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Abstract
Wildfire is an annual threat for many rural communities in the Pacific Northwest region 
of the United States. In some severe events, evacuation is one potential course of action to 
gain safety from an advancing wildfire. Since most evacuations occur in a personal vehicle 
along the surrounding road network, the quality of this network is a critical component of 
a community’s vulnerability to wildfire. In this paper, we leverage a high-resolution spatial 
dataset of wildfire burn probability and mean fireline intensity to conduct a regional-scale 
screening of wildfire evacuation vulnerability for 696 Oregon and Washington rural towns. 
We characterize each town’s surrounding road network to construct four simple road met-
rics related to the potential to quickly and safely evacuate: (1) the number of paved lanes 
leaving town that intersect a fixed-distance circular buffer; (2) the variety of lane directions 
available for egress; (3) the travel area that can be reached within a minimum distance 
while constrained only to movement along the paved road network; and (4) the sum of 
connected lanes at each intersection for the road network within a fixed-distance circular 
buffer. We then combine the road metrics with two metrics characterizing fire hazard of 
the surrounding landscape through which evacuation will occur: (1) burn probability and 
(2) mean fireline intensity. By combining the road and fire metrics, we create a composite 
score for ranking all towns by their overall evacuation vulnerability. The most vulnerable 
towns are those where poor road networks overlap with high fire hazard. Often, these towns 
are located in remote, forested, mountainous terrain, where topographic relief constrains 
the available road network and high fuel loads increase wildfire hazard. An interactive map 
of all road quality and fire hazard metrics is available at https ://www.fs.fed.us/wweta c/brief 
/evacu ation .php.
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1 Introduction

Wildfire is a natural part of many ecological systems, but population growth in the west-
ern U.S. has heightened human interactions with burnable landscapes, resulting in hazards 
including property loss and death (Moritz et al. 2014; Keeley 2017). Researchers are more 
frequently suggesting a people-centric approach to wildfire planning, with a focus on limit-
ing loss of life and property (Keeley and Syphard 2019, Kolden and Henson 2019, Schoen-
nagel et  al. 2017). The human aspect of wildfire hazard has moved into the spotlight in 
recent years, with large fires spurring evacuation, personal injury, and loss of life and prop-
erty: see, for example, the 2018 Camp Fire in Butte County, California, which killed 88 
people (CalFire 2018a), the cluster of large fires that encroached the wildland-urban inter-
face of southern and central California in 2017 (Nauslar et al. 2018), the mass evacuations 
forced by the 2016 Fort McMurray fire in Alberta (McGee 2019), and the September 2020 
wildfire season in the Oregon Cascades (The Oregonian, 2020a; The Oregonian, 2020b). 
Understandably, significant resources are being invested to map potential impacts of wild-
fire on communities at the state and federal level (e.g., Colorado State Forest Service 2018; 
CalFire 2018b; Gilbertson-Day et al. 2018; Scott et al. 2020), in academic research (e.g., 
Haas et al. 2013; Cova et al. 2013; Ager et al. 2015), and in investigative journalism (e.g., 
Larson and Wagner 2019).

For remote rural communities embedded in forest, shrublands, and grasslands of west-
ern North America, wildfire remains a perennial threat to personal safety. Wildfire impacts 
on rural communities can be assessed in terms of vulnerability, considering the combined 
hazard and resilience (Vaillant et al. 2016). By relying primarily on physical forces driving 
wildfire—e.g., weather, topography, and fuels—wildfire hazard is more straightforward to 
quantify than resilience. Recently, high-resolution raster (120 m x 120 m) spatial wildfire 
hazard datasets have become available for many parts of the United States, including the 
Pacific Northwest (Gilbertson-Day et al. 2018; Scott et al. 2020). These datasets capture 
burn probability and fireline intensity calculated from high-resolution stochastic simula-
tions of wildfire ignition and spread. While these data quantify hazard, they do not capture 
resilience, nor the ability of people affected to react to fire. Resilience to wildfire hazard 
has contributing variables, including socio-economic status, infrastructure, mobility, and 
housing density of the community (Davies et al. 2018; Gilbertson-Day et al. 2018; Nielsen-
Pincus et al. 2019). When a wildfire forces a community to evacuate, the quality of the road 
evacuation network becomes a major component of resilience.

Because a wildfire evacuation has so many prior unknowns, including if, when, and 
where to evacuate, definitively linking drivers of fire spread with the uncertainties of evac-
uation is difficult. Evacuation scenarios depend on a combination of official policy, individ-
ual priorities, perception of the hazard, sufficient infrastructure, and the degree of wildfire 
hazard (Cova et al. 2009, Paveglio et al. 2012; Drews et al. 2014; McCaffrey et al. 2018). 
For most self-sufficient evacuations, the spatial constraints of egress options are determined 
by the availability of roads conducive to travel in a personal vehicle (Murray-Tuite and 
Wolshon 2013). Despite the uncertainties of predicting wildfire evacuation vulnerability, 
communities would benefit from awareness of potential evacuation options before wildfire 
becomes an imminent threat. Residents can then make informed, premeditated decisions 
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about whether evacuation is the best course of action during a wildfire and identify what 
evacuation options are available.

One of the most effective ways to convey evacuation potential is through map-based 
analyses (Steelman et  al. 2015; Cao et  al. 2016). Effective map-based analyses invoke a 
variety of methods, scales, and approaches. One approach is transportation network mode-
ling, which simulates the outflow of vehicles along a road network during a specific evacu-
ation scenario. Variations of network modeling approaches have been successfully applied 
to individual communities, including Julian, CA (Dennison et  al. 2007; Li et  al. 2019), 
Colorado Springs, CO (de Araujo et al. 2014), Santa Barbara, CA (Cova and Church 1997), 
Summit Park, UT (Wolshon and Marchive 2007), and Emigration Canyon, UT (Cova and 
Johnson 2002). However, transportation simulations are costly to perform in terms of input 
data required and computing resources; for this reason, they often require other necessary 
concessions, such as limiting the analysis to a single community. One exception to this is 
a west-wide study published by Cova et  al. (2013), where intensive evacuation network 
simulations were performed across a large spatial domain; however, because the spatial 
domain is so large, most of the results and conclusions are understandably dominated by 
southern California communities, with less consideration given to less densely populated 
rural towns where wildfire hazard is still high.

While individual household- and car-based traffic simulations are ideal for evaluating 
egress routes for individual communities under specific scenarios, regional-scale analyses 
can screen for communities where high fire probability, high fireline intensity, and poor 
evacuation potential coincide, allowing prioritization of communities for further investiga-
tion. To this end, we designed and applied a regional-scale geographic analysis method to 
assess the road network quality of 696 rural communities across Oregon and Washington, 
U.S.A. In this approach, we calculated four basic metrics based on the quality of the sur-
rounding road network, substituting the computational expense of individual household- 
and car-based traffic simulations for the advantages of an efficient, regional-scale screening 
tool. Then, we combined these four road metrics with each town’s wildfire hazard to con-
struct rankings of overall vulnerability.

To our knowledge, a simple, regional-scale, geographic assessment of wildfire evacu-
ation vulnerability does not exist formally in the scientific literature for the Pacific North-
west. Likely, this omission is due to the difficulty of defining a single measure of evac-
uation vulnerability that applies across all communities; we mitigate this problem by 
calculating multiple metrics that each describe unique aspects of a town’s evacuation vul-
nerability. On its own, a single metric is unlikely to fully capture the evacuation vulnerabil-
ity of a town; but, by combining an ensemble of metrics with a geographic examination of 
a town’s road network, we can evaluate alternative aspects of each town’s egress network 
at a heretofore unpublished regional scale. Assessing wildfire vulnerability is complicated, 
and our work is certainly not the final, definitive doctrine; nor do we advise for or against 
evacuation during wildfire. Rather, we hope that our analyses will be a starting point that 
stimulates further refinements and innovations of evaluating community wildfire evacua-
tion at the regional scale.
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2  Methods

To perform our regional analysis, we obtained the most current spatial maps of rural com-
munities, road networks, and wildfire hazard. Then, we calculated four road quality metrics 
to capture the basic features of the surrounding road network that could potentially be used 
for evacuation, and two wildfire hazard metrics to characterize the surrounding wildfire 
hazard. Each of the data layers and the metrics are described below.

2.1  Data layers

2.1.1  Towns and roads

We used the U.S. Census Bureau cartographic boundary shapefiles to derive spatial loca-
tions of Oregon and Washington census-designated places (US Department of Commerce, 
2017a and b). Census-designated places are communities for which the U.S. Census 
Bureau maintains boundaries; many unincorporated rural towns do not have official bound-
aries and are thus not included in this version of our analysis. In the original shapefile, each 
town is drawn as a polygon representing its boundary; we converted each town into a single 
point by calculating each polygon’s centroid. For all analyses, we consider this center point 
as the starting point for wildfire evacuations. Clearly, representing each town as a single 
point does not fully indicate individual home locations, but for smaller rural towns without 
significant urban spread, we consider it to be a simple and useful designation suitable to 
our purposes.

We used a road layer obtained internally through the U.S. Forest Service that incor-
porates detailed network information from HERE Technologies and the U.S. Department 
of Homeland Security. This layer was considered most complete upon evaluation against 
other widely available road datasets. We retained only paved roads from this layer, assum-
ing this as the absolute minimum requirement for a road to be considered a potential evacu-
ation option.

2.1.2  Rural town designations

To identify rural towns only, we used the University of Washington Rural Health Research 
Center’s zip code approximation of rural–urban commuting areas (RUCA), version 2.0 
(ZIP Code RUCA Approximation Methodology 2005). RUCA 2.0 zip code level data are 
linked to the original census tract level data produced by the U.S. Department of Agricul-
ture (USDA 2005). A zip code’s degree of rurality is categorized on a 10-point scale that 
incorporates travel patterns based on 2000 US Census Bureau commuting data and 2004 
zip codes. Since our spatial scale of analysis is the town, this made the designations simpler 
to assign. In QGIS v3.4.9 (QGIS Development Team), we performed a spatial intersection 
with the town point shapefile and the U.S. Census Bureau 5-Digit Zip Code Tabulation 
Areas shapefile (US Department of Commerce, 2017c) to assign each town a zip code, and 
then joined the corresponding zip code with its numeric RUCA designation. In cases where 
a town had multiple zip codes, we used the one that overlapped the town’s centerpoint. To 
define rural towns only, we excluded towns that were designated in RUCA as a “Metropoli-
tan area core: primary flow within an urbanized area” (e.g., large metropolitan areas like 
Portland, Seattle, and Bend), producing a final dataset of 696 towns.
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2.2  Road network quality screening metrics

We analyzed the quality of the road network within the immediate area surrounding a 
town. For example, all roads within a certain distance from the center of a town might be 
considered as potential evacuation corridors. We calculated all metrics using a distance 
rule of 15 km from each town’s center point. Whereas others have adjusted their vulner-
ability metrics by population (e.g., Scott et al. 2018), this will amplify the vulnerability of 
more populated over less populated areas; we decided not to adjust by population to avoid 
reducing the vulnerability of sparsely populated areas that may otherwise get overlooked. 
Although 15 km distance rules are used for final presentation of results and discussion, we 
also performed a simple sensitivity analysis of metrics calculated using 10 km and 25 km 
distance rules.

2.2.1  Exit capacity vulnerability metric

The exit capacity metric summarizes the number of lanes that are available at a fixed dis-
tance from a town’s center point. With the QGIS “Buffer” tool, we constructed a circu-
lar fixed-distance buffer line surrounding each town (QGIS Development Team). Then, 
using the “Line Intersect” tool, we created a point layer of paved road lanes intersecting the 
buffer, which we refer to as “exits.” Because the buffer is straight-line distance, not road 
travel distance, the intersection may include roads that are not actually reachable from the 
town’s center point (e.g., towns on the Oregon side of the Columbia River appear to have 
exits on the Washington side of the river, even when a bridge is not available). To minimize 
this problem, we first constructed a 50 km travel area (details for travel area constructed are 
described in Sect. 2.2.3) for each town and intersected these roads with the buffer so that 
only exits that can physically be reached from the town’s center point are recorded.

2.2.2  Road directionality vulnerability metric

The road directionality metric is based on the idea of flexible evacuation planning (Montz 
et al. 2012). Towns with a larger variety of potential exit directions have better flexibility 
during a wildfire evacuation. Evacuating toward the advancing wildfire front is generally 
not an option; more available exit directions means that a town could have a variety of 
other, safer choices.

With the QGIS “Hub Lines” tool, we constructed a set of straight lines connecting each 
town’s center point with each of its exit lanes. The final directionality metric was calcu-
lated as the circular variance of all azimuths of a town’s hub lines, using the circular vari-
ance function in the R package “circular,” which coerces data to a circular classification 
(Agostinelli and Lund 2017). Higher variances indicate more diverse directionality, and 
thus better exit flexibility. We note that variance does not always perform well on bimodal 
circular data, for example a town with two exits at 0° and 180°, but for our initial screening 
purposes we have accepted this drawback. A brief example of how variance can alter the 
directionality metric is provided in Appendix 1.

2.2.3  Travel area vulnerability metric

The travel area metric quantifies travel distance along a network rather than straight-line 
distance (Guttierez et  al. 2008; Kermanshah and Derrible 2017; O’Neill et  al. 1992). 
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This is an important distinction when evaluating the road evacuation network, since 
egress conducted in a personal vehicle will be constrained along these roads. Essen-
tially, the travel area contains the maximum set of places that can be reached within a 
specified distance from a starting point while traveling exclusively along the path of a 
network. Although more computationally demanding than counting exits intersecting 
a fixed-distance buffer, the travel area could present a more complete representation of 
the egress road network, since it better represents the curviness of roads exiting a town. 
For example, in a town where exit roads are straight, the travel area will be larger than 
a town where exit roads are windy; alternatively, the fixed-distance buffer will not make 
this distinction as both towns will have the same number of exits.

Using the “Service Area” tool in the QGIS “Network Analysis” plug-in, we calcu-
lated travel areas along the paved road network starting from each town’s center point, 
where each point was initially snapped to the nearest road segment. We then created a 
convex hull bounding polygon surrounding the outer edge of each travel area network; 
the area, in square kilometers, of each town’s bounding polygon is the travel area metric. 
The area of the bounding polygon is simply a way to summarize the travel area. Towns 
with a larger travel area are considered less vulnerable—the larger the travel area, the 
more potential road space is available to drive farther away from the town. The maxi-
mum 15 km travel area would approximate the area of the 15 km fixed-distance buffer 
circle, with straight roads emanating out in all directions in an "asterisk" shape.

2.2.4  Connectivity vulnerability metric

The connectivity vulnerability metric is established based on the concept of connectiv-
ity in network analysis. Well-connected streets provide efficient accessibilities to possi-
ble destinations and directions (Handy et al. 2003). In addition, better connectivity also 
helps to improve the quality of emergency responses, especially wildfires. This met-
ric quantifies the road connectivity, which summarizes the total number of connected 
lanes at each road intersection. A higher value indicates better flexibility, greater emer-
gency access, and higher possibility of improved service efficiency during a wildfire 
evacuation.

We use the Line and Junction Connectivity tool in ArcGIS Pro (available at https ://
www.arcgi s.com/home/item.html?id=3fa41 b1f8b 76487 9be8f 21b4e 7ffba bd) to calculate 
the connectivity vulnerability metric. The tool returns road intersections as points, with 
an attribute showing the total number of connected lanes at each intersection. To evalu-
ate the connectivity vulnerability for each town, we use 15 km fixed-distance buffer cir-
cles to spatially join the intersection point layer separately. For the intersections over-
lapped with a fixed-distance buffer circle, we sum up the number of connected lanes 
for all these intersections as connectivity per town. This returned value of connectivity 
indicates the total number of connected lanes within a fixed distance around a town’s 
center point.

2.3  Wildfire hazard screening metrics

We used a raster layer for Oregon and Washington that maps the annual burn probabil-
ity (BP) and mean fireline intensity (MFI) of large fires for each 120  m × 120  m pixel 

https://www.arcgis.com/home/item.html?id=3fa41b1f8b764879be8f21b4e7ffbabd
https://www.arcgis.com/home/item.html?id=3fa41b1f8b764879be8f21b4e7ffbabd
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(Gilbertson-Day et  al. 2018). This layer was produced by running 10,000—60,000itera-
tions of FSim, a stochastic, spatially aware wildfire simulation model (Finney et al. 2011). 
FSim applies historical wildfire occurrence and weather data to simulate ignition and 
spread and has been used across the western U.S. to evaluate wildfire hazard to people and 
resources (e.g., Scott et al. 2012; Haas et al. 2013; Thompson et al. 2013). The BP and MFI 
layers were generated using landscape and fuels from the 2014 version of Landfire, mean-
ing that any post-2014 wildfires are not included in the simulations.

2.3.1  Burn probability vulnerability metric

Using BP from FSim has one singular advantage over other ways to represent land-
scape fire probability, in that FSim stochastically simulates spread of thousands of fires 
under a range of plausible weather conditions and ignition locations based on historical 
wildfire and weather of a particular region. Wildfire probability in evacuation modeling 
studies is typically not represented in this way. For example, Li et al. (2019) used spa-
tially explicit simulations of wildfire spread toward the town of Julian, CA with the 
model FlamMap (Finney 2006), an approach similar to FSim, but which only allows 
simulations under a single scenario of fixed weather parameters. And, Cova et al. (2013) 
designated wildfire hazard according to Landfire land cover categories (Rollins 2009), 
which reflects potential burnability based on the expected historical wildfire regime 
without a stochastic spread component. Now that an FSim BP grid is available for Ore-
gon and Washington, it provides another angle for incorporating wildfire into evacua-
tion analyses. In these rasters, annual BP of each 120 m x120m pixel is defined as the 
number of times that a pixel burns divided by the number of iterations, or “fire years,” 
simulated by FSim. Using the "Zonal Statistics" tool in QGIS, we calculated the mean 
BP of all raster cells within each town’s fixed-distance circular buffer.

2.3.2  Mean fireline intensity vulnerability metric

Fireline intensity measures the rate of energy released by the burning fuels along the 
fire’s front (Rothermel 1972). It is calculated in FSim following Rothermel (1972) for 
surface fires and Scott and Reinhardt (2001) for crown fires. Fireline intensity will vary 
for a given pixel based on fuel moisture, fuel type, wind speed, and the direction the 
fire approaches the pixel (backing, flanking, or heading) (Finney et  al 2011). In this 
work, we used the mean fireline intensity (MFI) output from FSim, which gives the 
mean intensity of each pixel. While many forested pixels will burn sometimes as a sur-
face fire and other times as a crown fire, the MFI, combined with burn probability, can 
be used as a rough measure by which to compare hazard across different sites (i.e., Scott 
et al., 2012). MFI does not indicate anything about fire effects (severity), but has been 
shown to be a useful metric in wildfire response settings (Keeley 2009). A site with a 
low MFI will generally experience fires that are easier to contain and pose less risk to 
highly valued resources (such as homes) than a site with a high MFI. However, any 
individual fire may be an exception to this rule, since a site with relatively low MFI may 
have the potential to experience a high-intensity fire while a site with a high MFI may 
also experience low-intensity fires under some weather conditions. As a rule, though, 
the MFI can be used to indicate sites with higher versus lower hazard. High MFI is 
often indicative of forested areas that experience crown fire, a phenomenon likely to 
launch embers, a frequent cause of house loss (Cohen 2000). We used a 120 m x 120 m 
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resolution raster layer of mean fireline intensity provided in the same report described in 
Sect. 2.3.1 (Gilbertson-Day et al 2018). To construct the metric, we calculated the mean 
MFI of all raster pixels within each town’s fixed-distance circular buffer.

2.4  Overall vulnerability metric

To enable construction of an overall metric, we first normalized each of the individ-
ual metrics to a scale of 0 to 1. Whereas lower values for road metrics indicate higher 
vulnerability (i.e., poorer road quality), high values for fire metrics indicate higher 
vulnerability (i.e., higher hazard); for this reason, we inverted the fire metrics before 
performing the normalization so that all metrics could be interpreted on the same 
scale. These normalized scores are primarily useful for comparing rankings of towns 
across metrics and should not be interpreted as raw values (i.e., a town with a normal-
ized score of 0.4 does not necessarily indicate twice the vulnerability of a town with a 
score of 0.8). For each town, we calculated an overall vulnerability metric as follows: 
OV = mean

[

Road Quality, Fire Hazard
]

 , where OV is overall vulnerability, road quality 
is the mean of exit capacity, directionality, travel area, and connectivity, and fire hazard 
is the mean of burn probability and mean fireline intensity. In this way, the road and fire 
metrics each contribute 50% to the overall vulnerability rankings.

We then order all towns by their normalized metrics to create rankings 1 – 696, where 
1 is highest overall vulnerability/poorest road quality/highest fire hazard. We subsequently 
divide the town ranking into quartiles: Highest overall vulnerability/poorest road quality/
highest fire hazard (Towns ranked 1 – 174); High overall vulnerability/poor road quality/
high fire hazard (ranks 175 – 348); Low overall vulnerability/good road quality/low fire 
hazard (ranks 349 – 522); and lowest overall vulnerability/best road quality/lowest fire haz-
ard (ranks 523 – 696). For clarity, towns are also discussed in terms of these rankings, 
rather than solely in terms of their normalized metrics.

2.5  Cluster analysis of towns

To identify natural clusters for summarizing the six-vulnerability metrics, we applied the 
k-means, an unsupervised clustering algorithm (MacQueen 1967, DATAtab Statistics Cal-
culator https ://datat ab.net), to the normalized metric values. The analysis identified four 
clusters. Although the initial centroids of the clusters are randomly chosen, repeating the 
analysis did not yield significantly different results.

3  Results

3.1  Road quality

Road quality contributes 50% of the overall vulnerability equation and consists of equal 
parts exit capacity, directionality, travel area, and connectivity (Fig. 1a). Towns that have 
the highest road vulnerability have the poorest combined road quality in the four contribut-
ing road metrics. The five towns with the worst road quality are as follows: 1) Lonerock, 
OR (1st in exit capacity, 1st in directionality, 6th in travel area, 2nd in connectivity); 2) 
Conconully, WA (3rd in exit capacity, 2nd in directionality, 10th in travel area, 13th in 

https://datatab.net
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connectivity); 3) Laurier, WA (6th in exit capacity, 11th in directionality, 1st in travel area, 
1st in connectivity); 4) Disautel, WA (3rd in exit capacity, 4th in directionality, 36th in 
travel area, 3rd in connectivity); and 5) Skykomish, WA (2nd in exit capacity, 3rd in direc-
tionality, 60th in travel area, 31st in connectivity). Note that exit capacity is constrained to 
whole numbers (e.g., a town can have 1 or 2 exits, but not 1.2 or 1.3 exits). For this reason, 
towns such as Conconully and Disautel both rank 3rd in exit capacity, since they both have 
3 exits.

Fig. 1  Geographic distribution of ranked quartiles for a road quality, b wildfire hazard, and c overall vul-
nerability for 696 rural Pacific Northwest towns. Towns are colored by quartile (174 towns per quartile). 
Road quality is the average of the exits, directionality, travel area, and connectivity metrics, where “highest 
vulnerability” indicates the poorest road metrics, and “lowest vulnerability” indicates the best road metrics. 
Wildfire hazard is the average of the burn probability and mean fireline intensity metrics, where “highest 
vulnerability’’ indicates highest hazard, and “lowest vulnerability” indicates lowest hazard. Overall vulner-
ability is the average of road quality and wildfire hazard
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Fig. 2  Hundred most vulner-
able towns, ranked from highest 
overall vulnerability (top) to the 
lowest overall vulnerability (bot-
tom). Normalized road quality 
metrics are displayed on the left, 
and normalized wildfire hazard 
metrics are on the right. Note 
that with road quality metrics, 
shorter bars represent poorer 
quality, while with the fire hazard 
metrics, shorter bars represent 
lower hazard
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3.2  Wildfire hazard

Wildfire hazard contributes 50% of the overall vulnerability equation, and consists of equal 
parts BP and MFI (Fig. 1b). Towns with the highest wildfire hazard have relatively high BP 
and MFI. The five towns with the highest wildfire hazard are: 1) Takilma, OR (8th in BP, 
3rd in MFI); 2) Williams, OR (22nd in BP, 7th in MFI); 3) Leavenworth, WA (2nd in BP, 
54th in MFI); 4) Glendale, OR (85th in BP, 1st in MFI); and 5) Cliffdell, WA (24th in BP, 
25th in MFI).

3.3  Overall vulnerability

Towns ranking highly in overall vulnerability are those with both poor road quality and 
high wildfire hazard (Figs. 1c, 2). The five towns with the highest overall vulnerability are 
as follows: 1) Williams, OR (56th in road quality, 2nd in wildfire hazard); 2) Takilma, OR 
(240th in road quality, 1st in wildfire hazard); 3) Cliffdell, OR (34th in road quality, 5th in 
wildfire hazard); 4) Conconully, WA (2nd in road quality, 56th in wildfire hazard); and 5) 
Trout Lake, WA (55th in road quality, 11th in wildfire hazard).

An interactive map of road quality, wildfire hazard, and overall vulnerability of all 696 
towns included in this analysis is available at https ://www.fs.fed.us/wweta c/brief /evacu 
ation .php, and a text dataset of all metrics is provided in Appendix 2.

3.4  Clustering of towns

The k-means cluster analysis identified four clusters (Fig. 3). These clusters can be used 
as a way to visualize and interpret natural groupings of towns according to their combined 
metrics. Cluster 1 comprises towns with some of the most limited road networks that are 
located in generally high fire hazard areas. Its member towns have few exits and the poorest 
connectivity. The directionality and travel area of towns in Cluster 1 range widely, although 
the median values are the poorest for directionality and the second poorest for travel area, 
among the four clusters. The two fire hazard metrics for Cluster 1 also range widely, but the 

Fig. 3  K-means cluster analysis 
of the six individual metrics. 
Four clusters were identified 
from normalized vulnerability 
metrics. The distributions of 
metric values within each cluster 
are plotted as box plots. Colored 
boxes represent the two mid-
dle quartiles, where the break 
between the two boxes represent 
the median. The lines extending 
above and below the colored 
boxes represent the highest and 
the lowest quartiles, respectively. 
Clusters are numbered arbitrarily. 
Lower metric values represent 
higher vulnerability

https://www.fs.fed.us/wwetac/brief/evacuation.php
https://www.fs.fed.us/wwetac/brief/evacuation.php
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two metrics have the lowest median among the four clusters, representing high vulnerabil-
ity in both fire metrics. A few towns in this cluster have high hazard in both BP and MFI. 
For example, Takilma, OR, ranks 8th and 3rd, respectively in the two metrics. However, 
for the majority of towns in this cluster, a high value in one metric is balanced by a lower 
value in the other. For example, Idanha, OR has high MFI hazard (ranked 19th) but low BP 
hazard (ranked 201st).

In contrast to Cluster 1, Cluster 4 comprises towns with some of the best road qual-
ity metrics and lowest fire hazard. In particular, the towns in this cluster have a relatively 
high number of exits and good connectivity, and their BP and MFI hazards are the lowest 
among the four clusters. No town in this cluster is ranked higher than 251st in BP or 156th 
in MFI. Typically, towns in this cluster are situated on flat terrain, surrounded by agricul-
ture (e.g., Green Bluff, WA), or on a coastal plain (Oyehut, WA).

Clusters 2 and 3 occupy the middle range between Cluster 1 and 4. The towns in these 
clusters are similar to towns in Cluster 4, in that they have low BP and MFI hazard. How-
ever, the towns in these clusters have fewer exits and poor connectivity, increasing their 
vulnerability in case evacuation is needed. Additionally, Cluster 2 has poor travel area 
quality. In fact, Cluster 2′s median travel area value (normalized travel area metric of 0.39) 
is marginally lower than that of Cluster 1 (normalized travel area metric of 0.44). Granger, 
WA, exemplifies towns in this cluster, served primarily by one freeway running through the 
town.

3.5  Sensitivity analysis of distance used for vulnerability evaluation

Because the distance that a town will need to evacuate will probably vary with the spe-
cific circumstances of the wildfire, we also evaluated 10 km and 25 km evacuation travel 
distances in addition to the 15 km distances presented in the results and discussion. A sim-
ple sensitivity analysis reveals little difference in the spreads of the four metrics accord-
ing to the distance used (Fig. 4). The obvious exception is the travel area metric, where a 
larger travel distance designation will always result in a larger service area. Overall, rank-
ings are also minimally different (full 10 km results in Appendix 3; full 25 km results in 
Appendix 4).

4  Discussion

4.1  Geography of evacuation vulnerability

Overall, evacuation vulnerability is highest in towns where the poorest road networks coin-
cide with the highest wildfire hazard. The Pacific Northwest has a fairly distinctive geogra-
phy of vulnerability and discussed in the following four sections for each of the four overall 
vulnerability quartiles.

4.1.1  Highest vulnerability

Towns with the highest overall vulnerability are located primarily along the west and east 
sides of the Cascade crest, northeastern Washington, southwestern Oregon, and Oregon’s 
Blue Mountains (Fig. 1c, dark red dots; geographic features mentioned in text are refer-
enced on Fig.  5). The remote mountainous locations contribute to poor road networks; 
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combining poor roads with high BP and/or MFI give towns in these regions the highest 
vulnerability rankings in the Pacific Northwest. It is critical to note here that many areas 
where BP is very high do not necessarily coincide with areas where MFI is also high; in 
fact, high BP tends to more often coincide with low MFI (Fig. 5). For example, BP is high 
in the flatter, open shrubland landscapes of the Columbia Plateau in southeastern Washing-
ton and the Oregon Plateau in southeastern Oregon; however, because shrublands do not 
hold nearly as much burnable biomass as forested landscapes, MFI is relatively low. Alter-
natively, MFI is highest in high-fuel landscapes, such as the dense forests of the western 

Fig. 4  Boxplot distributions of each vulnerability metric for 696 rural towns using 10  km, 15  km, and 
25 km distance designations: a Exit capacity; b Directionality; c Travel area; d Connectivity; e Burn proba-
bility; and f Mean fireline intensity. Note that these plots show “raw” metric values, not the normalized val-
ues constrained between 0 and 1. Each town’s value is plotted as an individual point. Boxes bound the 25th 
and 75th percentiles. Solid black horizontal lines indicate medians, and black asterisk indicates the mean
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Cascade crest or the southwestern Oregon mountains. For this reason, a combination of 
high MFI, moderate-to-high BP, and poor road networks emerges as the perfect storm iden-
tifying “Highest Vulnerability” towns. Notable examples in this quartile include:

Williams, OR (#1) –  Located in the mountains of southwestern Oregon, Williams 
ranks as the town with the highest evacuation vulnerability. It is in the quartiles of poor-
est road metrics, highest BP, and highest MFI.

Leavenworth, WA (#6)—A popular tourist destination in central Washington, Leav-
enworth has very high fire hazard and its mountainous location in the Wenatchee River 
Canyon constricts the road network. It ranks in the poor road metrics, highest BP, and 
highest MFI quartiles.

Detroit (#14) and Idanha (#18), OR—These two towns are located near each other in 
the Santiam Canyon on the western slopes of the Cascade crest. Both are in the poorest 
road metrics, highest MFI, and high BP quartiles, accounting for their overall highest 
vulnerability ranking. During the September 2020 Beachie Creek Fire  in the vicinity 
of Detroit and Idanha, 683 homes were destroyed (The Oregonian, 2020a), five people 
were killed (The Oregonian, 2020b), and both towns were under emergency evacuation 
orders and experienced severe property damage.

Skykomish, WA (#13) and Oakridge, OR (#38)—Although not directly impacted by 
the September 2020 wildfires that caused damage to Detroit and Idanha, Skykomish and 

Fig. 5  Map of 120 m × 120 m average annual burn probability a and mean fireline intensity b. Raster data 
taken from the Pacific Northwest Quantitative Wildfire Risk Assessment (Gilbertson-Day et al. 2018). Geo-
graphic features and major cities mentioned in the text are shown. Roads include class 1–3 highways (US 
Census Bureau 2000). Non-burnable pixels include agriculture, development, barren ground, ice, and water 
as classified in LANDFIRE (2014)
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Oakridge are both located in similar settings on the western slope of the Cascades, and 
both experience a similar combination of vulnerability (poorest road metrics, high BP, 
and highest MFI quartiles).

Mill City (#140) and Gates (#141), OR—These towns are located near each other, to 
the west of Detroit, OR at lower elevations in the Santiam Canyon. Each town experi-
enced emergency evacuations and significant property damage during the September 2020 
Beachie Creek Fires.

4.1.2  High vulnerability

Many towns along the Pacific coastline and in the Coast Range and Olympic Mountains 
fall into the high vulnerability quartile (Fig. 1c, orange dots). Poor road networks are typi-
cal of many coastal towns (Fig. 1a, dark red dots along the Pacific Ocean), where roads 
are constrained by rugged mountains immediately to the east and the Pacific Ocean to the 
West. Despite the relatively lower wildfire hazard of coastal towns, wildfires can and do 
occur; the exceptionally limited road networks increase their overall evacuation vulnerabil-
ity in the event of a wildfire. Coastal and Coast Range mountain towns in the high vulner-
ability category differ from their highest vulnerability counterparts by means of lower BP 
and lower MFI. While the road networks of these towns are amongst the most limited in 
the Pacific Northwest, they have objectively lower wildfire hazard leading to their slightly 
lower vulnerability rating. Notable examples in this quartile include the following:

Centerville, WA (#188)—Located in the predominantly shrub and agricultural Colum-
bia Plateau region of south-central Washington, Centerville is characteristic of towns that 
may experience frequent wildfire, but due to the low fuel loads of surrounding shrubland 
vegetation, the fires that do occur will have relatively low MFI. Centerville ranks in the 
poor road metrics, highest BP, and low MFI quartiles.

Clallam Bay, WA (#194)—A coastal Washington town constrained by the Strait of Juan 
de Fuca to its north and the Olympic Mountains to its south, Clallam Bay ranks in the 
poorest road metrics, lowest BP, and lowest MFI quartiles. Clallam Bay is characteristic of 
many coastal towns in the high vulnerability quartile, where exceptionally poor road net-
works constrained by the adjacent ocean and mountains counteract their relatively low fire 
hazard to produce overall high vulnerability scores.

Alsea, OR (#212)—Alsea is typical of towns nestled in the rugged Coast Range of Ore-
gon, ranking in the poorest road metrics, low BP, and highest MFI quartiles. Many towns 
in the Coast Range possess similarly poor road networks, constrained by the high topo-
graphic relief, as well as the low BP and high MFI characteristic of the wetter, densely for-
ested regions of western Oregon and Washington.

Madras, OR (#295)—Madras is located east of the Cascades and has high fire hazard, 
ranking in the highest BP and high MFI quartiles; however, it also has an exceptionally 
good road network, making it slightly less vulnerable than other towns with similar wild-
fire hazard in the Highest Vulnerability quartile.

4.1.3  Low vulnerability

Towns in this quartile (Fig. 1c, yellow dots) tend to be located in coastal areas with slightly 
better road networks, on the periphery of flat agricultural valleys where the landscape is 
transitioning to the more mountainous and forested foothills of mountain ranges, and in 
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many of the central Oregon and Washington communities where fire hazard is still high, 
but that have advantageous road networks. Notable examples in this quartile include:

Bellfountain, OR (#353)—Located in the southwestern edge of the agricultural Wil-
lamette Valley near the adjacent foothills of the Coast Range, Bellfountain ranks in the 
poor road metrics, low BP, and low MFI quartiles. Bellfountain is representative of several 
towns in the Low Vulnerability category that are situated in a location of transition from 
a generally low vulnerability agricultural valley to a higher vulnerability mountainous or 
forested area.

Prineville, OR (#377)—The central Oregon town of Prineville has high fire haz-
ard (highest BP and high MFI quartiles). However, it is in the best road metrics quartile, 
thereby decreasing its overall vulnerability. Although we did not include population in our 
analysis, Prineville is more populous than many towns on our list, potentially creating risk-
ier evacuation scenarios.

Malden, WA (#432)—This eastern Washington town ranks in the poor road metrics, low 
BP, and lowest MFI quartiles. However, a September 2020 wildfire fanned by 45 mile per 
hour winds prompted emergency evacuations. All evacuations were successful (no loss of 
life), albeit the fire inflicted extreme property damage to the town.

Grandview, WA (#480)—Located in the agricultural Yakima River valley of south-
ern central Washington, Grandview possesses many similar characteristics to Centerville 
(4.1.2c), but has a much better road network. It ranks in the good road metrics, high BP, 
and lowest MFI quartiles.

Yacolt, WA (#489)—Although it ranks in the high MFI quartile, a good road network 
coupled with low BP ultimately rank Yacolt in the Low Vulnerability category. However, 
extreme wildfires can and have occurred in the area—Yacolt sits near the western burn 
perimeter of the infamous Yacolt Fire, which burned 500,000 acres in 1902.

4.1.4  Lowest vulnerability

The least vulnerable towns tend to be situated in the sparsely forested Willamette Valley 
of Oregon, the Snake and Columbia River Valleys of eastern Washington, and the exur-
ban communities outside of Portland, Seattle, and Olympia. These are areas with minimal 
wildfire hazard and exceptional road networks; however, their inclusion in the Lowest Vul-
nerability quartile does not argue that wildfires do not occur in these towns, but simply that 
their vulnerability is lower than most other Pacific Northwest towns. Notable examples in 
this quartile include:

Sandy, OR (#575)—An exurban community to Portland, OR, Sandy is in the best road 
metrics, low BP, and high MFI quartiles, giving it an overall Lowest Vulnerability ranking. 
However, the Riverside Fire in Clackamas county in 2020 prompted state officials to keep 
Sandy under Level II evacuation orders for several days, indicating that residents should 
leave preemptively or be ready to flee at a moment’s notice.

Yelm, WA (#560)—On the outskirts of the metropolitan areas of Olympia and Tacoma, 
Yelm exemplifies the exurban communities situated between the Cascade foothills and 
Washington’s Seattle-Tacoma-Olympia urban corridor. Yelm ranks in the best road metrics, 
low BP, and high MFI quartiles. Yelm’s high MFI, overall rankings, and exurban setting 
lend similarity to Sandy, OR, which was under Level II evacuation orders during Septem-
ber 2020.
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Stayton, OR (#640)—Stayton is situated where the eastern edge of the Willamette Val-
ley meets the Cascade foothills, near the Santiam Canyon. Stayton is in the best road met-
rics, lowest BP, and lowest MFI quartiles. During the Beachie Creek fire in Marion County 
in 2020, adjacent towns just miles to the east of Stayton were destroyed—i.e., Detroit, 
Idanha, Mill City. While no damage was reported in Stayton, the town was under Level 
II evacuation orders for three days and experienced hazardous smoke conditions for more 
than a week.

St. Paul, OR (#624)—St. Paul is typical of low-risk towns in the agricultural Willamette 
Valley region and is surrounded primarily by flat agricultural land. It ranks in the best road 
metrics, lowest BP, and lowest MFI quartiles.

4.2  Different faces of fire hazard: Burn probability versus mean intensity 
and “westside” versus “eastside”

Our results demonstrate that wildfire hazard (burn probability and fire intensity) is an 
important characteristic of evacuation vulnerability and helps identify communities that 
would otherwise not be identified as vulnerable had we used only BP or MFI singly, 
including many western Oregon and Washington towns (hereafter called “westside,” refer-
ring to the Pacific Northwest west of the Cascade crest, as opposed to “eastside,” or east 
of the Cascade crest). If wildfire hazard was defined only by probability of occurrence, 
for example, then there would be few or no westside communities in the highest vulner-
ability quartile. Instead, our results show communities along the west Cascades and even 
the Coast Range, where long fire return intervals regularly exceed 200 years (Spies et al. 
2020; Agee 1996), as among the most vulnerable in the Pacific Northwest. No matter how 
infrequent, westside wildfires do happen and our results illustrate that when they do, par-
ticular communities may face very difficult evacuation challenges, in part because of lim-
ited road networks, but also because of extremely intense fires (Fig. 5; approximately BP ≤ 
0.006, MFI > 1346). Extremely intense wildfires spread quickly, and often both ground and 
aerial suppression efforts are ineffective or impossible (Hirsch and Martell, 1996). In those 
instances, efficient evacuation is especially important because there is little that can be 
done to protect homes, making shelter-in-place protocols inappropriate (Cova et al. 2011).

Where eastside communities may already be engaged in emergency wildfire planning 
because wildfire is a relatively frequent hazard (i.e., high burn probability), wildfire-related 
emergency planning may not be a priority in westside communities where wildfire is 
a more distant concern, although this may be less likely to be true following the wide-
spread fires of 2020 (Hall and Slothower 2009). Furthermore, there is evidence that even 
if emergency planning has occurred at regional and community levels, individual percep-
tions of low risk on the westside may inhibit timely or successful evacuation (McLennan 
et  al. 2017). Our analysis of road networks and fire intensity alongside burn probability 
is intended to clarify the source of vulnerability and to demonstrate that wildfire prepar-
edness is not simply a concern in high-frequency fire regimes. In fact, extreme wildfires 
that ignited on September 7, 2020 (Labor Day fires) in western Oregon sadly confirm the 
need to specifically consider low probability, high consequence events on the westside. The 
Labor Day fires resulted in evacuation orders for approximately 500,000 residents (Ore-
gon Public Broadcasting 2020) and claimed at least 10 lives, the deadliest in state his-
tory; they destroyed towns like Detroit and Mill City, Oregon, which our analysis ranked 
among the most vulnerable in the Pacific Northwest. The Labor Day fires also resulted in 
major evacuations to westside towns like Molalla and Canby, Oregon, on the eastern edge 



928 Natural Hazards (2021) 107:911–935

1 3

of the Willamette Valley, which our analysis ranked among the least vulnerable. Beverly 
and Bothwell (2011) characterized populous regions with limited fire potential but which 
abut significantly more fire prone landscapes (i.e., towns in Oregon’s Willamette Valley) as 
“areas of concern” in which descriptions of fire hazard should be careful to not undervalue 
extremely rare events given potentially extreme consequences. Communities in areas of 
concern exposed to low-probability, high-consequence events may well benefit from prin-
ciples learned in catastrophic fires in Australia, namely: (1) residents should be preemp-
tively evacuated during instances of extreme fire weather; (2) buildings are not defensible 
during extreme fire weather; and (3) residents should be encouraged to leave early (Whit-
taker et al., 2020).

In contrast to the westside, eastside fire hazard tends to be dominated by burn prob-
ability rather than intensity (Fig. 5; approximately BP > 0.006, MFI ≤ 1346). Residents of 
towns located in the Blue Mountains, Harney Basin, and Columbia Plateau live amongst 
much more frequent fire, with fire return intervals on the order of 10–20 years (Johnston 
et al. 2016). Drier conditions on the eastside contribute to consistently low fuel moisture 
in the shrub, grassland, and low-density forests representative of the eastern Pacific North-
west rain shadow. The proclivity for low fuel moistures and the rapid rates of spread in 
these flashy fuels produce high BP. However, these areas do not contain the dense concen-
trations of biomass that blanket the wetter, denser forests of the westside, so fires tend to 
be less intense. In this respect, fire hazard in eastside communities presents a somewhat 
opposite problem from westside fire hazard.

Because fires occur frequently on the eastside, fire preparedness tends to consistently 
occupy the local public consciousness (Hall and Slothower, 2009). While lower intensity 
on the eastside means that, on average, eastside fires are not as intense as on the westside, 
this by no means signifies that these fires are less dangerous, only that the fires present a 
different set of problems than westside fires. The short return intervals make fire a very real 
possibility somewhere on the landscape in any given season; additionally, the fast rates of 
spread characteristic of shrub and grassland fires mean that fires can spread from ignition 
site to a community in an extremely short time frame. As an example of the hazards these 
fires can present, a rapidly spreading fire moved through a low-intensity eastern Wash-
ington landscape during early September 2020, prompting urgent evacuation of the small 
agricultural community of Malden and eventually destroying 80% of the town’s structures 
(National Public Broadcasting 2020). Relative to the coinciding Labor Day fires on the 
westside, the Malden fire would have spread with a lower intensity, but its rapid spread into 
the community made it a very dangerous evacuation scenario. The geographic remoteness 
of many eastside communities adds further weight to their vulnerability, besides having 
some of the poorest road networks (Fig. 1, especially northeastern Washington and east-
central Oregon).

In cases of preemptive evacuation, the quality of the surrounding road network takes on 
increased importance. In fact, towns with the highest fire hazard often also have the poorest 
road networks (Fig. 6). This is likely a factor of geography. Areas of highest MFI occur pri-
marily in the dense, fuel-rich forests of the westside Cascades (Fig. 5; approximately MFI 
> 1346). Towns in these areas are situated remotely amongst the mountainous topography, 
where the terrain precludes expansive road infrastructure. This phenomenon is visible in 
Fig.  7, where the westside towns ranking highest in MFI have the poorest road quality. 
Detroit and Idanha, OR, both affected by the 2020 fires, are among this subset. Towns with 
poor road quality also occur where MFI and BP are low (Fig. 7). These towns are primarily 
wedged into rugged coastlines, where the primary access roads run along the coast. A large 
number of them occur in the Olympic Peninsula, where population and road density are 



929Natural Hazards (2021) 107:911–935 

1 3

low. Topography also constrains road quality on the eastside, where BP is greater than the 
westside (Fig. 7). On the eastside, however, towns with poor roads occur across a greater 
range of MFI and BP, reflecting a greater variety of fire histories and fuel conditions. Since 
there is no coastline on the eastside to constrain roads, eastside towns at lower elevations 
with relative flat terrain (lower right quadrant, Fig. 7) enjoy generally better road quality. 

4.3  Assessing evacuation vulnerability is complicated and requires many 
approaches

In the wildfire evacuation literature, vulnerability of towns is rarely assessed using a 
regional-scale, map-based screening approach. The approach described herein enables 
regional exploration of vulnerable rural towns via their egress road network. A regional 
spatial assessment may assist resource allocation decisions and promote preparedness at 
the regional and local levels. Indecisiveness during an evacuation is dangerous, and it is 
imperative that residents have tools in hand to assess their options ahead of time should 
an evacuation be necessary (Steelman et al. 2015; McCaffrey et al. 2018). Preemptive 
exercises have proven valuable in understanding and improving exit networks for actual 
wildfires (de Araujo et al. 2014, Kolden and Henson 2019).

Whereas underlying environmental factors dictate wildfire hazard, human-related 
infrastructure is an important factor in the actual vulnerability of a place (Chakraborty 
et al. 2006). One example of human vulnerability is the complexity of the road network 
that can be used for egress (Dube et al. 2006). Evaluating the egress road network with 
just one measure of vulnerability is not sufficient, and relying on one such metric can 
easily lead to misrepresentation of the true vulnerability of a place (Chakraborty et al. 

Fig. 6  Histogram of the fire hazard of all 696 towns, grouped by road quality quartiles. In each road quality 
quartile, the number of towns in each of the four fire hazard quartiles are plotted. Towns with the best roads 
tend to have the lowest fire hazard, and vice versa
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2006). Furthermore, in a wildfire, many factors contribute to decisions weighing the 
advantages of evacuation versus other options like remaining in place to defend a home 
or retrofitting a home for fire safety, and effectively evaluating these options require an 
overall spatial summary of evacuation options and an understanding of where fires are 
likely to occur (Montz et al. 2012; Beloglazov et al. 2016). Landscape fuel characteris-
tics also can impact fire effects, with high-intensity crown fires more likely in dense for-
est types versus grass and shrub ecosystems, with an array of factors including agricul-
ture, fuel type, housing density, and topography influencing the combined vulnerability 
of a community (Evers et al. 2019).

Our evacuation vulnerability evaluation is built on top of a road network. We established 
four road network vulnerability screening metrics to measure the complicated but required 
assessments of evacuation. First, the exit capacity vulnerability metric quantifies the evacu-
ation possibilities and capacities in numbers at a regional scale. Road directionality vul-
nerability metric and travel area vulnerability metric describe the directions and areas of 
these evacuation exits, and explain the spatial flexibility: where and how far an evacuee can 

Fig. 7  Burn probability rank vs. mean fireline intensity rank of towns. Marker colors represent quartiles of 
road quality rank. Circles represent “westside” towns, located west of the crest of the Cascade Mountains, 
approximated as −121.5° longitude; and triangles represent “eastside” towns. Numbers annotate markers 
of towns listed in Sect. 4.1: Williams, OR (1), Leavenworth, WA (6), Detroit, OR (14), Idanha, OR (18), 
Skykomish, WA (13), Oakridge, OR (38), Mill City, OR (140), Gates, OR (141), Centerville, WA (188), 
Clallam Bay, WA (194), Alsea, OR (212), Madras, OR (295), Bellfountain, OR (353), Prineville, OR (377), 
Malden, WA (432), Grandview, WA (480), Yacolt, WA (489), Sandy, OR (575), Yelm, WA (560), Stayton, 
OR (640), and St. Paul, OR (624). Note that all numbers presented in the figure are ranks (i.e., 1 most vul-
nerable, 696 is least vulnerable), and not normalized vulnerability metrics
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travel. The connectivity vulnerability metric summarizes the quality of connections inter-
nally for the road network at each intersection, where a moderate connectivity indicates the 
possible greater emergency access and more efficient response (Handy et al. 2003). These 
four-screening metrics examine the quality of the road network in various aspects: in the 
number, direction, size, coverage, and spatial capacity (Cova et  al. 2013), which are the 
solid foundations of future spatiotemporal framework and traffic simulation models. The 
key contribution of our regional-scale road network vulnerability screening metrics is that 
they depict and aggregate large-scale effectiveness of evacuation spatially for rural Oregon 
and Washington towns, which can be accommodated with more complex spatial–temporal 
simulations to further examine the traffic dynamics at a smaller scale: e.g., travel time, 
lane types, and population (Cova and Johnson 2002; Wolshon and Marchive 2007; Li et al. 
2019). We expect explorations of evacuation dynamics at different scales will positively 
build upon one another, enhancing the overall collective analyses.

4.4  Where do we go from here?

We chose this screening process as a necessary step in assessing, ranking, and comparing 
the evacuation vulnerability of towns, but it sacrifices local detail in order to do so. We 
hope our work will inspire further improvements and discussion. Importantly, we empha-
size that a low vulnerability ranking by no means indicates that a town does not have fire 
hazard, nor that a town’s road network will sufficiently facilitate evacuation of all residents. 
On the contrary, none of the towns we analyzed have zero fire hazard, and as the 2020 
Labor Day fires demonstrate, towns with objectively low vulnerability (even towns in the 
Low and Lowest Vulnerability quartiles) can experience extreme, high-danger wildfire 
events. Further, our definitions of a good road network are purely geometric and do not 
consider factors like the physical quality of a road, number of evacuees, how many house-
holds have a working vehicle, whether residents are mentally prepared to evacuate, and 
how far evacuees will need to travel to be considered safe.

Considering the complicated nature of evacuation assessment, we have identified four 
key ways that our work could be refined and expanded in the future: 1) Our screening met-
rics could be supplemented by more advanced traffic network simulation modeling. Pub-
lished work such as Cova et al. (2016), Li et al. (2019), or Wolshon and Marchive (2007) 
show how travel simulation can quantify the temporal and traffic capacity components of 
evacuation, a step that is needed to provide communities with specific evacuation route 
recommendations and quantify how many people can be moved in a set amount of time, 
including accounting for population of a town. For example, in practice a town with 8,000 
residents will likely be more difficult to evacuate than a town with a similar road net-
work, but only 2,000 residents; 2) Residents’ perceptions of their evacuation vulnerabil-
ity, including which routes they perceive as viable wildfire evacuation options, need to be 
assessed in more detail at the regional scale. In individual towns, interview methods have 
been successful to summarize the informational and tactical needs of residents in prepara-
tion for a wildfire evacuation (e.g., Cohn and Carroll 2006; Steelman et al. 2015; McCaf-
frey et  al. 2018). A similar approach could be useful to gain a more complete summary 
of some of the towns we identified as most vulnerable and to develop more locally appli-
cable insights; 3) Probabilistic modeling of the rate and direction of wildfire spread with 
regards to population centers and their evacuation network needs to be conducted, since 
the best evacuation route will always depend on the speed and direction of the advancing 
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fire front. Studies such as Li et al. (2018) have simulated real-time advance of fire and how 
that creates time and directional constraints on evacuations, but these analyses need to be 
constructed beyond individual communities and applied at the regional scale; and 4) Ana-
lyzing the origin–destination capacity of towns, including identification of where people 
will evacuate to during a wildfire, will help identify which towns are constrained by their 
relative isolation. This aspect has been analyzed in the context of other natural disasters 
(e.g., Chang and Liao 2015), but not extensively in the fire evacuation literature.

The metrics presented here may help communities contemplate how their evacuation 
options may be limited by number of exits (Exit Capacity metric), variety of exit directions 
(Road Directionality metric), and drivable area (travel area metric) and will help prioritize 
communities for further study of vulnerability and evacuation options. In addition, this 
work may help in raising awareness of the vulnerability of rural communities in the Pacific 
Northwest to encroaching wildland fires. Where egress is limited, safety zones might be 
identified or constructed, homes might be retrofitted to reduce risk of burning, or landscap-
ing might be adjusted to reduce the chance of home ignition. All in all, we hope that con-
templating options for reducing vulnerability in rural Pacific Northwest towns with high 
wildfire hazard may help communities plan for future wildfires.
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