused ignitions tend to occur in more developed areas and natural ignitions in
less developed areas, and a majority of our fire absence samples were uniformly drawn from across the WUS,
much of which is less developed. Finally, the distribution of climate attributes (annual temperature and reference
evapotranspiration) for natural ignitions were more closely aligned with those of fire absence samples, as
compared to human‐caused ignitions (Figures S10 and S11 in Supporting Information S1), which we believe are
due to differences in the spatial distributions of human‐caused and natural ignitions.

3.2. Model Accuracy

We first used ignition presence samples (all causes) and the hyper‐sampling‐derived fire absence data to train two
ensemble machine learning and two CNN‐1D deep learning models. XGBoost provided the highest overall ac-
curacy over the 20% out‐of‐sample test data among all models (Table S5 in Supporting Information S1). Our prior
modeling efforts (Pourmohamad, Abatzoglou, et al., 2025, Pourmohamad, Sadegh, & Abatzoglou, 2025; Seydi
et al., 2024) and those of others (Shwartz‐Ziv & Armon, 2022) also showed superior performance of XGBoost for
tabular data. We therefore employed XGBoost for the remainder of our modeling exercises in this paper. We also
tested the XGBoost models with and without class weights, which resulted in very similar overall accuracy (with
weight: 99.95%, without weight: 99.96%) with marginally superior accuracy for the case without weights; we
hence used the XGBoost model without weights in the remainder of our analysis. We also note that within our
conditional probability framework—where ignition probability is modeled based on 29 fire‐related covariates and
drivers—the decision boundaries between ignition presence and absence differ across modulating conditions. The
XGBoost model can effectively capture these distinctions, so the imbalance in the data is not expected to
fundamentally bias the predictions toward the more frequent label.

The IM framework demonstrated a robust performance on the test data, achieving high precision, recall, accuracy,
and F1 score across all ignitions, natural ignitions and human‐caused ignitions (84%–100%; Table 1). The model
performance for the stratified fire absence data (SSS, TSS‐4, and TSS‐15), however, dropped to 66%–80%
(Table 1). We attribute this performance drop to the divergent attributes of ignition absence samples used in
training the model and those of the SSS and TSS data. The stratified ignition absence samples are spatially and/or
temporally clustered around the ignition presences and hence are associated with attributes more similar to those
of ignition presence. Performance of the AIM framework was marginally inferior to IM for the test data with
precision, recall, accuracy, and F1 score ranging between 81% and 100%, but AIM performed markedly superior
to IM by accurately capturing 96%–100% of fire absence samples for out‐of‐sample SSS, TSS‐4, and TSS‐15 data
(Table 1). Refer to Table S6 for confusion matrices and to Figure S12 in Supporting Information S1 for Receiver
Operating Characteristic curves and the Area Under the Curve for both IM and AIM frameworks and all modeling
cases.

Model performance for both IM and AIM frameworks remained robust when applied to 2019 data, but perfor-
mance metrics for both cases dropped markedly when applied to 2020 data (Table 1; extra test data). Societal
disruptions and stay‐at‐home orders in 2020 associated with COVID‐19 markedly changed human interactions
with fire, causing a near record number of human‐caused ignitions in 2020 (Jorge et al., 2025). Additionally,
lower resource availability for fuel management and infrastructure maintenance likely contributed to the trends
and patterns of fire ignitions in 2020. Nevertheless, our models were not trained with data that represent such a
societal shock, and hence they were not able to accurately predict the 2020 ignitions.

3.3. Gridded Ignition Model

We used the trained models to develop predictive maps of ignition probability. Given that our model was trained
on points, we executed the model for the grid centroids. In our analysis of sensitivity to grid sizes, we evaluated
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the percentage of ignitions that were correctly classified by our point‐based model, in essence calculating Recall
for the model evaluated on grids. Model performance enhanced with increasing grid resolution (decreasing grid
sizes), achieving 76%, 81%, 83%, and 86% accuracy for 4 km, 1 km, 250 m, and 30 m grid sizes (Figure S13 in
Supporting Information S1). This outcome is expected, as finer resolutions place grid centroids closer to ignition
points, resulting in their associated attributes being more similar—or even identical—to those of the ignition
locations. Computational costs increase by a factor of 16–70 as grid sizes decrease. Considering trade‐offs be-
tween accuracy and computational cost, we selected a 1 km grid to map the ignition probability over theWUS.We
developed ignition probability maps for two dates in our extra test data, 5 September 2019 (Figure 4) and 4 July
2020 (Figure S14 in Supporting Information S1), both of which were associated with a large number of ignitions.

Although the IM framework almost perfectly identified ignitions in all classes (all ignitions, human‐caused ig-
nitions, and natural ignitions), it invariably assigned a high probability to the entire WUS on 5 September 2019
(Figure 4; left column) noting that small patches of low probability emerging in the human‐caused ignitions
model (Figure 4c). The IM yielded a low‐information map due to the lack of spatial variability in the ignition
probability distribution, rendering it not useful for resource allocation purposes. In contrast, the AIM framework
generated a more informative ignition probability map (Figure 4; right column). The information content came at
the expense of a marginal decline in correctly classification of observed ignition incidents but still captured 82%
of human‐caused ignitions and 93% of natural ignitions.

The AIM of natural ignitions exhibited a distinct spatial pattern, assigning elevated ignition probabilities to
mountainous regions and lower probabilities to low elevations (Figure 4f), for example, in California's Central
Valley, where irrigation of agricultural land minimizes the chances of lightning‐started fires. Lower elevations are
also generally associated with fewer ignitions than higher elevations, although our model does not include
climatological lightning data and is therefore not affected by this factor. Our natural IM accurately captured the
cluster of lightning storm‐started fires on 5 September 2019 on the border of California and Oregon (Figure 4f), as
well as other scattered ignitions across the WUS, but also assigned a high ignition probability to other moun-
tainous regions that did not experience a fire. We attribute this behavior to the lack of representation of lightning
strikes in our model—since our main focus was on modeling human‐caused ignitions that potentially could be
prevented. In other words, our model only captured the environmental conditions that are receptive to a lightning‐
ignited fire, not the presence of lightning strikes.

Table 1
Performance Metrics for the Ignition Model (IM) and the Augmented Ignition Model Over Out‐of‐Sample and Extra Test Data

Data set Metrics

Ignition model Augmented ignition model

All fire causes (%) Natural causes (%) Human‐caused (%) All fire causes (%) Natural causes (%) Human‐causes (%)

Test data Precision 95.54 96.19 96.75 91.53 92.35 90.85

Recall 82.96 84.87 78.30 80.71 82.78 74.63

F1 score 88.81 90.18 86.55 85.78 87.30 81.94

Accuracy 99.77 99.91 99.84 99.71 99.89 99.79

Accuracy for stratified data SSS 76.04 76.06 79.87 96.18 99.95 99.75

TSS‐4 66.60 70.80 67.15 96.20 98.31 96.88

TSS‐15 67.71 70.90 68.09 96.18 98.26 96.94

2019 Precision 86.53 91.96 85.19 81.45 85.88 78.60

Recall 83.34 92.56 76.24 73.88 79.97 64.94

F1 score 84.91 92.26 80.47 77.48 82.82 71.12

Accuracy 99.79 99.95 99.84 99.70 99.91 99.78

2020 Precision 69.70 64.50 72.69 68.68 56.47 71.24

Recall 24.04 16.09 23.12 21.77 14.36 21.82

F1 score 35.75 25.75 35.08 33.06 22.90 33.41

Accuracy 99.22 99.80 99.40 99.22 99.79 99.41

Note. The green, light brown, light red show highest to lowest performance across scenarios, respectively.
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The human‐caused ignitions also captured the geographical difference in high and low ignition likelihoods,
assigning higher ignition probabilities to areas close to human settlements, roads, and infrastructure (Figure 4d).
For example, foothills surrounding the Central Valley of California were assigned a high ignition probability,
whereas the adjacent irrigated agricultural lands were assigned lower ignition likelihoods. High‐elevation

Figure 4. Probabilities of all ignitions, natural ignitions, and human‐caused ignitions assigned by the Ignition Model (left
column) and Augmented Ignition Model (right column) on 5 September 2019 at a 1 km spatial resolution. Observed ignitions
are displayed with black dots. Inset histograms show the probability that each model assigned to the grids encapsulated
observed ignition points. An ignition probability of more than 50% is considered a presence of ignition. Ignition probability
levels are shown in four categories: low (<25%), medium (25%–50%), high (50%–75%), and very high (>75%). Also see
Table S7 in Supporting Information S1.
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mountains also received a low probability of human‐caused ignition. The AIM model trained on all ignitions
(Figure 4b) exhibited a more extensive spatial distribution of high ignition probabilities compared to the models
trained on natural and human‐caused ignition data separately. This is because the all‐ignitions model integrates
the predictive patterns of both natural and human‐caused ignitions, capturing a more diverse range of factors that
contribute to ignition risk. Probability maps for 4 July 2020 rendered similar general insights discussed here
(Figure S14 in Supporting Information S1).

Given that the AIM framework was found to be more informative than the IM, we will use AIM in the remainder
of this study. We applied the AIM to a more refined gridded map (30 m) in three case‐study locations in Siskiyou
County, California, on 12March 2019 (during a period of relatively low ignition activity in the region) and 27 July
2019 (during a period of high ignition activity). The first location (Figure 5g) encompasses agricultural land and
wildland vegetated areas. On 12 March, which represents wet conditions in the early spring, AIM assigned low
ignition probabilities to the wildland areas, but assigned high ignition probabilities to agricultural lands
(Figure 5a). We believe the latter is due to the probability of agricultural residue burns escaping and igniting a fire.
Although our model does not include any information on soil moisture or vegetation health (e.g., Normalized
Difference Vegetation Index (NDVI)), we believe the model captures agricultural residue burn probabilities
through the interaction of seasonality metrics, such as DOY, combined with land cover. On 27 July, when
conditions were hot and dry, our model assigned a high probability of ignition to the wildland areas, but a lower
probability to the agricultural lands as by this time irrigation started and lowered the likelihood that vegetation
would ignite, let alone the lower chance of residue burn—which we believe these conditions were captured
through the seasonality metrics (Figure 5d).

Figure 5. High‐resolution (30 m) ignition probability maps generated by the Augmented Ignition Model for three locations in Siskiyou County, California. Panels (a)–(f)
display ignition probabilities for 12 March 2019, and 27 July 2019. Ignition probability levels are shown in four categories: low (<25%), medium (25%–50%), high
(50%–75%), very high (>75%). Panels (g)–(i) show satellite images of the case study locations.
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The third case study location in northern California (Figure 5i) encompasses wildland vegetation, agricultural
land, and wetlands. Similar to the first case study, AIM assigned high ignition probability to agricultural land and
low ignition probability to wildlands on 12 March 2019. In this case, the model also predicted linear patterns of
high ignition probability alongside roads. While our variables do not include distance to road, our model was able
to capture higher ignition probabilities alongside roads using land cover data (Figure 5c). We emphasize that our
model predicts an ignition of a fire of any final size (e.g., <0.1 acres), which is associated with loose thresholds of
an ignition occurrence. On 27 July 2019, ignition probability across a majority of the case study location, except
the wetland on the northeast side and in agricultural land, was high. Our model could have been further improved
by incorporating vegetation productivity or greenness indices, such as the NDVI; however, we did not include
these metrics among our variables due to incomplete coverage across the spatial and temporal extent of our study.
The results of the second case study (Figures 5b, 5e, and 5h) were similar to those of the first and third cases.

3.4. Time Series of Ignition Probability

We used the AIM to develop daily time series of natural or human‐caused ignition probabilities (Figure 6, Figure
S15 in Supporting Information S1) from 2000 to 2020 for 13 locations across the WUS (Figure S1 in Supporting
Information S1) that experienced a natural or human‐ignited fire during that time period. The type of ignition we
modeled corresponded to that of the reported fire. For a majority of the 13 time series, including that for the
location that experienced a naturally ignited fire, the daily time series generally followed weather patterns, where
dry and hot days were associated with a higher probability of ignition (Figure 6a). In some cases where the
weather conditions were not hot and dry (low ERC), ignition probability was still high due to elevated wind
speeds (Figure S15b in Supporting Information S1; fire ignited by debris burning). However, ignition probability
dynamics widely diverged from weather conditions in the case of the location that observed an arson fire
(Figure 6d, Figure S1 in Supporting Information S1). In that location, social factors dominated ignition proba-
bility, and the probability remained high except during some periods that were too wet and cold to be receptive to
an ignition (Figure 6d).

3.5. Driving Factors of Predictions

Shapley value analysis revealed that the top four contributors to our model's classification outcomes were annual
temperature, NPL, discovery DOY, and fire year, consistently for all ignitions, natural ignitions, and human
ignitions (Figure 7). Annual temperature reflects a range of influences—including background climate condi-
tions, prevailing fire regimes, and the geographic distribution of ignitions—all of which play important roles in
shaping ignition patterns. Higher/lower values of annual temperature, however, were not consistently associated
with positive/negative contribution to ignition incidence (Figure 7, right column), indicating that annual tem-
perature works in conjunction with other factors to modulate fire occurrence. Higher values of NPL—which are
associated with elevated fire activity across the country and strained firefighting resources—negatively
contributed to the fire occurrence, lessening the probability of new ignitions. This is probably due to the man-
agement factors, such as burn bans, public land closures, and enhanced social awareness during high national
preparedness levels. Discovery DOY mainly indicates certain celebrations such as 4 July, but also captures the
seasonality of ignitions—for example natural ignitions occurring in summer months and agricultural residue
burns occurring in the two tails of the growing season. Finally, the fire year represents the long‐term trends in the
number of ignitions, due to management, fire prevention, public awareness campaigns, and population dynamics,
among others (Pourmohamad, Abatzoglou, et al., 2025, Pourmohamad, Sadegh, & Abatzoglou, 2025).

Divergence emerges in the importance of subsequent drivers, with VPD, FIPS Code, and 1000‐hr dead fuel
moisture (FM1000) being important for all ignition; FIPS Code, FM1000, and GHM index (GHM) being
important for human ignitions; and daily minimum temperature, VPD and FM1000 being important for natural
ignitions. Weather‐related attributes are obviously important for both natural and human ignitions, but social
factors represented through FIPS Code and GHM are more important for human ignitions. Dry‐hot values of
weather indices positively contribute to the fire occurrence, whereas the impacts of social factors are not as direct.
High values of GHM generally lead to more fire ignitions, but also preventing ignitions in certain cases, and its
lower values negatively contribute to fire occurrence. Increasing GHM is associated with greater human presence
and a higher likelihood of ignition—up to a threshold where human density becomes high enough to limit fuel
availability, thereby limiting the potential for fire ignition.
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4. Conclusion
Accurate prediction of ignition likelihood is crucial for assessing fire risk, informing targeted fire prevention and
fuel management strategies, and enhancing early response and community preparedness efforts (Chen &
Jin, 2022). To address this need, we developed machine learning models trained on a comprehensive data set that
integrated physical, biological, social, and administrative factors associated with ignition presence and absence
samples. We used our models to develop ignition risk maps at daily temporal resolution and multiple spatial
resolutions (4 km, 1 km, 250 m, and 30 m), providing a robust framework for ignition risk assessment and
management.

A key contribution of our study is its use of spatially and TSS to represent fire absence conditions more accurately
than conventional random or hyper‐sampling approaches. Whereas random sampling implicitly assumes a uni-
form probability of ignition across space and time, our stratified approach acknowledges the inherent hetero-
geneity in ignition likelihood that is driven by factors such as human activity, infrastructure presence, fuel type,
moisture regimes, and climate extremes such as prolonged droughts and heatwaves. By aligning the distribution

Figure 6. Daily dynamics of ignition probability, wind, and energy release component from 2000 through 2020 at two
locations that experienced an ignition on the date marked by the vertical red line. The horizontal gray lines in (a) and
(d) indicates a probability of 50%.
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of absence samples with the spatial and temporal patterns of reported ignitions, our method provides a more
realistic and informative foundation for modeling fire occurrence. We first used hyper‐sampling to develop over
36 million fire absence samples, randomly selecting points in space and time to ensure uniform coverage across
the WUS, while aligning the temporal distribution with seasonal ignition patterns (i.e., more samples in summer,
fewer in winter). Trained on all historical ignition samples (>500,000, after filtering out uncertain records) and
the hyper‐sampled ignition absence data, our IM yielded near‐perfect performance. Stratified ignition absence
samples were then strategically drawn either at historical fire locations but on different dates (to capture spatial
structure) or on the same dates as historical fires but at nearby locations (to capture temporal structure). When
applied to these more realistic ignition absence samples, which were designed to closely resemble fire‐prone
conditions, the model's performance declined substantially. Further analysis revealed that the model tended to
assign high ignition probabilities across much of the WUS on critical fire weather days, thereby limiting its
effectiveness for operational use in resource allocation and fire prevention or response.

We then developed an AIM that incorporated not only hyper‐sampled data but also spatially and temporally
stratified samples representing ignition absence. Although this model slightly underperformed the original IM
when applied to the test data, its performance substantially improved when applied to absence samples with
background conditions that closely resembled those of ignition events. The AIM also produced more reliable
ignition risk maps, effectively capturing spatial variability in fire occurrence likelihood across low‐ and high‐risk
areas. We used this model to generate time series of ignition probabilities for selected locations across the WUS.
The model successfully tracked intra‐annual cycles of dry‐hot versus wet‐cold weather to predict ignition like-
lihood. Additionally, in certain locations, ignition probabilities remained consistently high throughout the year
except during brief cold and wet periods, indicating a dominant influence of consistent human factors. The model
also effectively captured seasonal ignition patterns, such as those associated with agricultural debris burning, and
was sensitive to the effect of infrastructure proximity, especially roads, on ignition risk.

Future research could build on our development of point‐based models and their application to develop gridded
maps of fire ignition likelihood by incorporating computer vision models to better capture spatial patterns in
ignition drivers. Our models assume that temporal nonstationary in ignitions can be represented through proxy
variables such as year. Although our models make accurate short‐term predictions, they will need periodic
retraining as new data become available to account for evolving trends. We also used the FIPS code as a proxy for

Figure 7. Driving factors of modeled probability of ignition (all ignitions, natural ignitions, and human‐caused ignitions) in the western United States derived from
Shapley Additive Explanations. Left column shows the global importance of each factor. Right column shows the contribution of each factor to each fire incident, with
blue and red colors indicating low and high feature values. Positive SHAP values indicate positive contribution of the driver to ignition probability.
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local factors such as resources, demographics, and community characteristics. Extending this framework to
explicitly include these variables could further improve model performance. Lastly, projecting future ignition
patterns in response to population dynamics, WUI expansion, and ongoing climate warming remains an active
and important area for future research.
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